JPH02306558A - Arrangement of conductive particles on electrode - Google Patents

Arrangement of conductive particles on electrode

Info

Publication number
JPH02306558A
JPH02306558A JP1127443A JP12744389A JPH02306558A JP H02306558 A JPH02306558 A JP H02306558A JP 1127443 A JP1127443 A JP 1127443A JP 12744389 A JP12744389 A JP 12744389A JP H02306558 A JPH02306558 A JP H02306558A
Authority
JP
Japan
Prior art keywords
conductive particles
electrode
resin layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1127443A
Other languages
Japanese (ja)
Other versions
JPH0695462B2 (en
Inventor
Koji Matsubara
浩司 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1127443A priority Critical patent/JPH0695462B2/en
Publication of JPH02306558A publication Critical patent/JPH02306558A/en
Publication of JPH0695462B2 publication Critical patent/JPH0695462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

PURPOSE:To correspond to micronization of an electrode by scattering conductive particles having a larger diameter than the layer thickness of a photoresist layer and selectively irradiating light only on an electrode part to be pressure-welded and hardened followed by removing unnecessary conductive particles together with a resin layer. CONSTITUTION:A photoresisting resin layer 8 is applied to the surface of a substrate 1 whereon previously an electrode 2 and a surface protective layer 3 are formed. Next, conductive particles 5 having a larger diameter than the layer thickness of the resin layer 8 are scattered on the substrate 1. Next, a mask plate 9 having a transmitting region 7a and a light-shielding layer 7b corresponding to the electrode 2 is made to oppose to the side of the conductive particles 5 stuck to the substrate 1, and an elastic member 4 is made to closely contact with the rear to the conductive particles 5 of the substrate 1. Later, ultraviolet rays 20 are irradiated on a substrate 7 through the mask plate 9. Prior to hardening of the resin layer 8 due to light irradiation, the conductive particles 5 are pressed on the electrode 2 side by by mask plate 9 in the arrow 18 direction to the elastic member 4. Next, the conductive particles 5 stuck excepting to the electrode 2 are removed together with an unhardened resin layer 8b so that resin layer 8a fixes the conductive particles 5 on the electrode 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえば半導体集積回路基板、あるいはプリ
ント基板、ガラス基板、フレキシブル基板、またはセラ
ミック基板などの回路基板相互間の電極を、導電性粒子
を介した圧接によって電気的に接続するために好適に実
施される電極上への導電性粒子の配置方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for connecting electrodes between circuit boards such as semiconductor integrated circuit boards, printed circuit boards, glass boards, flexible boards, or ceramic boards through conductive particles. The present invention relates to a method of arranging conductive particles on an electrode, which is suitably implemented for electrical connection by pressure contact.

従来の技術 従来、回路基板同士の電極を電気的に接続する方法とし
ては、通常、半田付けが行われている。
2. Description of the Related Art Conventionally, soldering has been commonly used as a method for electrically connecting electrodes of circuit boards.

半田付けによる方法では、少なくとも一方の回路基板の
電極上に、めっき法や印刷法などによって半田層を形成
し、この半田層を200〜250℃程度の高温に加熱し
、溶融して他方の回路基板の電極に接続する。したがっ
て電極材料として、予めAu、Cu、Niなどの親半田
金属を用いる必要がある。
In the soldering method, a solder layer is formed on the electrodes of at least one circuit board by plating or printing, and this solder layer is heated to a high temperature of about 200 to 250 degrees Celsius to melt and attach to the other circuit board. Connect to the electrode of the board. Therefore, it is necessary to use a parent solder metal such as Au, Cu, or Ni as the electrode material in advance.

このような半田付けという高温処理による回路基板など
への熱的な弊害や、親半田金属を用いることによるコス
ト高を回避するために、最近では、接着剤中に導電性粒
子を分散させて成る異方導電性接着剤を用いる傾向にあ
る。
In order to avoid the thermal effects on circuit boards caused by the high-temperature process of soldering and the high cost of using parent solder metals, conductive particles have recently been dispersed in adhesives. There is a trend to use anisotropically conductive adhesives.

異方導電性接着剤は、塗布状態で加圧されるとその厚み
方向に対してのみ導電性を示し、それ以外の方向に対し
て□は非導電性である。この異方導電性を利用し、接続
したい電極や端子などの表面にこの異方導電性接着剤を
塗布し、電極間に介在した異方導電性接着剤層をその厚
み方向にわたって加圧して両電極間の電気的および機械
的接続を行う。
The anisotropically conductive adhesive exhibits conductivity only in the thickness direction when applied and pressurized, and is non-conductive in other directions. Utilizing this anisotropic conductivity, this anisotropic conductive adhesive is applied to the surface of the electrodes or terminals to be connected, and the anisotropic conductive adhesive layer interposed between the electrodes is pressurized across its thickness. Make electrical and mechanical connections between electrodes.

特に、配線材料としてI T O(Indium Ti
n0xide)を使用する液晶表示板の端子の接続には
、その接続の容易性および熱的条件の点から、前記異方
導電性接着剤が多用されている。
In particular, ITO (Indium Ti) is used as a wiring material.
The above-mentioned anisotropic conductive adhesive is often used to connect terminals of a liquid crystal display board using a liquid crystal display panel using an anisotropic conductive adhesive, because of its ease of connection and thermal conditions.

発明が解決しようとする課題 上記した異方導電性接着剤は、樹脂材料中に導電性粒子
を分散させた構成である。したがって隣接端子間のピッ
チ幅が微細となった場合には、樹脂中に存在する導電性
粒子に起因して電気的短絡が生じ、微小ピッチ幅での接
続が困難となる問題点がある。
Problems to be Solved by the Invention The above-mentioned anisotropically conductive adhesive has a structure in which conductive particles are dispersed in a resin material. Therefore, when the pitch width between adjacent terminals becomes fine, there is a problem that electrical short circuit occurs due to the conductive particles present in the resin, making it difficult to connect with the fine pitch width.

本発明の目的は、上記問題点を解決して、接続すべき電
極上にのみ導電性の粒子を配置することができ、したが
って電極の微細化に対応することができると共に、接続
の信頼性を向上することができる電極上I\の導電性粒
子の配置方法を提供することである。
An object of the present invention is to solve the above-mentioned problems so that conductive particles can be placed only on the electrodes to be connected, thereby making it possible to cope with miniaturization of the electrodes and to improve the reliability of the connection. An object of the present invention is to provide a method for arranging conductive particles on an electrode that can improve the conductivity of the electrode.

課題を解決するための手□段 本発明は、電極が形成された回路基板に光硬化性の樹脂
材料を塗布して樹脂層を形成し、前記樹脂層の層厚より
も大径の導電性の粒子を前記回路基板に散布し、 この導電性粒子が散布された回路基板の樹脂層に、光の
透過領域と遮断領域とが選択的に形成された光の選択透
過部材を介して電極部にのみ光を照射し、 前記樹脂層の硬化に免立って、前記選択透過部材によっ
て導電性粒子を電極側に圧接し、電極上以外に付着した
導電性粒子は、前記樹脂層と共に除去するようにしたこ
とを特徴とする電極上への導電性粒子の配置方法である
Means for Solving the Problems The present invention involves coating a circuit board on which electrodes are formed with a photocurable resin material to form a resin layer, and forming a conductive layer with a diameter larger than the layer thickness of the resin layer. particles are sprinkled on the circuit board, and the conductive particles are applied to the resin layer of the circuit board on which the conductive particles are sprinkled, through a selectively transmitting light member in which a light transmitting region and a light blocking region are selectively formed. After the resin layer is cured, the conductive particles are pressed against the electrode side by the selective transmission member, and the conductive particles adhering to areas other than the electrode are removed together with the resin layer. A method for arranging conductive particles on an electrode is characterized in that:

作  用 4一 本発明に従えば、電極を含む回路基板には光硬化性の樹
脂材料が塗布されて樹脂層が形成される。
Effect 41 According to the present invention, a photocurable resin material is applied to a circuit board including electrodes to form a resin layer.

この樹脂層には、その層厚よりも大径の導電性粒子が散
布され、電極上以外に付着した前記粒子は樹脂層と共に
除去される。このように電極上へのみ導電性粒子を配置
するには、先ず、前記粒子が散布された回路基板の樹脂
層に、回路基板の電極に対応する位置に光の透過領域と
、光の遮断領域とが選択的に形成された光の選択透過部
材を介して光を照射する。また前記樹脂層が光照射によ
って硬化するに先立って、前記選択透過部材によって導
電性粒子を電極側に圧接する。
Conductive particles having a diameter larger than the thickness of the resin layer are sprinkled on the resin layer, and the particles adhering to areas other than the electrodes are removed together with the resin layer. In order to arrange conductive particles only on the electrodes in this way, first, on the resin layer of the circuit board on which the particles are sprinkled, a light transmitting area and a light blocking area are placed at positions corresponding to the electrodes of the circuit board. Light is irradiated through a selectively transmitting light member formed selectively. Furthermore, before the resin layer is cured by light irradiation, the conductive particles are pressed against the electrode side by the selective transmission member.

これによって前記選択透過部材の光の透過領域に対応し
て光照射によって硬化した樹脂層には。
As a result, the resin layer cured by light irradiation corresponds to the light transmission area of the selective transmission member.

導電性粒子が埋設して固定され、光の遮断領域に対応し
て光照射されず未硬化の樹脂層には導電性粒子が保持さ
れる。
The conductive particles are embedded and fixed, and the conductive particles are held in the uncured resin layer that is not irradiated with light corresponding to the light blocking area.

したがって電極上以外に付着した前記粒子は未硬化の樹
脂層と共に除去することによって、電極上l\配装され
た導電性粒子のみを樹脂層に埋設して固定し、突起した
電極を形成することができる。
Therefore, by removing the particles adhering to areas other than the electrode together with the uncured resin layer, only the conductive particles arranged on the electrode are embedded and fixed in the resin layer, forming a protruding electrode. I can do it.

これによって回路基板上に突起した電極を微細に形成す
ることができ、電極の微細化に対応して高い信頼性で他
の回路基板に接続することができる回路基板が構成され
る。
As a result, protruding electrodes can be formed on the circuit board, and a circuit board that can be connected to other circuit boards with high reliability in response to the miniaturization of the electrodes is constructed.

また、接続すべき両回路基板の少なくとも一方の回路基
板に前記突起した電極を形成して両回路基板を圧接する
場合に、両回路基板間に比較的低温度で硬化する接着剤
を充填してこの接着剤を硬化させれば、前記突起した電
極から成る電気的な接続部分が樹脂によって封止され、
接続の信頼性が格段に向上する。
Further, when forming the protruding electrode on at least one of the circuit boards to be connected and pressing the two circuit boards together, an adhesive that hardens at a relatively low temperature may be filled between the two circuit boards. When this adhesive is cured, the electrical connection portion consisting of the protruding electrode is sealed with the resin,
Connection reliability is greatly improved.

実施例 第1図は本発明の一実施例である半導体装置6の構成を
示す断面図であり、第2図は半導体装置6の製造工程を
説明する断面図であり、第3図は半導体装置6が実装さ
れた液晶表示装置1oの断面図である。
Embodiment FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device 6 which is an example of the present invention, FIG. 2 is a cross-sectional view explaining the manufacturing process of the semiconductor device 6, and FIG. FIG. 6 is a cross-sectional view of a liquid crystal display device 1o in which 6 is mounted.

第3図を参照して、表面に透光性の電極13および対向
電極16がそれぞれ形成された一対の液晶表示板11.
12は、シール樹脂15を介して貼り会わされており、
その間に液晶17が封入されている。液晶表示装置10
において、液晶表示板12上を図面右方に延びる電極1
3には、導電性粒子5を介して半導体装置6が接続され
、液晶表示装置10の表示駆動を行う。また、半導体装
置6と液晶表示板12との接続部分は、接着剤14によ
って封止されている。
Referring to FIG. 3, a pair of liquid crystal display plates 11 each have a translucent electrode 13 and a counter electrode 16 formed on their surfaces.
12 are pasted together via a sealing resin 15,
A liquid crystal 17 is sealed between them. Liquid crystal display device 10
, the electrode 1 extends on the liquid crystal display panel 12 to the right in the drawing.
A semiconductor device 6 is connected to 3 via conductive particles 5 to drive the display of the liquid crystal display device 10 . Further, the connection portion between the semiconductor device 6 and the liquid crystal display board 12 is sealed with an adhesive 14.

半導体装置6は、シリコンあるいはガリウムヒ素などの
基板上に拡散層(図示せず)が形成され、これによって
多数のトランジスタやダイオードなどが構成されて液晶
表示装置1oの表示駆動を行う機能を有する。この半導
体装置6は、基板1と、この基板1の一方表面に予め形
成される電極2と、樹脂層8aと、導電性粒子5とを含
む。
The semiconductor device 6 has a diffusion layer (not shown) formed on a substrate such as silicon or gallium arsenide, and includes a large number of transistors, diodes, etc., and has the function of driving the display of the liquid crystal display device 1o. This semiconductor device 6 includes a substrate 1, an electrode 2 formed in advance on one surface of the substrate 1, a resin layer 8a, and conductive particles 5.

半導体装置6の電極2としては、通常、AnにStを1
層程度添加したAl−3iが使用されている。Al−3
iは、その表面にごく薄いアルミナなどの絶縁性酸化膜
を形成し、接続時の抵抗が高くなり易い。この接続抵抗
を低減するために、図示はしないけれとも、A1・Si
の電極2にCr、Ti、W、Cu、Ni、Au、Ag、
PtおよびPdなどのうちのいずれかの金属、あるいは
これら金属の合金を材料として、1層もしくは2層以上
の金属層を予め被覆してもよい。
The electrode 2 of the semiconductor device 6 is usually made by adding 1 part of An to 1 part of St.
A layer of Al-3i is used. Al-3
i forms a very thin insulating oxide film such as alumina on its surface, which tends to increase the resistance during connection. In order to reduce this connection resistance, A1・Si
Cr, Ti, W, Cu, Ni, Au, Ag,
It may be coated with one or more metal layers in advance using any metal such as Pt and Pd, or an alloy of these metals.

被覆方法としては、上記金属を半導体装置6上にスパッ
タリング法あるいはエレクトロンビーム法などによって
蒸着し、その後フォトリソグラフィ法によってパターン
形成して、電極2に選択的に金属層を被覆する。あるい
は、Al・Siから成る電極2に、Niは直接には無電
解めっきできないので、先にPdを電極2に選択的に無
電解めっきし、その後、Pdに対してNiを無電解めっ
きすることによって、電極2にNiの金属層を被覆する
こともてきる。
As a coating method, the metal layer is deposited on the semiconductor device 6 by a sputtering method or an electron beam method, and then patterned by a photolithography method to selectively coat the electrode 2 with the metal layer. Alternatively, since Ni cannot be electrolessly plated directly on the electrode 2 made of Al/Si, Pd may be selectively electrolessly plated on the electrode 2 first, and then Ni may be electrolessly plated on the Pd. Accordingly, the electrode 2 can be coated with a Ni metal layer.

基板1の電極2が形成されていない表面領域には、表面
保護層3が形成されている。この表面保護N3は、たと
えばSiN、5in2、あるいはポリイミドなどから成
る。
A surface protective layer 3 is formed on a surface region of the substrate 1 where the electrode 2 is not formed. This surface protection N3 is made of, for example, SiN, 5in2, or polyimide.

基板1の電極2上には、樹脂層8aが形成され〜8− ている。この樹脂層8aは、後述する本発明の方法によ
って、導電性粒子5の一端が電極2の表面に接触し、他
端が樹脂層8aから突出した状態で硬化される。樹脂層
8aの材料としては、たとえばアクリル系樹脂、ポリエ
ステル系樹脂、ウレタン系樹脂、エポキシ系樹脂、ある
いはシリコーン系樹脂などの各種合成樹脂材料を使用す
ることができる。
A resin layer 8a is formed on the electrode 2 of the substrate 1. This resin layer 8a is cured by the method of the present invention, which will be described later, with one end of the conductive particles 5 in contact with the surface of the electrode 2 and the other end protruding from the resin layer 8a. As the material of the resin layer 8a, various synthetic resin materials such as acrylic resin, polyester resin, urethane resin, epoxy resin, or silicone resin can be used.

導電性粒子5としては、Au、Ag、Pt、cu、Ni
、C1In、Sn、PbおよびPdなどの金属あるいは
これらの2種類以上の合金を使用することができる。ま
た第1図に例示のように、高分子材料からなる弾性粒子
5bの表面に、導電性材料からなる被覆層5aを形成し
た導電性粒子5としてもよい。この揚重、弾性粒子5b
の高分子材料としては、たとえばポリイミド系樹脂、エ
ポキシ系樹脂、アクリル系樹脂などのき成樹脂、あるい
はシリコーンゴム、ウレタンゴムなどの合成ゴムが使用
できる。
As the conductive particles 5, Au, Ag, Pt, cu, Ni
, C1In, Sn, Pb, and Pd, or alloys of two or more of these metals can be used. Further, as illustrated in FIG. 1, the conductive particles 5 may be formed by forming a coating layer 5a made of a conductive material on the surface of an elastic particle 5b made of a polymeric material. This lifting weight, elastic particle 5b
Examples of the polymer material that can be used include molded resins such as polyimide resins, epoxy resins, and acrylic resins, or synthetic rubbers such as silicone rubber and urethane rubber.

前記被覆層5aの導電性材料としては、Au、Ag、 
 Pt、  Cu  、 Ni  、 C、I  rr
  、S  rr  、 pbおよびP dなとの金属
、あるいはこれらのき金を1層もしくは2層以上として
使用することができる。2層以上で被覆層5aを形成す
る場自には、弾性粒子5b/\の密着性に優れるたとえ
ばNiなとの金属層を先に形成し、さらにそのような金
属の酸化防止のために、Auなどの金属層を被覆するこ
とが好ましい。被覆方法としては、スパッタリング法、
エレクトロンビーl−法などによる蒸着法、あるいは無
電解めっきなどの方法を用いることができる。
The conductive material of the coating layer 5a includes Au, Ag,
Pt, Cu, Ni, C, Irr
, S rr , pb and P d , or these metals can be used as one layer or two or more layers. When forming the covering layer 5a with two or more layers, a metal layer such as Ni, which has excellent adhesion to the elastic particles 5b, is first formed, and in order to prevent oxidation of such metal, Preferably, it is coated with a metal layer such as Au. Coating methods include sputtering method,
A vapor deposition method such as an electron beam method or a method such as electroless plating can be used.

次に、第2図を参照して、本発明の一実施例を説明する
。第2図(1)では、予め電極2および表面保護層3が
形成されている基板1において、この電極2および表面
保護M3の表面に、たとえばスピンコードあるいはロー
ルコートなどの方法によって、光硬化性の樹脂材料を全
面に塗布し、均一な層厚11を有する樹脂層8を形成す
る。この樹脂層8は、塗布状態で粘度μm2000〜1
oooooセンチポアズ(cP)の粘性を有する一1〇
− ことが好ましい。
Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 2(1), in a substrate 1 on which electrodes 2 and a surface protection layer 3 have been formed in advance, a photocurable material is applied to the surfaces of the electrodes 2 and a surface protection layer 3 by a method such as spin cord or roll coating. A resin material 8 is applied over the entire surface to form a resin layer 8 having a uniform layer thickness 11. This resin layer 8 has a viscosity of 2000 μm to 1 μm in the applied state.
Preferably, it has a viscosity of 110 centipoise (cP).

上述のように樹脂層8を塗布するためには、予め所定粘
度μに調製された光硬化性の樹脂材料を適当な溶剤で希
釈し、粘度が低下した状態で基板1に塗布する。これに
よって塗布する際の樹脂層8の層厚11が容易に制御で
き、また形成された樹脂層8の層厚p1を基板1上で均
一に保持できる。
In order to apply the resin layer 8 as described above, a photocurable resin material prepared in advance to a predetermined viscosity μ is diluted with an appropriate solvent and applied to the substrate 1 in a state in which the viscosity is reduced. Thereby, the layer thickness 11 of the resin layer 8 during coating can be easily controlled, and the layer thickness p1 of the formed resin layer 8 can be maintained uniformly on the substrate 1.

ところが一般に、光硬化性樹脂は溶剤を含浸した状態で
は、光照射による硬化が不充分となることが知られてい
る。そこで、光硬化性樹脂を塗布して樹脂層8を形成し
た基板1を、たとえば1mrn T o r +−程度
の真空中に、充分な時間たとえば少なくとも1時間程度
放置し、樹脂層8が含む溶剤を充分に気化させる。これ
によって溶剤が気化した樹脂層8は、自然状態の液状体
となり、光硬化性が改善し、予め調製した所定粘度μに
回復する。
However, it is generally known that when a photocurable resin is impregnated with a solvent, curing by light irradiation becomes insufficient. Therefore, the substrate 1 on which the resin layer 8 has been formed by coating the photocurable resin is left in a vacuum of, for example, about 1 mrnT or +- for a sufficient period of time, for example, at least 1 hour, and the solvent contained in the resin layer 8 is removed. fully vaporize. As a result, the resin layer 8 in which the solvent has been vaporized becomes a liquid in its natural state, the photocurability is improved, and the viscosity is restored to a predetermined viscosity μ prepared in advance.

このような基板1上の樹脂層8としては、その層厚11
−1〜20μm程度が好ましい。ずなわぢ、樹脂層8の
層厚11は、基板1および電極2の平坦性や粗面性ある
いはうねりや反りなどといった特性を考慮して決めるべ
きであり、電極の微細化やピッチ幅などの電極間隔に対
応して基本的には薄い方が好ましい。しかし前記層厚1
1よりも薄いと、基板1の粗面性が後述する導電性粒子
5の散布時に粒子5の凹凸として現れ、マスク9による
加圧か不充分となり、電気的接続が不良となり易い。
The resin layer 8 on such a substrate 1 has a layer thickness of 11
-1 to about 20 μm is preferable. The layer thickness 11 of the resin layer 8 should be determined by considering the flatness, roughness, waviness, warpage, etc. of the substrate 1 and the electrodes 2, and should be determined by considering the fineness of the electrodes, pitch width, etc. Basically, the thinner the electrode is, the better, depending on the electrode spacing. However, the layer thickness 1
If it is thinner than 1, the roughness of the substrate 1 will appear as unevenness of the conductive particles 5 during dispersion of the conductive particles 5, which will be described later, and the pressure applied by the mask 9 will be insufficient, which tends to result in poor electrical connection.

また樹脂層8が、前記層厚11よりも大きい場音には、
対応することができる電極2の配線数が低下し、ピッチ
幅が増大する。
In addition, for sound where the resin layer 8 is larger than the layer thickness 11,
The number of wires of the electrode 2 that can be accommodated decreases, and the pitch width increases.

樹脂層8の材料としては、たとえばアクリル系やポリエ
ステル系の樹脂材料を基材とし、それに光硬化剤を混入
したもの、または前記基材に光反応性の基を付加して光
硬化性樹脂としたものなどが使用できる。
The material for the resin layer 8 is, for example, a base material made of acrylic or polyester resin material mixed with a photocuring agent, or a photocurable resin made by adding a photoreactive group to the base material. You can use the ones you made.

次に、第2図(2)に示されるように、樹脂層8上に導
電性粒子5をほぼ単層で配置する。これによって後述す
るように、他の回路基板と圧接したときに安定した接続
状態を達成てきる。導電性粒子5を単層で配置するには
、前述のような処理によって所定粘度μに調整された樹
脂層8上に、導電性粒子5の充分量を全面に一様に散布
する。
Next, as shown in FIG. 2(2), the conductive particles 5 are arranged in substantially a single layer on the resin layer 8. As a result, as will be described later, a stable connection state can be achieved when the circuit board is pressed into contact with another circuit board. To arrange the conductive particles 5 in a single layer, a sufficient amount of the conductive particles 5 is uniformly sprinkled over the entire surface of the resin layer 8, which has been adjusted to have a predetermined viscosity μ by the above-described treatment.

この段階で導電性粒子5は、数段に積層した状態であっ
てもよい。
At this stage, the conductive particles 5 may be stacked in several stages.

その後、空気または窒素ガスを基板1に吹付けるエアブ
ロ−やN2ブローによって、樹脂層8にその粘着性によ
って付着した導電性粒子5などの上に、単に積層して付
着している余分な導電性粒子5を除去する。あるいは、
水洗いによって余分な導電性粒子5を流出させてもよい
Thereafter, by air blowing or N2 blowing of air or nitrogen gas onto the substrate 1, excess conductive particles that are simply laminated and adhered to the conductive particles 5, etc. that have adhered to the resin layer 8 due to their adhesive properties are removed. Remove particles 5. or,
Excess conductive particles 5 may be washed out by washing with water.

上述のように樹脂層8上に導電性粒子5が単層で確実に
粘着するためには、樹脂層8が前記粘度μm2000〜
100000cP程度の粘性を有していればよい。粘度
μが上記の値よりも高いと、逆に、樹脂層81\の導電
性粒子5の粘着性が低下する。一方、上記の値よりも低
粘度の樹脂層8では、導電性粒子5の粘着が不充分とな
ると共に、一旦付着した導電性粒子5が樹脂層8から離
間し、他の導電性粒子5へ付着するなどして導電性粒子
5同士で団塊状になり易い。
As mentioned above, in order for the conductive particles 5 to reliably adhere as a single layer on the resin layer 8, the resin layer 8 must have a viscosity of 2,000 μm to 2,000 μm.
It is sufficient if it has a viscosity of about 100,000 cP. When the viscosity μ is higher than the above value, on the contrary, the adhesiveness of the conductive particles 5 of the resin layer 81\ decreases. On the other hand, if the resin layer 8 has a viscosity lower than the above value, the adhesion of the conductive particles 5 will be insufficient, and the conductive particles 5 once attached will separate from the resin layer 8 and spread to other conductive particles 5. The conductive particles 5 tend to adhere to each other and form a lump.

次に、第2図(3)に示されるように、電極2に対応し
て透光領域7aと遮光領域7bとが選択的に形成された
マスク板9を、基板1に粘着した導電性粒子5側で対向
させ、電極2と透光領域7aとを位置会わぜする。また
基板1の導電性粒子5に対して背面には、軟質ゴムなど
の弾性部材4を当接する。その後、このマスク板9を介
して基板1に紫外線20を照射する。この光照射による
樹脂層8の硬化に先立って、弾性部材4に対して矢符1
8方向に、マスク板9によって導電性粒子5を電極2側
へ押し付ける。これによって導電性粒子5は、その一端
が電極2に当接した状態で樹脂層8の硬化に伴って固定
される。
Next, as shown in FIG. 2(3), a mask plate 9 in which a light-transmitting region 7a and a light-blocking region 7b are selectively formed corresponding to the electrode 2 is attached to the conductive particles adhered to the substrate 1. The electrode 2 and the light-transmitting region 7a are positioned so as to face each other on the 5 sides. Further, an elastic member 4 made of soft rubber or the like is brought into contact with the back surface of the conductive particles 5 of the substrate 1 . Thereafter, the substrate 1 is irradiated with ultraviolet rays 20 through this mask plate 9. Prior to curing of the resin layer 8 by this light irradiation, an arrow mark 1 is placed on the elastic member 4.
The conductive particles 5 are pressed toward the electrode 2 by the mask plate 9 in eight directions. As a result, the conductive particles 5 are fixed with one end thereof in contact with the electrode 2 as the resin layer 8 hardens.

またマスク板9による前記加圧時に、導電性粒子5が電
極2に当接しなくても、予め光硬化性樹脂層8にたとえ
ばウレタン系やシリコーン系などの比較的軟らかい樹脂
材料を選択することによって、後述する他の回路基板と
の圧接時に、導電性粒子5が樹脂層8を貫通し、電極2
に接触させることができる。すなわち、そのような軟ら
かい樹脂材料としては、光硬化後でも、導電性粒子5の
硬さよりは軟らかく、加圧される前記粒子5によって塑
性変形が生じ、樹脂層8が押し分けられる程度の軟性を
有するものであればよい。
Furthermore, even if the conductive particles 5 do not come into contact with the electrodes 2 during the pressurization by the mask plate 9, it is possible to prevent the conductive particles 5 from coming into contact with the electrodes 2 by selecting a relatively soft resin material such as urethane or silicone for the photocurable resin layer 8 in advance. , the conductive particles 5 penetrate through the resin layer 8 during pressure contact with another circuit board, which will be described later, and the electrodes 2
can be brought into contact with. That is, such a soft resin material is softer than the hardness of the conductive particles 5 even after photocuring, and has such softness that plastic deformation occurs due to the pressurized particles 5 and the resin layer 8 is pushed apart. It is fine as long as it is something.

マスク板9の材質としては、加圧時に導電性粒子5から
の抗力によって反ることなく、均一に導電性粒子らを加
圧できるものが好ましい。そのような露光および加圧に
用いるマスク板つとしては、たとえば透光性の厚手のガ
ラス板9a表面に金属層91)を蒸着法などによって全
面に形成し、これをフォトリソグラフィ法などによって
選択的にエツチングし、基板1の電極2の形状に対応し
たパターン形成を行う。これによってマスク板9には、
金属層9bの有無に従って前記透光領域7aと遮光領域
7bとから成るマスクパターンが形成される。このよう
な金属層9bの層厚12としては、加圧時に当接する導
電性粒子5の粒径(量に比べて充分小さく、加圧力の不
均一を招くことのない程度たとえば数100 n m以
内であればよい。
The material of the mask plate 9 is preferably one that can uniformly press the conductive particles without warping due to the drag force from the conductive particles 5 during pressurization. As a mask plate used for such exposure and pressurization, for example, a metal layer 91) is formed on the entire surface of the transparent thick glass plate 9a by vapor deposition, and then selectively coated by photolithography or the like. A pattern corresponding to the shape of the electrode 2 on the substrate 1 is formed by etching. As a result, the mask plate 9 has
A mask pattern consisting of the light-transmitting region 7a and the light-shielding region 7b is formed depending on the presence or absence of the metal layer 9b. The layer thickness 12 of such a metal layer 9b is determined to be sufficiently small compared to the particle size (amount) of the conductive particles 5 that contact during pressurization, and to an extent that does not cause unevenness of the pressurizing force, for example, within several hundred nanometers. That's fine.

マスク板9を介して導電性粒子5を含む樹脂層8を露光
し、加圧することによって、第2図(4)に示されるよ
うに、電極2上の導電性粒子5は硬化した樹脂層8aに
固定され、電極2上以外の導電性粒子5は未硬化の樹脂
層8bに埋設して保持される。
By exposing the resin layer 8 containing the conductive particles 5 to light through the mask plate 9 and applying pressure, the conductive particles 5 on the electrode 2 form a hardened resin layer 8a, as shown in FIG. 2(4). The conductive particles 5 other than those on the electrodes 2 are embedded and held in the uncured resin layer 8b.

基板1上に配置される導電性粒子5は、その粒径dが樹
脂層8の層厚p1に対して少なくとも2倍以上、好まし
くは層厚11の3〜20倍程度の均一粒径d−(3〜2
0)XZIであればよい。
The conductive particles 5 disposed on the substrate 1 have a uniform particle size d- whose particle diameter d is at least twice the layer thickness p1 of the resin layer 8, preferably about 3 to 20 times the layer thickness 11. (3~2
0) XZI is sufficient.

導電性粒子5の粒径(1が層厚11の2倍以下では、マ
スク板9を介して導電性粒子5を基板1側へ押し付ける
際に、樹脂層8がマスク板9に付着し、汚損する恐れが
ある。また、このような粒径(1は、電極2の微細化お
よびピッチ幅の微小化に対応したものでなければならず
、むやみに大きくすることは電気的接続の信頼性の低下
を招いてしまう。
If the particle size of the conductive particles 5 (1 is less than twice the layer thickness 11), when the conductive particles 5 are pressed onto the substrate 1 side through the mask plate 9, the resin layer 8 will adhere to the mask plate 9, causing contamination. In addition, this particle size (1) must correspond to the miniaturization of the electrode 2 and the miniaturization of the pitch width, and increasing it unnecessarily may impair the reliability of the electrical connection. This will lead to a decline.

またマスク板つと導電性粒子5との間に、ポリエチレン
、ポリカーボネート、テフロン、シリコーンなとの透光
性の樹脂フィル12、あるいはガラス板などの透光性部
材を介在させてもよい。これによって、マスク板9と導
電性粒子5とが直接に当接することがなく、したがって
直接当接して相互に加圧されることに起因したマスク板
9の損傷を防止し、保護することができる。
Further, a translucent resin film 12 made of polyethylene, polycarbonate, Teflon, silicone, or the like, or a translucent member such as a glass plate may be interposed between the mask plate and the conductive particles 5. As a result, the mask plate 9 and the conductive particles 5 do not come into direct contact with each other, and therefore, damage to the mask plate 9 caused by direct contact and mutual pressure can be prevented and protected. .

次に、このように電極2上にのみ選択的に紫外線20が
照射され、感光した樹脂層8に対して、溶剤を用いて現
像を行う。適当な溶剤としては、メチルエチルケトン。
Next, only the electrode 2 is selectively irradiated with the ultraviolet rays 20, and the exposed resin layer 8 is developed using a solvent. A suitable solvent is methyl ethyl ketone.

メチルイソブチルケトンやアセトンなどのケトン類、あ
るいはキシレンやトルエンなどの溶剤が使用されるが、
樹脂層8がアクリル系のものに対してはケトン系の溶剤
といっなように、樹脂層8の特性に応して溶剤の種類は
適宜決定されるべきものである。一般に、光硬化性樹脂
の硬化物は溶剤に対して溶は難くなるので、現像は容易
である。
Ketones such as methyl isobutyl ketone and acetone, or solvents such as xylene and toluene are used, but
The type of solvent should be appropriately determined depending on the characteristics of the resin layer 8, such as a ketone solvent when the resin layer 8 is made of acrylic. Generally, a cured product of a photocurable resin is difficult to dissolve in a solvent, so it is easy to develop.

すなわち、紫外線20が照射されて硬化した樹脂層8a
においては、紫外線20に基づく架橋反応などが生じて
おり、溶剤に対しては不溶性または難溶性である。一方
、紫外線20が照射されずに未硬化の樹脂層8bにおい
ては、前記反応は生じておらず、溶剤によって容易に溶
出し除去される。
That is, the resin layer 8a is cured by being irradiated with ultraviolet rays 20.
In this case, a crosslinking reaction based on ultraviolet rays 20 occurs, and it is insoluble or poorly soluble in solvents. On the other hand, in the uncured resin layer 8b that is not irradiated with the ultraviolet rays 20, the reaction does not occur and is easily eluted and removed by a solvent.

これによって第1図に示されるように、電極2上にのみ
導電性粒子5が配置された半導体装置6が得られる。こ
のように半導体装置6において、導電性粒子5を電極2
に固定した樹脂層8εtは、基板1上で突起した電極を
微細に構成する。したがって半導体装置6は、電極の微
細化に対応して高い信頼性で他の回路基板に接続できる
As a result, as shown in FIG. 1, a semiconductor device 6 in which conductive particles 5 are disposed only on the electrode 2 is obtained. In this way, in the semiconductor device 6, the conductive particles 5 are placed on the electrode 2.
The resin layer 8εt fixed on the substrate 1 forms minute electrodes protruding from the substrate 1. Therefore, the semiconductor device 6 can be connected to other circuit boards with high reliability in response to miniaturization of electrodes.

第4図は第3図示の液晶表示装置1oを切断面線IV−
IVから見た一部断面図であり、第5図は第4図の細部
を詳細に示す拡大断面図である。第4図および第5図を
参照して、半導体装置6には、前述した本発明に従って
、電極2上の樹脂層8aに配置された導電性粒子5の一
端が電極2表面に接触し、その他端は樹脂層8aがら突
出した状態で埋設して固定されている。一方、液晶表示
板12の電極13は、たとえばソーダガラスなどの表面
上にI T O(Indium Tin 0xide)
 、あるいは接触抵抗を低減するためにNiでめっきし
たITOなどが形成されて成り、通常厚みは50〜20
0n ffl程度である。
FIG. 4 shows the liquid crystal display device 1o shown in FIG.
5 is a partially sectional view seen from IV, and FIG. 5 is an enlarged sectional view showing the details of FIG. 4 in detail. Referring to FIGS. 4 and 5, semiconductor device 6 has one end of conductive particles 5 disposed on resin layer 8a on electrode 2 in contact with the surface of electrode 2, and the other The end is buried and fixed in a state where it protrudes from the resin layer 8a. On the other hand, the electrodes 13 of the liquid crystal display board 12 are made of ITO (Indium Tin Oxide) on the surface of, for example, soda glass.
, or ITO plated with Ni to reduce contact resistance, and the thickness is usually 50 to 20 mm.
It is about 0nffl.

半導体装置6を液晶表示板12に実装するには、半導体
装置6の導電性粒子5から成る突起電極が形成された基
板1表面と、液晶表示板12の電極13が形成された表
面とを対向し、導電性粒子5と電極13とを位置会わせ
する。位置合わせ終了後、基板1,12間には接着剤1
4を充填し、半導体装置6を液晶表示板12に対して導
電性粒子5および接着剤14を介して矢符19方向に、
電極2.13間が所定の間隔13となるまで加圧する。
In order to mount the semiconductor device 6 on the liquid crystal display board 12, the surface of the substrate 1 on which the protruding electrodes made of conductive particles 5 of the semiconductor device 6 are formed is opposed to the surface on which the electrodes 13 of the liquid crystal display board 12 are formed. Then, the conductive particles 5 and the electrodes 13 are aligned. After completing the alignment, apply adhesive 1 between substrates 1 and 12.
4, and place the semiconductor device 6 against the liquid crystal display panel 12 in the direction of arrow 19 via the conductive particles 5 and adhesive 14.
Pressure is applied until a predetermined distance 13 is established between the electrodes 2 and 13.

この加圧状態で接着剤14を硬化させ、半導体装置6を
液晶表示板12に実装する。
The adhesive 14 is cured under this pressure, and the semiconductor device 6 is mounted on the liquid crystal display board 12.

このように導電性粒子5が電極2上に配置された半導体
装置6を、液晶表示板12に圧接によって接続する際に
、両回路基板1,12に加えられた圧力19によって導
電性粒子らが樹脂層8aを貫通し、その一端が電極2に
接触するようにしてもよい。
When the semiconductor device 6 in which the conductive particles 5 are disposed on the electrode 2 is connected to the liquid crystal display board 12 by pressure contact, the conductive particles are removed by the pressure 19 applied to both the circuit boards 1 and 12. The resin layer 8a may be penetrated and one end thereof may be in contact with the electrode 2.

接着剤14としては、たとえば反応硬化性、嫌気硬化性
、熱硬化性、光硬化性などの各種接着剤が使用できる。
As the adhesive 14, various types of adhesives such as reactive curable, anaerobic curable, thermosetting, and photocurable adhesives can be used.

特に本実施例では、液晶表示板12が透光性材料である
ガラス板から成るので、接着剤14には、高速接ぎ可能
な光硬化性接着剤の使用が有効である。
Particularly in this embodiment, since the liquid crystal display panel 12 is made of a glass plate which is a light-transmitting material, it is effective to use a photocurable adhesive that can be bonded at high speed as the adhesive 14.

このように、導電性粒子5を介して対応する電極2,1
3を接続する際に、予め両回路基板1゜12間に接着剤
14を充填し、硬化すれば、電気的接続部分が樹脂によ
って封止され、接続の償却性が格段に向上する。
In this way, the corresponding electrodes 2 and 1 are connected via the conductive particles 5.
When connecting the circuit boards 1 and 3, if the adhesive 14 is filled in advance between the two circuit boards 1 and 12 and cured, the electrical connection part will be sealed with the resin, and the removability of the connection will be greatly improved.

また、導電性粒子らを、前述した弾性粒子5b表面に導
電性被覆層5aを形成したもので実現ずれば、回路基板
接続後に外部の温度変化などに伴う前記電気的接続部分
の熱変形などに導電性粒子5が追随して対応することが
できる。したがって接続の信頼性がさらに向上する。
Furthermore, if the conductive particles are realized by forming the conductive coating layer 5a on the surface of the elastic particles 5b described above, thermal deformation of the electrical connection portion due to changes in external temperature after connecting the circuit board can be avoided. The conductive particles 5 can follow and respond accordingly. Therefore, the reliability of the connection is further improved.

本実施例においては、半導体装置6上に導電性粒子5を
配置する場合について説明したけれども、半導体装置に
限定する必要はなく、他の回路基板上に導電性粒子を配
置して圧接する場合についても本発明は広範囲に実施す
ることができる。
In this embodiment, the case where the conductive particles 5 are arranged on the semiconductor device 6 has been described, but it is not limited to the semiconductor device, and the case where the conductive particles are arranged on another circuit board and pressure-bonded is explained. The invention can also be practiced in a wide range of ways.

発明の効果 以上のように本発明によれば、簡単な方法によって回路
基板の電極上にのみ導電性粒子を配置てきる。これによ
って電極の微細化に対応して、この導電性粒子によって
突起した電極が形成された回路基板と他の回路基板とを
圧接によって接続する場6の信頼性が向上する。したが
って生産性が向上し、コストが低減する。
Effects of the Invention As described above, according to the present invention, conductive particles can be arranged only on the electrodes of a circuit board by a simple method. As a result, in response to the miniaturization of electrodes, the reliability of the field 6 for connecting the circuit board on which the electrode protruding from the conductive particles is formed and another circuit board by pressure contact is improved. Therefore, productivity is improved and costs are reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体装置6の断面図、第
2図は第1図示の半導体装置6の製造工程を説明する断
面図、第3図は半導体装置6が実装された液晶表示装置
10の断面図、第4図は第3図の切断面線IY−IVか
ら見た断面図、第5図は第4図の一部拡大断面図である
。 1・・・基板、2,13.16・・・電極、5・・・導
電性粒子、6・・・半導体装置、7a・・・透光領域、
7b・・・遮光領域、8・・・樹脂層、10・・・液晶
表示装置、18.19・・・加圧方向、20・・・紫外
線代理人  弁理士 画数 圭一部 ■ Cつ \才
FIG. 1 is a cross-sectional view of a semiconductor device 6 according to an embodiment of the present invention, FIG. 2 is a cross-sectional view explaining the manufacturing process of the semiconductor device 6 shown in FIG. 1, and FIG. 3 is a liquid crystal display on which the semiconductor device 6 is mounted. 4 is a sectional view of the display device 10, FIG. 4 is a sectional view taken along the section line IY-IV in FIG. 3, and FIG. 5 is a partially enlarged sectional view of FIG. 4. DESCRIPTION OF SYMBOLS 1... Substrate, 2,13.16... Electrode, 5... Conductive particle, 6... Semiconductor device, 7a... Transparent region,
7b... Light-shielding area, 8... Resin layer, 10... Liquid crystal display device, 18.19... Pressurizing direction, 20... Ultraviolet ray agent Patent attorney Number of strokes Keiichi ■ C Tsu\ years old

Claims (1)

【特許請求の範囲】 電極が形成された回路基板に光硬化性の樹脂材料を塗布
して樹脂層を形成し、 前記樹脂層の層厚よりも大径の導電性の粒子を前記回路
基板に散布し、 この導電性粒子が散布された回路基板の樹脂層に、光の
透過領域と遮断領域とが選択的に形成された光の選択透
過部材を介して電極部にのみ光を照射し、 前記樹脂層の硬化に先立って、前記選択透過部材によつ
て導電性粒子を電極側に圧接し、 電極上以外に付着した導電性粒子は、前記樹脂層と共に
除去するようにしたことを特徴とする電極上への導電性
粒子の配置方法。
[Claims] A resin layer is formed by applying a photocurable resin material to a circuit board on which electrodes are formed, and conductive particles having a diameter larger than the layer thickness of the resin layer are applied to the circuit board. The resin layer of the circuit board on which the conductive particles are scattered is irradiated with light only on the electrode portions through a selectively transmitting light member in which a light transmitting region and a light blocking region are selectively formed. Prior to curing of the resin layer, the conductive particles are pressed against the electrode side by the permselective member, and the conductive particles adhering to areas other than the electrodes are removed together with the resin layer. How to place conductive particles on an electrode.
JP1127443A 1989-05-19 1989-05-19 Method of placing conductive particles on electrode Expired - Fee Related JPH0695462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1127443A JPH0695462B2 (en) 1989-05-19 1989-05-19 Method of placing conductive particles on electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127443A JPH0695462B2 (en) 1989-05-19 1989-05-19 Method of placing conductive particles on electrode

Publications (2)

Publication Number Publication Date
JPH02306558A true JPH02306558A (en) 1990-12-19
JPH0695462B2 JPH0695462B2 (en) 1994-11-24

Family

ID=14960062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127443A Expired - Fee Related JPH0695462B2 (en) 1989-05-19 1989-05-19 Method of placing conductive particles on electrode

Country Status (1)

Country Link
JP (1) JPH0695462B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301382A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Connecting member
US5225966A (en) * 1991-07-24 1993-07-06 At&T Bell Laboratories Conductive adhesive film techniques
JPH05174889A (en) * 1991-12-20 1993-07-13 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive membrane for electric circuit connection
US5591037A (en) * 1994-05-31 1997-01-07 Lucent Technologies Inc. Method for interconnecting an electronic device using a removable solder carrying medium
WO2001095343A1 (en) * 2000-06-02 2001-12-13 Fujiprint Industrial Co. Ltd. Conductive composition, method for manufacturing electrode or printed board comprising the same, method for connecting electrode comprising the same, and electrode or printed board using the same
WO2009037964A1 (en) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation Anisotropic conductive film and its production method, and bonded body employing anisotropic conductive film
JP2009134914A (en) * 2007-11-29 2009-06-18 Sony Chemical & Information Device Corp Anisotropic conductive film, and bonded body using the same
JP2011034966A (en) * 2009-07-31 2011-02-17 Denshi Buhin Kenkyuin Anisotropy particle arrangement, and manufacturing method thereof
JP2021086977A (en) * 2019-11-29 2021-06-03 国立研究開発法人産業技術総合研究所 Semiconductor device and manufacturing method for the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301382A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Connecting member
US5225966A (en) * 1991-07-24 1993-07-06 At&T Bell Laboratories Conductive adhesive film techniques
JPH05174889A (en) * 1991-12-20 1993-07-13 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive membrane for electric circuit connection
US5591037A (en) * 1994-05-31 1997-01-07 Lucent Technologies Inc. Method for interconnecting an electronic device using a removable solder carrying medium
WO2001095343A1 (en) * 2000-06-02 2001-12-13 Fujiprint Industrial Co. Ltd. Conductive composition, method for manufacturing electrode or printed board comprising the same, method for connecting electrode comprising the same, and electrode or printed board using the same
WO2009037964A1 (en) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation Anisotropic conductive film and its production method, and bonded body employing anisotropic conductive film
US9155207B2 (en) 2007-09-20 2015-10-06 Dexerials Corporation Method for producing an anisotropic conductive film
JP2009134914A (en) * 2007-11-29 2009-06-18 Sony Chemical & Information Device Corp Anisotropic conductive film, and bonded body using the same
JP2011034966A (en) * 2009-07-31 2011-02-17 Denshi Buhin Kenkyuin Anisotropy particle arrangement, and manufacturing method thereof
JP2021086977A (en) * 2019-11-29 2021-06-03 国立研究開発法人産業技術総合研究所 Semiconductor device and manufacturing method for the same
WO2021106339A1 (en) * 2019-11-29 2021-06-03 国立研究開発法人産業技術総合研究所 Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JPH0695462B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
EP0424106B1 (en) A method for connecting circuit boards
EP0691660B1 (en) Anisotropically electroconductive resin film
US5034245A (en) Method of producing connection electrodes
JP6983123B2 (en) Adhesive substrate, transfer device having adhesive substrate, and method for manufacturing the adhesive substrate
JP2001230041A (en) Method of interconnecting devices with use of adhesive
JPH0536761A (en) Connecting method of integrated circuit element
WO2005083772A1 (en) Anisotropic conduction connecting method and anisotropic conduction adhesive film
JP3360772B2 (en) Connection structure of fine electrode and inspection method of electronic component having fine electrode
JP3724606B2 (en) Semiconductor chip connection structure and wiring board used therefor
JPH02306558A (en) Arrangement of conductive particles on electrode
JPH0793342B2 (en) Method of forming electrodes
US5525838A (en) Semiconductor device with flow preventing member
JP3562615B2 (en) Anisotropic conductive film-like connecting member and method of manufacturing the same
JPH07101691B2 (en) Method of forming electrodes
JPH08279388A (en) Connecting method of electric circuit
JP3286867B2 (en) Circuit board connection structure
JPH06224256A (en) Semiconductor device
JPH02159090A (en) Connection of circuit board
JP6440946B2 (en) CONNECTION MANUFACTURING METHOD, ELECTRONIC COMPONENT CONNECTION METHOD, AND CONNECTION BODY
JPH0997812A (en) Connection of circuit board
JPH08102464A (en) Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method
JPH05224229A (en) Method for connecting liquid crystal display panel and circuit board
JP2013182895A (en) Member for mounting semiconductor element and semiconductor device using the same
JP4032320B2 (en) Electrode connection method
JPH0491446A (en) Flip-chip mounting method for semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees