JPH02305946A - Production of fin material for heat exchanger - Google Patents

Production of fin material for heat exchanger

Info

Publication number
JPH02305946A
JPH02305946A JP12657089A JP12657089A JPH02305946A JP H02305946 A JPH02305946 A JP H02305946A JP 12657089 A JP12657089 A JP 12657089A JP 12657089 A JP12657089 A JP 12657089A JP H02305946 A JPH02305946 A JP H02305946A
Authority
JP
Japan
Prior art keywords
fin material
heat exchanger
rolling
temperature
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12657089A
Other languages
Japanese (ja)
Inventor
Shigenori Yamauchi
重徳 山内
Yoshifusa Shiyouji
美房 正路
Kenji Kato
健志 加藤
Hiroshi Takahashi
博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP12657089A priority Critical patent/JPH02305946A/en
Publication of JPH02305946A publication Critical patent/JPH02305946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a fin material for a heat exchanger having superior resistance to buckling at high temp. by successively subjecting an Al alloy ingot contg. specified percentages of Mn, Zn, Fe and Si to homogenizing, heating, hot rolling and cold finish rolling under specified conditions. CONSTITUTION:An alloy ingot consisting of, by weight, 0.5-1.5% Mn, 0.5-2.0% Zn, 0.2-1.0% Fe, 0.3 1.0% Si and the balance Al with inevitable impurities or further contg. 0.05-0.20% each of one or more among Cr, Zr, Ti and V is successively subjected to homogenizing at 400-580 deg.C, heating to 400-580 deg.C and hot rolling, then cold rolling, process annealing and cold finish rolling at 10-50% draft. A tin material for a heat exchanger having superior resistance to buckling at high temp. and superior beat conductivity as well as a sacrificial anode effect is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、アルミニウム合金製熱交換器に用いられるフ
ィン材の製造方法に関し、特に作動流体通路材(管材ま
たは形材)にフィン材をろう付けによって熱交換器に組
み立てる場合に、ろう付は時の加熱に対して優れた耐高
温座屈性を示すと共に、ろう付は後作動流体通路材に対
する犠牲陽極効果及び熱伝導性に優れたアルミニウム合
金フィン材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing fin materials used in aluminum alloy heat exchangers. When assembled into a heat exchanger by brazing, brazing exhibits excellent high-temperature buckling resistance against heating during heating, and brazing also provides aluminum with excellent sacrificial anode effect and thermal conductivity for post-working fluid passage materials. The present invention relates to a method for manufacturing an alloy fin material.

[従来の技術] 従来、アルミニウム合金製熱交換器は、自動車などのラ
ジェータ、エアコン、インタークーラーやオイルクーラ
ーなどの熱交換器として使用されている。
[Prior Art] Conventionally, aluminum alloy heat exchangers have been used as heat exchangers for radiators, air conditioners, intercoolers, oil coolers, etc. of automobiles.

アルミニウム合金製熱交換器は、Al−Cu系合金、A
l−Mn系合金、A 1− M n −Cu系合金など
の作動流体通路構成材料(管あるいは形材が使用される
)に、作動流体通路構成材料に比較して電気化学的に卑
な合金のフィン材が、ろう付けにより組み立てられてい
る。これはフィン材の犠牲陽極効果を利用して作動流体
通路構成材料を防食するためである。また、フィン材は
、ろう付は時の高温加熱によって、その強度が著しく低
下し、変形するため、この加熱によって変形しないよう
に優れた耐高温座屈性が要求される。したがって、アル
ミニウム合金フィン材には、従来からAl−Mn系の合
金が用いられ、これに上記特性を加味するために種々の
元素が添加されているものが提案されている。例えば、
■電気化学的に卑にするためにZn、SnS Inなど
が添加されているもの(特開昭82−120455号)
、■ろう付は時の耐高温サグ性(耐高温座屈性)を向上
させるために、Cr5TiSZrなどを添加するもの(
特開昭50−118919号ン、■また、Z n、Cr
s  Z rsFes S 1%Cu、Mgを添加して
、それぞれの元素のもつ効果を引き出そうとするもの(
特開昭82−198348号)、などが提案されている
The aluminum alloy heat exchanger is made of Al-Cu alloy, A
The working fluid passage construction material (tubes or shapes are used), such as l-Mn alloy and A1-Mn-Cu alloy, is an alloy that is electrochemically less noble compared to the working fluid passage construction material. The fin materials are assembled by brazing. This is because the sacrificial anode effect of the fin material is used to prevent corrosion of the working fluid passage construction material. Furthermore, the strength of the fin material is significantly reduced and deformed by high-temperature heating during brazing, so it is required to have excellent high-temperature buckling resistance so as not to be deformed by this heating. Therefore, Al--Mn based alloys have been conventionally used as aluminum alloy fin materials, and materials to which various elements are added in order to add the above-mentioned characteristics have been proposed. for example,
■Those to which Zn, SnS In, etc. are added to make them electrochemically base (Japanese Patent Application Laid-Open No. 82-120455)
, ■ Brazing is a method in which Cr5TiSZr etc. are added to improve high temperature sag resistance (high temperature buckling resistance) (
JP-A-50-118919 n, ■Also, Z n, Cr
s Z rsFes S 1% Cu and Mg are added to bring out the effects of each element (
JP-A-82-198348), etc. have been proposed.

[発明が解決しようとする課題] 従来使用され、または提案されてきた、上記Al−Mn
系合金フィン材は、種々の元素を添加するものであり、
いずれもコストアップにつながるものである。しかし、
最近は軽量化とかコスト低減などの要求が強く、これに
対応するためには構成材料を薄肉化したり、安価な材料
が要求されるようになった。しかし、ここでフィン材を
薄肉化すると、断面積が小さくなるので、通路材との熱
伝導効率が低下し、熱交換器の性能が劣化するため、従
来よりも高い熱伝導性を有する材料が必要となってくる
。また、薄肉化すると熱交換器への組立時のろう付は温
度により、変形(座屈)がおこり、フィンが正しく通路
材に取り付かなくなる、というような欠点が生じる。
[Problem to be solved by the invention] The above-mentioned Al-Mn that has been conventionally used or proposed
The alloy fin material is made by adding various elements,
All of these lead to increased costs. but,
Recently, there has been a strong demand for weight reduction and cost reduction, and in order to meet these demands, thinner constituent materials and cheaper materials have become necessary. However, if the fin material is made thinner, the cross-sectional area becomes smaller, which reduces the efficiency of heat transfer with the passage material and deteriorates the performance of the heat exchanger. It becomes necessary. Furthermore, when the wall thickness is reduced, the brazing during assembly into the heat exchanger may be deformed (buckling) due to temperature, resulting in the disadvantage that the fins may not be properly attached to the passage material.

本発明の目的は、優れた耐高温座屈性、犠牲陽極性およ
び熱伝導性を有するアルミニウム合金フィン材を安価に
製造する方法を提供するものである。
An object of the present invention is to provide a method for manufacturing an aluminum alloy fin material having excellent high-temperature buckling resistance, sacrificial anode property, and thermal conductivity at a low cost.

[課題を解決するための手段] 本発明者らは、Al−Mn−Zn系合金の熱伝導性、高
温座屈性および犠牲陽極性について、組成および製造条
件について種々研究を重ねた結果、最適なFeおよびS
lを含有させてMn系化合物(A l−Mn5A I 
−Mn−F e。
[Means for Solving the Problems] The present inventors have conducted various studies on the composition and manufacturing conditions regarding the thermal conductivity, high-temperature buckling properties, and sacrificial anodic properties of Al-Mn-Zn alloys, and as a result, have found the optimal Fe and S
A Mn-based compound (A l-Mn5A I
-Mn-F e.

Al −Mn−S tSAl −Mn−Fe−S iな
どの化合物)の析出を調整することにより、前記3性能
についてバランスのとれた優れた性能を有するフィン材
を得ることができ、本発明を完成した。すなわち、本発
明の要旨は、Mn:0.5〜1.5%、Z n :  
0.5〜2.0%、Fe:0.2〜1.0%、Si:0
.3〜1.0%を含有し、さらに必要に応じCr : 
0.05〜0.20%、Z r : 0.05〜0.2
0%、T i : 0.05〜0.20%、V : 0
.05〜0.20%のうち18または2種以上を含有し
、残部が不可避的不純物およびA1からなる合金の鋳塊
を、400〜580℃で均質化処理し、400〜540
℃で熱間圧延した後、冷間圧延と中間焼鈍を施し、さら
に10〜50%の圧下率で冷間仕上げ圧延を行う、熱交
換器用フィン材の製造方法である。
By adjusting the precipitation of compounds such as Al-Mn-S, tSAl-Mn-Fe-Si, etc., it is possible to obtain a fin material with excellent, well-balanced performance in the above three performances, thereby completing the present invention. did. That is, the gist of the present invention is that Mn: 0.5 to 1.5%, Zn:
0.5-2.0%, Fe: 0.2-1.0%, Si: 0
.. Contains 3 to 1.0%, and further contains Cr as necessary:
0.05-0.20%, Zr: 0.05-0.2
0%, Ti: 0.05-0.20%, V: 0
.. An alloy ingot containing 18 or 2 or more of 0.05 to 0.20%, with the remainder consisting of unavoidable impurities and A1, is homogenized at 400 to 580°C, and 400 to 540%
This is a method for producing a fin material for a heat exchanger, which includes hot rolling at a temperature of 0.degree.

[作 用] 次に本発明が上記の通り、その合金の成分組成範囲を限
定した理由について説明する。
[Function] Next, the reason why the present invention limits the composition range of the alloy as described above will be explained.

Mn Mnはフィン材の強度向上、耐高温座屈性の改良のため
に0.5〜1.5%含有させる。その含有量が0,5%
未満では、その効果が十分でなく、1.5%を越えると
効果が飽和し、熱伝導性を劣化させる。  2 Mn Znは、フィン材を電気化学的に卑にして犠牲陽極効果
を付与するために0.5〜2.0%含有させる。その含
有量が01,5%未満では効果が十分でなく2.0%を
越えると効果が飽和するばかりてなく、自己耐食性が劣
化する。
Mn Mn is contained in an amount of 0.5 to 1.5% in order to improve the strength of the fin material and improve high temperature buckling resistance. Its content is 0,5%
If it is less than 1.5%, the effect will not be sufficient, and if it exceeds 1.5%, the effect will be saturated and the thermal conductivity will deteriorate. 2 Mn Zn is contained in an amount of 0.5 to 2.0% in order to electrochemically make the fin material less noble and provide a sacrificial anode effect. If the content is less than 0.1.5%, the effect will not be sufficient, and if it exceeds 2.0%, the effect will not only be saturated, but also the self-corrosion resistance will deteriorate.

Fe Feは、Mnの固溶量を減少させて、合金の熱伝導度を
向上させるために0,2〜1.0%含有させる。その含
有量が0.2%未満では効果が十分でなく、1.0%を
越えるとフィン材の成形加工性と自己耐食性を劣化させ
る。
Fe Fe is contained in an amount of 0.2 to 1.0% in order to reduce the amount of solid solution of Mn and improve the thermal conductivity of the alloy. If the content is less than 0.2%, the effect will not be sufficient, and if it exceeds 1.0%, the moldability and self-corrosion resistance of the fin material will deteriorate.

t SiはAl−Mn−3LあるいはA 1−Mn−Fe−
5i系化合物を生成してMnの固溶量を減少させ、Al
−Mn−Zn−Fe合金の熱電導率を向上させる。その
含有率が0.3%未満ではその効果が十分でなく、1.
0%を越えると逆に熱伝導率が低下する。
tSi is Al-Mn-3L or A1-Mn-Fe-
5i-based compounds are produced to reduce the amount of solid solution of Mn, and
- Improving the thermal conductivity of Mn-Zn-Fe alloys. If the content is less than 0.3%, the effect will not be sufficient;
If it exceeds 0%, the thermal conductivity will decrease.

Cr5Zr、Ti5V CrSZr、Ti5Vはいずれも耐高温座屈性を改善す
るために0.05〜0.20%含有させる。
Cr5Zr, Ti5V CrSZr, and Ti5V are all contained in an amount of 0.05 to 0.20% in order to improve high-temperature buckling resistance.

その含有量が0.05%未満ではその効果が十分でなく
 、0.20%を越えると熱伝導率が低下する。
If the content is less than 0.05%, the effect will not be sufficient, and if it exceeds 0.20%, the thermal conductivity will decrease.

次に製造条件を限定した理由について説明する。Next, the reason for limiting the manufacturing conditions will be explained.

上記のような組成の合金は、溶解−鋳造−均質化処理→
熱間圧延−冷間圧延→中間焼鈍呻最終冷間圧延の工程に
より製造される。但し、均質化処理と熱間圧延前の加熱
は、兼ねてもよい。
Alloys with the above composition are melted-casted-homogenized→
It is manufactured through the steps of hot rolling, cold rolling, intermediate annealing, and final cold rolling. However, the homogenization treatment and the heating before hot rolling may also be used.

また、中間焼鈍は、1回に限らず2回以上実施してもよ
い。これらの工程に於て均質化処理、熱間圧延および最
終冷間圧延は、次の条件で行わなければならない。
Further, the intermediate annealing is not limited to one time, but may be performed two or more times. In these steps, homogenization treatment, hot rolling, and final cold rolling must be performed under the following conditions.

均質化処理温度または熱間圧延前の加熱温度均質化処理
または熱間圧延前に行う加熱は、高い耐高温座屈性を得
るために400〜580℃の温度範囲で行い、Mn系化
合物を十分析出させることが必要である。その温度が4
00℃未満ではMn系化合物の析出が十分でないため、
ろう付は時の加熱によりフィン材の再結晶粒が微細にな
るため、ろう材からのSiの拡散が促進され、耐高温座
屈性が劣化する。また、580℃を越えるとMn系化合
物の粒径が大きくなるため、ろう付は時の加熱により、
再結晶粒が微細となり耐高温座屈性が劣化する。
Homogenization treatment temperature or heating temperature before hot rolling The homogenization treatment or heating before hot rolling is carried out at a temperature range of 400 to 580°C in order to obtain high high temperature buckling resistance, and Mn-based compounds are sufficiently removed. It is necessary to analyze it. Its temperature is 4
Since precipitation of Mn-based compounds is not sufficient below 00°C,
During brazing, the recrystallized grains of the fin material become fine due to heating during brazing, which promotes the diffusion of Si from the brazing material and deteriorates high-temperature buckling resistance. In addition, when the temperature exceeds 580°C, the particle size of the Mn-based compound increases, so the heating during brazing
Recrystallized grains become fine and high temperature buckling resistance deteriorates.

最終冷間圧延 本発明は最終の冷間圧延率を適切にすることによって、
ろう付は時の温度でフィン材が再結晶を起こし、ろう材
中のSiをフィン材に拡散させないようにして、耐高温
座屈性を高めようとするものであり、10〜50%の圧
下率が必要である。その値が10%未満ではろう付は時
に再結晶が生じず、ろう材中のSiがフィン材中に拡散
し、高温座屈が生じやすくなる。また、50%を越える
と、ろう付は時の再結晶粒が微細になり、耐高温座屈性
が劣化する。
Final cold rolling The present invention achieves the following by optimizing the final cold rolling rate.
Brazing is intended to increase high-temperature buckling resistance by preventing the fin material from recrystallizing and diffusing the Si in the brazing material into the fin material at a temperature of 10 to 50%. rate is required. If the value is less than 10%, recrystallization may not occur during brazing, and Si in the brazing material will diffuse into the fin material, making high-temperature buckling likely to occur. Moreover, if it exceeds 50%, recrystallized grains during brazing become fine and high temperature buckling resistance deteriorates.

[実施例] 第1表に示す組成の合金N091〜37を溶解・鋳造し
、第1表に示す製造条件で試験材を作成した。なお、熱
間圧延で厚さ 2mmとした後、焼鈍と冷間圧延を繰り
返し、所定の最終冷間圧延により厚さ0.10mmの裸
フィン材を得た。得られたフィン材に弗化物系フラック
スを塗布し、窒素ガス中で600℃、3分間の加熱処理
を行った後、熱伝導度を評価するため電気伝導度(電気
伝導度と熱伝導度との間に比較関係がある。)を測定し
た。また、犠牲陽極効果を評価するため、酢酸でpH3
に調整した3%NaC1溶液中で1時間浸漬後、自然電
極電位を測定した。
[Example] Alloys N091-37 having the compositions shown in Table 1 were melted and cast, and test materials were created under the manufacturing conditions shown in Table 1. Incidentally, after hot rolling to a thickness of 2 mm, annealing and cold rolling were repeated, and a bare fin material with a thickness of 0.10 mm was obtained by a predetermined final cold rolling. The resulting fin material was coated with fluoride flux and heated in nitrogen gas at 600°C for 3 minutes.Then, electrical conductivity (electrical conductivity and thermal conductivity) was measured to evaluate thermal conductivity. ) was measured. In addition, to evaluate the sacrificial anode effect, we added acetic acid to pH 3.
The natural electrode potential was measured after immersion for 1 hour in a 3% NaCl solution adjusted to .

また、フィン材から幅22a+m X長さ 12On+
mの板を切り出し、第1図に示す片持ち梁成垂下試験機
で、ろう材、のある場合(a)、ろう材のない場合(b
)について、垂下量測定を行った。図中、Aはフィン材
、Bはろう材(0,025tX 22W x INgv
) 、Pは固定治具、aは試験片長さく120mm)、
bは試験長さく80u++) 、Sは垂下量を示す。垂
下試験における加熱は窒素ガス中でeoo”c、3分間
とした。
Also, from the fin material width 22a+m x length 12On+
A plate of m is cut out, and tested using the cantilever suspension tester shown in Fig.
), the amount of droop was measured. In the figure, A is the fin material and B is the brazing material (0,025tX 22W x INgv
), P is the fixing jig, a is the test piece length 120 mm),
b is the test length (80u++), and S is the amount of drooping. Heating in the droop test was performed in nitrogen gas for 3 minutes.

次にフィン材にコルゲート加工を施し、3oo3合金を
芯材とし、その両側に4045合金をクラッドしたプレ
ート材と組み合わせて、弗化物フラックスろう付けを行
い(雰囲気、温度、保持時間は上記と同じ)、組合せコ
アを作成した。こノコアをCASS試験(J I S 
 DO201) +1:[試し、1ケ月後の腐食状況を
調べた。それらの結果を第1表に示す。
Next, corrugate the fin material, use 3oo3 alloy as the core material, combine it with plate materials clad with 4045 alloy on both sides, and perform fluoride flux brazing (atmosphere, temperature, and holding time are the same as above). , created a combinational core. Konocore was tested in the CASS test (JIS
DO201) +1: [Tested and investigated the corrosion situation after one month. The results are shown in Table 1.

本発明に係わる合金No、1〜22材は、電気伝導度が
42%以上と高く熱伝導度が高いことを示し、垂下量は
18mm以下と低く耐高温座屈性が優れており、自然電
極電位も−800から一860mVの範囲であり電気化
学的に卑である。また、CASS試−験後のプレート材
の腐食深さは、0.12mm以下と小さく、またフィン
の腐食状況も正常である。これに対し、比較材のN o
、23は、Mn含有量が(1,31%と低く、垂下量が
25m1Ilおよび26)と大きく、高温座屈性が劣る
ものである。
Alloy Nos. 1 to 22 materials according to the present invention have a high electrical conductivity of 42% or more, exhibiting high thermal conductivity, a low drooping amount of 18 mm or less, and excellent high-temperature buckling resistance, and are suitable for natural electrodes. The potential ranges from -800 to -860 mV and is electrochemically base. Further, the corrosion depth of the plate material after the CASS test was as small as 0.12 mm or less, and the corrosion state of the fins was also normal. On the other hand, the comparative material N o
, 23 has a low Mn content of 1.31%, a large drooping amount of 25 ml and 26, and has poor high-temperature buckling properties.

N o、24はZn含有量が0.30%と低く、自然電
極電極か一730a+Vと電気化学的に貴となり、CA
SS試験でプレート材の最大腐食深さが0,24mmと
大きくなった。
No. 24 has a low Zn content of 0.30%, and is electrochemically noble with a natural electrode of -730a+V, and CA
In the SS test, the maximum corrosion depth of the plate material was as large as 0.24 mm.

No、25はZn含有量が2.40%と高く、CASS
試験でフィンの腐食が多く、消耗が顕著であった。
No. 25 has a high Zn content of 2.40%, and CASS
In the test, there was a lot of corrosion on the fins, and wear and tear was noticeable.

No、26はFe含有量が0.07%と低く、電気伝導
度が37%と低く熱伝導性に劣るものであった。
No. 26 had a low Fe content of 0.07%, an electrical conductivity as low as 37%, and poor thermal conductivity.

N o、27はFe含有量が1.90%と高く、CAS
S試験でフィンの局部的な腐食が多く、局部的消耗が顕
著であった。
No. 27 has a high Fe content of 1.90% and is CAS
In the S test, there was a lot of local corrosion of the fins, and local wear was significant.

N o、28はSi含有量が1.60%と高く、電気伝
導度が34%と低く熱伝導性に劣るものであり、また、
CAS S試験でフィンの局部的な腐食が。
No. 28 has a high Si content of 1.60%, low electrical conductivity of 34%, and poor thermal conductivity.
Local corrosion of the fins occurred during the CAS S test.

多く、局部的消耗が顕著であった。N o、29はCr
含有量が0,30%と高く、電気伝導度が35%と低く
熱伝導性に劣るものであった。
In many cases, localized wear and tear was noticeable. No, 29 is Cr
The content was high at 0.30%, the electrical conductivity was low at 35%, and the thermal conductivity was poor.

No、30はZr含有量が0.30%と高く、電気伝導
度が37%と低く熱伝導性に劣るものであった。
No. 30 had a high Zr content of 0.30% and a low electrical conductivity of 37%, which was poor in thermal conductivity.

No、31はTi含有量が0.29%と高く、電気伝導
度が35%と低く熱伝導性に劣るものであった。
No. 31 had a high Ti content of 0.29% and a low electrical conductivity of 35%, which was poor in thermal conductivity.

No、32はV含有量が0.29%と高く、電気伝導度
が35%と低く熱伝導性に劣るものであった。
No. 32 had a high V content of 0.29% and a low electrical conductivity of 35%, resulting in poor thermal conductivity.

No、33は均質化処理温度が350℃および熱間圧延
温度が370℃といずれも低く、垂下量が23Iおよび
24avと大きく、高温座屈性が劣るものである。
In No. 33, the homogenization temperature was 350° C. and the hot rolling temperature was 370° C., which were both low, the amount of droop was large at 23 I and 24 av, and the high-temperature buckling property was poor.

N o、34は均質化処理温度が600℃と高く、垂下
量が30n+mおよび30mmと大きく、高温座屈性が
劣るものである。
No. 34 had a high homogenization temperature of 600° C., had a large drooping amount of 30 n+m and 30 mm, and had poor high-temperature buckling properties.

N o、35は熱間圧延温度が600℃と高く、垂下量
が28ma+および3Lnunと大きく、高温座屈性が
劣るものである。
In No. 35, the hot rolling temperature is as high as 600° C., the amount of droop is large as 28 ma+ and 3 Lnun, and the high temperature buckling property is poor.

N o、36は最終冷間圧延率が3%と低く、ろう材が
存在するときの垂下量が30IIll!1となり、高温
座屈性が劣るものである。
No. 36 has a low final cold rolling rate of 3%, and the amount of droop when the brazing metal is present is 30IIll! 1, indicating poor high-temperature buckling properties.

No、37は最終冷間圧延率が65%と高く、垂下量が
30mmおよび32■と大きく、高温座屈性が劣るもの
である。
In No. 37, the final cold rolling reduction was as high as 65%, the amount of droop was large as 30 mm and 32 cm, and the high temperature buckling property was poor.

〔発明の効果] 適量なFeおよびSiを含有させ、更に適切な製造方法
によりMn系化合物を調整したアルミニウム合金とする
ことにより、犠牲陽極効果と同時に耐高温座屈性および
熱伝導性に優れたフィン材を提供することができ、熱交
換器のフィンを薄肉化することが可能となり、熱交換器
の軽量化、コスト低減に寄与することができる。
[Effects of the invention] By making an aluminum alloy containing appropriate amounts of Fe and Si and further adjusting a Mn-based compound using an appropriate manufacturing method, it has excellent high-temperature buckling resistance and thermal conductivity as well as a sacrificial anode effect. A fin material can be provided, and the fins of the heat exchanger can be made thinner, which can contribute to weight reduction and cost reduction of the heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は片持ち梁成垂下試験の説明図で
ある。
FIGS. 1(a) and 1(b) are explanatory diagrams of a cantilever beam hanging test.

Claims (2)

【特許請求の範囲】[Claims]  (1)Mn:0.5〜1.5%(重量%、以下同じ)
、Zn:0.5〜2.0%、Fe:0.2〜1.0%、
Si:0.3〜1.0%を含有し、残部が不可避的不純
物およびAlからなる合金の鋳塊を、400〜580℃
で均質化処理し、400〜580℃の範囲に加熱して熱
間圧延した後、冷間圧延し、さらに中間焼鈍を施し、1
0〜50%の圧下率で冷間仕上げ圧延を行うことを特徴
とする熱交換器用フィン材の製造方法。
(1) Mn: 0.5 to 1.5% (weight%, same below)
, Zn: 0.5-2.0%, Fe: 0.2-1.0%,
An alloy ingot containing 0.3 to 1.0% Si, with the remainder consisting of inevitable impurities and Al, was heated at 400 to 580°C.
After homogenizing at 400 to 580°C and hot rolling, cold rolling and further intermediate annealing, 1
A method for producing a fin material for a heat exchanger, characterized by performing cold finish rolling at a reduction rate of 0 to 50%.
 (2)Mn:0.5〜1.5%、Zn:0.5〜2.
0%、Fe:0.2〜1.0%、Si:0.3〜1.0
%を含有し、更にCr:0.05〜0.20%、Zr:
0.05〜0.20%、Ti:0.05〜0.20%、
V:0.05〜0.20%のうち1種または2種以上を
含有し、残部が不可避的不純物およびAlからなる合金
の鋳塊を、400〜580℃で均質化処理し、400〜
580℃の範囲に加熱して熱間圧延した後、冷間圧延し
、さらに中間焼鈍を施し、10〜50%の圧下率で冷間
仕上げ圧延を行うことを特徴とする熱交換器用フィン材
の製造方法。
(2) Mn: 0.5-1.5%, Zn: 0.5-2.
0%, Fe: 0.2-1.0%, Si: 0.3-1.0
%, further Cr: 0.05-0.20%, Zr:
0.05-0.20%, Ti: 0.05-0.20%,
An alloy ingot containing one or more of V: 0.05 to 0.20%, with the remainder consisting of inevitable impurities and Al, is homogenized at 400 to 580°C, and
A fin material for a heat exchanger, which is heated to a temperature of 580°C and hot rolled, then cold rolled, further subjected to intermediate annealing, and cold finish rolled at a rolling reduction of 10 to 50%. Production method.
JP12657089A 1989-05-22 1989-05-22 Production of fin material for heat exchanger Pending JPH02305946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12657089A JPH02305946A (en) 1989-05-22 1989-05-22 Production of fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12657089A JPH02305946A (en) 1989-05-22 1989-05-22 Production of fin material for heat exchanger

Publications (1)

Publication Number Publication Date
JPH02305946A true JPH02305946A (en) 1990-12-19

Family

ID=14938436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12657089A Pending JPH02305946A (en) 1989-05-22 1989-05-22 Production of fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JPH02305946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316533A (en) * 2014-08-27 2016-02-10 深圳市欣茂鑫精密五金制品有限公司 Novel aluminum alloy
CN105648279A (en) * 2016-01-15 2016-06-08 南通华特铝热传输材料有限公司 Ultrathin high-collapse-resistance brazing aluminum foil for radiator fin and production method of ultrathin high-collapse-resistance brazing aluminum foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316533A (en) * 2014-08-27 2016-02-10 深圳市欣茂鑫精密五金制品有限公司 Novel aluminum alloy
CN105648279A (en) * 2016-01-15 2016-06-08 南通华特铝热传输材料有限公司 Ultrathin high-collapse-resistance brazing aluminum foil for radiator fin and production method of ultrathin high-collapse-resistance brazing aluminum foil

Similar Documents

Publication Publication Date Title
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JPH0320594A (en) Heat exchanger
JPH08246117A (en) High strength aluminum brazing sheet and its production
JPH01195263A (en) Manufacture of al-alloy fin material for heat exchanger
JP3345845B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JPH11199957A (en) Aluminum alloy composite material for heat exchanger
JPH02305946A (en) Production of fin material for heat exchanger
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JPH02305945A (en) Production of fin material for heat exchanger
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JPH05305307A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JPH06212331A (en) Aluminum alloy brazing sheet having high strength and high corrosion resistance
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JPH0313550A (en) Production of high strength aluminum alloy fin material for heat exchanger
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JP2002155332A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JPH0931613A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JPH04154931A (en) Aluminum alloy for fin material in heat exchanger
JP2003147465A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPH07116542B2 (en) Aluminum alloy fin material for heat exchangers with excellent self-corrosion resistance and sacrificial anode effect
JPH04193927A (en) Brazable fin material for aluminum heat exchanger having superior heat conductivity and significant sacrificial anode effect after brazing