JPH04154931A - Aluminum alloy for fin material in heat exchanger - Google Patents

Aluminum alloy for fin material in heat exchanger

Info

Publication number
JPH04154931A
JPH04154931A JP27342990A JP27342990A JPH04154931A JP H04154931 A JPH04154931 A JP H04154931A JP 27342990 A JP27342990 A JP 27342990A JP 27342990 A JP27342990 A JP 27342990A JP H04154931 A JPH04154931 A JP H04154931A
Authority
JP
Japan
Prior art keywords
brazing
fin material
heat exchanger
alloy
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27342990A
Other languages
Japanese (ja)
Inventor
Shigenori Yamauchi
重徳 山内
Kenji Kato
健志 加藤
Naoki Tokizane
直樹 時實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP27342990A priority Critical patent/JPH04154931A/en
Publication of JPH04154931A publication Critical patent/JPH04154931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al alloy for heat exchanger fin material having excellent thermal conductivity, strength, etc., after brazing by preparing the Al alloy containing the specific the specific ratios of Fe, Si, Mg, Zn, Zr, Cr and Mn. CONSTITUTION:The Al alloy containing by wt.% of 0.8-1.8% Fe, 0.1-1.0% Si, 0.05-0.7% Mg, 0.3-2.0% Zn, and if necessary, <=0.3% Cu and further one or more kinds among 0.05-0.25% Zr, 0.05-0.25% Cr, 0.05-0.25% Mn and the balance Al with inevitable impurities is prepared. By this method, the Al alloy for heat exchanger fin material having excellent sacrificial anodic effect is obtd. and can be made to thin in the thickness thereof.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ラジェータやカーエアコンなどのようにフィ
ンと作動流体通路構成材料とがろう付により接合される
熱交換器のフィン材用アルミニウム合金に関し、特にろ
う付は後の熱伝導度が高く、犠牲陽極効果にすぐれたフ
ィン材用アルミニウム合金に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an aluminum alloy for use as a fin material in a heat exchanger such as a radiator or a car air conditioner, in which the fins and the material forming the working fluid passage are joined by brazing. In particular, the present invention relates to aluminum alloys for fin materials that have high thermal conductivity after brazing and have excellent sacrificial anode effects.

[従来の技術] 自動車などのラジェータ、エアコン、インタークーラや
オイルクーラなどの熱交換器においては、Al−Cu系
合金、Al−Mn系合金、Al−Mn−Cu系合金など
の作動流体通路構成材料と、アルミニウム合金のフィン
材とがろう付けにより組立てられている。そして、フィ
ン材には、作動流体通路構成材料を防食するために犠牲
陽極効果が要求され、また、ろう付は時に高温加熱によ
って変形したり、ろうが侵食したりしないように優れた
耐高温座屈性が要求される。ろう付は時の変形やろうの
侵食を防ぐためにはMnの添加が有効であり、フィン材
には3003や3203などのAl−Mn系合金が用い
られる。そして、犠牲陽極効果を付与するためには、A
l−Mn合金にZ n SS n %  I nなどを
添加して電気化学的に卑にする方法(例えば特開昭62
−120455号公報参照)が、また、耐高温座屈性(
耐高温サグ性)をさらに向上させるためには、Cr5T
iSZrなどを添加する方法(例えば特開昭50−11
8919号公報参照)が提案されている。
[Prior Art] In heat exchangers such as radiators, air conditioners, intercoolers, and oil coolers for automobiles, working fluid passage structures such as Al-Cu alloys, Al-Mn alloys, and Al-Mn-Cu alloys are used. The material and the aluminum alloy fin material are assembled by brazing. The fin material is required to have a sacrificial anode effect to prevent corrosion of the materials forming the working fluid passage, and brazing sometimes requires an excellent high-temperature resistant seat to prevent deformation due to high-temperature heating and corrosion of the wax. Tropism is required. In brazing, addition of Mn is effective in preventing deformation over time and corrosion of the solder, and Al-Mn alloys such as 3003 and 3203 are used as the fin material. In order to impart a sacrificial anode effect, A
A method of electrochemically making the l-Mn alloy less noble by adding Zn SS n % I n etc. (for example, JP-A-62
-120455 publication), high temperature buckling resistance (see
In order to further improve the high temperature sag resistance), Cr5T
A method of adding iSZr etc. (for example, Japanese Patent Application Laid-open No. 50-11
8919) has been proposed.

[発明が解決しようとする課題] ところで、近年、熱交換器の軽量化、コストの低減など
の要求が強く、これに対応するためには熱交換器の構成
材料(作動流体通路構成材やフィン材など)を薄肉化す
ることが必要となっている。しかしフィン材を薄肉化す
ると伝熱断面積が小さくなるために、熱交換性能に支障
をきたすという問題が生じている。
[Problems to be Solved by the Invention] In recent years, there has been a strong demand for lighter heat exchangers and lower costs. It is now necessary to make the materials thinner (such as materials). However, when the fin material is made thinner, the heat transfer cross-sectional area becomes smaller, which poses a problem in that heat exchange performance is impaired.

この問題を解消するためには、ろう付は後のフィン材の
熱伝導度を高めることが有効であるが、Al−Mn系合
金の場合、ろう付は時に高温でMnが固溶するため、熱
伝導度の低下が著しい。熱伝導性にすぐれたフィン材と
して、M n : 0.1〜0.8%、Z r : 0
.02〜0.2%およヒs i : 0.1〜0.8%
を含むアルミニウム合金も提案されているが(特公昭1
1i3−232(iO号公報参照)、この場合、Mnが
少ないためにろう付は後の強度が低く使用中にフィン倒
れや変形が生じやすい。また、フィン材の電位が卑でな
いため、犠牲陽極効果が小さい。またS i : 0.
03〜0,3%、F e : 0.05〜0.6%を含
み、zr:0.01〜0.4%、M n : 0.01
−0.3%の1種または2種を含有するアルミニウム合
金も提案されているが(特開昭83−45352号公報
参照)、この場合はフィン材の電位が卑でないため、犠
牲陽極効果が小さい。さらに熱伝導度が高い純アルミニ
ウム(1050,1070など)にZn、Sn。
In order to solve this problem, it is effective to increase the thermal conductivity of the fin material after brazing, but in the case of Al-Mn alloys, brazing sometimes causes Mn to form a solid solution at high temperatures. Thermal conductivity decreases significantly. As a fin material with excellent thermal conductivity, Mn: 0.1 to 0.8%, Zr: 0
.. 02-0.2% and Hisi: 0.1-0.8%
Aluminum alloys containing
1i3-232 (see iO publication), in this case, due to the small amount of Mn, the strength after brazing is low and the fins tend to collapse or deform during use. Furthermore, since the potential of the fin material is not base, the sacrificial anode effect is small. Also, S i : 0.
03-0.3%, Fe: 0.05-0.6%, zr: 0.01-0.4%, Mn: 0.01
An aluminum alloy containing one or two types of -0.3% has also been proposed (see Japanese Patent Laid-Open No. 83-45352), but in this case, the sacrificial anode effect does not occur because the potential of the fin material is not base. small. Furthermore, pure aluminum (1050, 1070, etc.) with high thermal conductivity, Zn, and Sn.

InあるいはCr5Ti、Zrなどを添加したフィン材
を使用する試みも行われているが、この場合、熱伝導度
は高いもののろう付は後の強度が低いためにフィン倒れ
が生じやすく、問題の根本的な解決にはなっていない。
Attempts have been made to use fin materials with additions of In, Cr5Ti, Zr, etc., but in this case, although the thermal conductivity is high, the strength after brazing is low and the fins tend to collapse, which is the root of the problem. There is no real solution.

この問題を解決するために、本発明者らは、先に、 (1)  F e : 0.8〜1.8%、Z r :
 0.05〜0.20%、Z n : 0.3〜2.0
%を含む合金(特願平1−(2) F e : 0.8
〜1.8%、Z r : 0,05〜0.20%、更に
I n :  0.005〜0.1%、Sn:0.01
〜0.1%、G a : 0.01〜0.2%およびB
i;0.01〜0.1%のうち1種または2種以上を含
む合金(特願平1−218649) (3) F e : 0.2〜1.8%、S i : 
0.2〜0.8%、M n : 0.1〜0.35%、
Z r : 0.05〜0.20%を含み、さらにI 
n : 0.005〜O,1%、Sn:0、旧〜0,1
%、G a : 0.O1〜0.2%およびB i :
 0.01〜0.1%のうち1種または2種以上を含み
、かつ必要に応じてZ n : 2.0%以下、あるい
はCu:0.3%以下を含む合金(特願平1−2405
77、特願平1−242319)などを提案した。これ
らの合金はろう付後熱伝導度および犠牲陽極効果にすぐ
れ、ろう付後の強度もある程度のレベルにあるため、フ
ィン材の薄肉化に寄与した。すなわち、−例においては
従来のフィン材0.111の厚さを0.08mmまで薄
肉化することが可能となった。しかしながら、これらの
フィン材のろう付後の引張強さは8〜lDkgf/mt
n 2種度であるので、更に薄肉化を進めるとフィン倒
れが生じやすいという問題があった。
In order to solve this problem, the present inventors first conducted the following steps: (1) Fe: 0.8-1.8%, Zr:
0.05-0.20%, Zn: 0.3-2.0
% (Patent Application No. 1-(2) Fe: 0.8
-1.8%, Zr: 0.05-0.20%, further In: 0.005-0.1%, Sn: 0.01
~0.1%, Ga: 0.01-0.2% and B
i; Alloy containing one or more of 0.01 to 0.1% (Japanese Patent Application No. 1-218649) (3) Fe: 0.2 to 1.8%, Si:
0.2-0.8%, Mn: 0.1-0.35%,
Zr: Contains 0.05 to 0.20%, and further contains I
n: 0.005~O,1%, Sn:0, old~0,1
%, Ga: 0. O1-0.2% and B i :
Alloys containing one or more of 0.01 to 0.1% and, if necessary, Zn: 2.0% or less or Cu: 0.3% or less (Patent Application No. 2405
77, Japanese Patent Application No. 1-242319). These alloys have excellent thermal conductivity and sacrificial anode effect after brazing, and also have a certain level of strength after brazing, so they contributed to making the fin material thinner. That is, in the example -, it became possible to reduce the thickness of the conventional fin material of 0.111 mm to 0.08 mm. However, the tensile strength of these fin materials after brazing is 8~1Dkgf/mt.
Since the degree of n is 2, there is a problem in that fins tend to collapse if the thickness is further reduced.

本発明はこの問題点を解決せんとするものである。The present invention aims to solve this problem.

[課題を解決するための手段〕 本発明者らは、種々のアルミニウム合金について検討を
行い、Al−Fe系合金にSiとMgを同時添加するこ
とによって、ろう付は後の熱伝導度と高強度を兼備させ
得ることを見出し、本発明を完成した。
[Means for Solving the Problems] The present inventors investigated various aluminum alloys, and by simultaneously adding Si and Mg to an Al-Fe alloy, brazing can improve the subsequent thermal conductivity and high The present invention was completed based on the discovery that it is possible to achieve both strength and strength.

すなわち、本発明は、F e : 0.8〜1.8%、
Si:0.1〜1.0%、M g : 0.05〜0.
7%、Z n : 0.3〜2.0%を含み、さらにZ
 r : 0.05〜0.25%、Cr : 0.05
〜0.25%およびMn:0.05〜0.25%のうち
1種または2種以上を含み、残部Alおよび不可避不純
物からなることを特徴とする熱交換器フィン材用アルミ
ニウム合金、並びに上記にさらにCu : 04%以下
を含有するものである。
That is, in the present invention, Fe: 0.8 to 1.8%,
Si: 0.1-1.0%, Mg: 0.05-0.
7%, Z n : 0.3 to 2.0%, and further Z
r: 0.05-0.25%, Cr: 0.05
-0.25% and Mn: 0.05-0.25%, and one or more of them, with the balance consisting of Al and inevitable impurities, and the above-mentioned It further contains Cu: 04% or less.

本発明における各成分の限定理由は次のとおりである。The reasons for limiting each component in the present invention are as follows.

Fe : Feは合金の強度すなわち、ろう付は前およ
びろう付は後の強度を向上させる。
Fe: Fe improves the strength of the alloy, ie, the strength before and after brazing.

0.8%未満では効果が十分でなく、1.8%を超える
と鋳造時に粗大な晶出物が生′成し、板材の製造が困難
になる。
If it is less than 0.8%, the effect will not be sufficient, and if it exceeds 1.8%, coarse crystallized substances will be formed during casting, making it difficult to manufacture plate materials.

Si:Siはフィンの強度を向上させる。特にMgと共
存することにより時効硬化を生じ、熱伝導度をほとんど
下げることなく強度を向上させる。その含有量が0.1
%未満では効果が十分でなく、1.0%を越えるとろう
付時にフィン材の溶融が生じる。
Si: Si improves the strength of the fin. In particular, coexistence with Mg causes age hardening and improves strength without substantially lowering thermal conductivity. Its content is 0.1
If it is less than 1.0%, the effect will not be sufficient, and if it exceeds 1.0%, the fin material will melt during brazing.

Mg : Mgはフィンの強度を向上させる。特にSt
と共存することにより時効硬化を生じ、熱伝導度をほと
んど下げることなく、強度を向上させる。0.05%未
満では効果が十分でない。0.7%を越えるとろう付性
を害する。すなわちフッ化物フラックスろう付の場合は
Mgとフラックスが反応してろう付不良を生じ、また真
空ろう付の場合はMgの蒸発量が多くなってろう付炉の
清掃回数が多くなる。
Mg: Mg improves the strength of the fin. Especially St.
Coexistence with steel causes age hardening, which improves strength without significantly reducing thermal conductivity. If it is less than 0.05%, the effect is not sufficient. If it exceeds 0.7%, brazing properties will be impaired. That is, in the case of fluoride flux brazing, Mg and flux react to cause poor brazing, and in the case of vacuum brazing, the amount of evaporation of Mg increases, resulting in an increased number of cleanings of the brazing furnace.

Zn : Znはフィン材の電位を卑にし、犠牲陽極効
果を付与する。下限未満では効果が充分でなく、上限を
越えると自己耐食性が劣化したり、真空ろう付は時の蒸
発量が多くなって、ろう付炉の清掃回数が増したりする
Zn: Zn makes the potential of the fin material less noble and provides a sacrificial anode effect. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, self-corrosion resistance will deteriorate, and the amount of evaporation during vacuum brazing will increase, resulting in an increase in the number of cleanings of the brazing furnace.

Zrs Cr、Mn :ろう付時のろうの浸食に対する
抵抗性を高める。下限未満では効果が充分でなく、上限
を越えると、ろう付後の熱伝導度が低下する。
Zrs Cr, Mn: Increases resistance to wax erosion during brazing. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, the thermal conductivity after brazing will decrease.

Cu : Cuはろう付後のフィンの強度を向上させる
。上限を越えると電位が貴になり、犠牲陽極効果が損な
われる。
Cu: Cu improves the strength of the fin after brazing. If the upper limit is exceeded, the potential becomes noble and the sacrificial anode effect is impaired.

その他の元素では本発、明合金の効果を損わない範囲で
Tiなどを含んでもよい。ただし、Tiの含有量が多く
なると熱伝導度が低下するので、0.1%以下にするこ
とが望ましい。
Other elements may include Ti and the like within a range that does not impair the effects of the light alloy of the present invention. However, as the Ti content increases, the thermal conductivity decreases, so it is desirable to keep it at 0.1% or less.

Tiは鋳造時の結晶粒微細化のために合金元素として添
加してもよいし、Al−Ti−B微細化剤として添加し
てもよいが、上記の範囲内に抑えることが望ましい。
Ti may be added as an alloying element for grain refinement during casting, or as an Al-Ti-B refiner, but it is desirable to keep it within the above range.

[実施例] 第1表に示す合金No、1〜21を溶解・鋳造し、均質
化処理、熱間圧延、冷間圧延、中間焼鈍および仕上げ冷
間圧延を行い、0.07mm厚さのフィン材を得た。中
間焼鈍の温度は330℃とした。
[Example] Alloy Nos. 1 to 21 shown in Table 1 were melted and cast, and subjected to homogenization treatment, hot rolling, cold rolling, intermediate annealing, and final cold rolling to form a 0.07 mm thick fin. I got the material. The temperature of intermediate annealing was 330°C.

第1表 上記のように製造されたフィン材につき、フッ化物フラ
ックスを塗布した後、ろう付時と同様に窒素ガス中で8
00℃×3分間の加熱処理を行った後、引張試験、電気
伝導度を測定した。
Table 1: After applying fluoride flux to the fin material manufactured as described above, the
After heat treatment at 00°C for 3 minutes, a tensile test and electrical conductivity were measured.

一般に金属の熱伝導度と電気伝導度との間には比例関係
があるので、ここでは熱伝導度に代えて電気伝導度(2
5°C)を測定した。また、犠牲陽極効果を評価するた
め、pH3に調整した3%NaC1水溶液中に8時間浸
漬後、自然電極電位を測定した。
Generally, there is a proportional relationship between the thermal conductivity and electrical conductivity of metals, so here we will use electrical conductivity (2
5°C) was measured. In addition, in order to evaluate the sacrificial anode effect, the natural electrode potential was measured after immersion in a 3% NaCl aqueous solution adjusted to pH 3 for 8 hours.

また、フィン材にコルゲート加工を施し、3003合金
を芯材とし4045合金を皮材(ろう材)とするプレー
ト材(厚さ(1,6mm)の上に乗せて、フッ化物フラ
ックスろう付けを行い、ろう付は性を調べた。また、フ
ィンとプレートの接合部についてCAS S試験をJ 
I S  DO201に基づき1ケ月間行い、プレート
の最大腐食深さの測定と、フィンの腐食状況を観察した
In addition, the fin material is corrugated, placed on a plate material (1.6 mm thick) with 3003 alloy as the core material and 4045 alloy as the skin material (brazing material), and fluoride flux brazing is performed. , the properties of brazing were investigated. Also, a CAS S test was conducted on the joint between the fin and the plate.
The test was carried out for one month in accordance with IS DO201, and the maximum corrosion depth of the plate was measured and the state of corrosion of the fins was observed.

結果を第2表に示す。The results are shown in Table 2.

第2表 =  12 − 本発明合金No、1〜8は、ろう付後の引張強さがlO
kgr/m112(98MPa)以上と高く、電気伝導
度も49%以上と高い(従来材の3003は38%)。
Table 2 = 12 - Invention alloy Nos. 1 to 8 have tensile strength after brazing of 1O
It has a high electrical conductivity of over 49% (compared to 38% for the conventional material 3003).

また、ろう付は性も良好であり、自然電極電位も−77
0から一840+nVvsS CHの範囲であり電気化
学的に卑である。また、CASS試験後試験−−ト材の
最大腐食深さは、0.05〜0.07mmと小さく犠牲
陽極効果に優れている。また、フィンの腐食状況も正常
である。
In addition, brazing properties are good, and the natural electrode potential is -77
It ranges from 0 to 1840+nV vs S CH and is electrochemically base. Further, the maximum corrosion depth of the test material after the CASS test is as small as 0.05 to 0.07 mm, and the sacrificial anode effect is excellent. Furthermore, the corrosion of the fins is also normal.

一方、比較合金のNo、9はFenが少ないために引張
強さが低い。
On the other hand, comparative alloy No. 9 has a low tensile strength due to a small amount of Fen.

No、IOはFe量が多いために健全なフィン材が得ら
れなかった。
In No. IO, a healthy fin material could not be obtained due to the large amount of Fe.

No、]1はSi量が少ないために引張強さが低く、N
o、12は5iftが多いために、ろう付時に溶融が生
じている。
No.]1 has low tensile strength due to the small amount of Si, and N
Since the number o and 12 has a large amount of 5ift, melting occurs during brazing.

No、13はMg@が少ないために引張強さが低(、N
o、14はMgff1が多いためにフラックスとMgの
反応が生じ、接合不良となっている。
No. 13 has low tensile strength (, N
No. 14 has a large amount of Mgff1, so a reaction between the flux and Mg occurs, resulting in poor bonding.

No、I5はznffiが少ないために自然電極電位貴
になり、プレート材の最大腐食深さが大きくなっている
In No. I5, since znffi is small, the natural electrode potential is noble, and the maximum corrosion depth of the plate material is large.

No、IBはZn量が多いためにフィンの消耗が顕著で
ある。
No. IB has a large amount of Zn, so the wear of the fins is significant.

No、1.7はZr5CrsおよびMn量が少ないため
に、ろう付時にろうの侵食が生じている。
No. 1.7 has a small amount of Zr5Crs and Mn, so corrosion of the wax occurs during brazing.

No、18.19、および20はZr、Cr、あるいは
Mn量が多いために電気伝導度が低い。
Nos. 18, 19, and 20 have low electrical conductivity due to large amounts of Zr, Cr, or Mn.

No、21はCu量が多いために、自然電極電位が貴で
あり、プレートの最大腐食深さが大きい。
No. 21 has a large amount of Cu, so the natural electrode potential is noble and the maximum corrosion depth of the plate is large.

[発明の効果] 本発明によると、ろう付後の熱伝導度、強度および犠牲
陽極効果に優れたフィン材が提供でき、フィン材゛・の
薄肉化が可能となり、熱交換器の軽量化、低コスト化に
寄与する。
[Effects of the Invention] According to the present invention, a fin material with excellent thermal conductivity, strength, and sacrificial anode effect after brazing can be provided, and the fin material can be made thinner, thereby reducing the weight of the heat exchanger. Contributes to cost reduction.

特許出願人 住友軽金属工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏Patent applicant: Sumitomo Light Metal Industries, Ltd. Agent Patent Attorney Hidetake Komatsu Agent Patent Attorney Hiroshi Asahi

Claims (2)

【特許請求の範囲】[Claims] (1) Fe:0.8〜1.8%(重量%、以下同じ)
、Si:0.1〜1.0%、Mg:0.05〜0.7%
、Zn:0.3〜2.0%を含み、さらにZr:0.0
5〜0.25%、Cr:0.05〜0.25%およびM
n:0.05〜0.25%のうち1種または2種以上を
含み、残部Alおよび不可避不純物からなることを特徴
とする熱交換器フィン材用アルミニウム合金。
(1) Fe: 0.8 to 1.8% (weight%, same below)
, Si: 0.1-1.0%, Mg: 0.05-0.7%
, Zn: 0.3 to 2.0%, and further Zr: 0.0
5-0.25%, Cr: 0.05-0.25% and M
An aluminum alloy for heat exchanger fin material, characterized in that it contains one or more of n: 0.05 to 0.25%, and the remainder consists of Al and unavoidable impurities.
(2) Fe:0.8〜1.8%、Si:0.1〜1.
0%、Mg:0.05〜0.7%、Zn:0.3〜2.
0%、Cu:0.3%以下を含み、さらにZr:0.0
5〜0.25%、Cr:0.05〜0.25%およびM
n:0.05〜0.25%のうち1種または2種以上を
含み、残部Alおよび不可避不純物からなることを特徴
とする熱交換器フィン材用アルミニウム合金。
(2) Fe: 0.8-1.8%, Si: 0.1-1.
0%, Mg: 0.05-0.7%, Zn: 0.3-2.
0%, Cu: 0.3% or less, and Zr: 0.0
5-0.25%, Cr: 0.05-0.25% and M
An aluminum alloy for heat exchanger fin material, characterized in that it contains one or more of n: 0.05 to 0.25%, and the remainder consists of Al and unavoidable impurities.
JP27342990A 1990-10-15 1990-10-15 Aluminum alloy for fin material in heat exchanger Pending JPH04154931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27342990A JPH04154931A (en) 1990-10-15 1990-10-15 Aluminum alloy for fin material in heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27342990A JPH04154931A (en) 1990-10-15 1990-10-15 Aluminum alloy for fin material in heat exchanger

Publications (1)

Publication Number Publication Date
JPH04154931A true JPH04154931A (en) 1992-05-27

Family

ID=17527781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27342990A Pending JPH04154931A (en) 1990-10-15 1990-10-15 Aluminum alloy for fin material in heat exchanger

Country Status (1)

Country Link
JP (1) JPH04154931A (en)

Similar Documents

Publication Publication Date Title
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
JPH08246117A (en) High strength aluminum brazing sheet and its production
JP3170202B2 (en) Aluminum alloy clad fin material and method of manufacturing the same
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
KR100329686B1 (en) Aluminum Alloy Fin Material for Heat Exchanger
JP3396523B2 (en) Al alloy fin material with excellent post-brazing strength and brazing properties
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH05305307A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JPH04154931A (en) Aluminum alloy for fin material in heat exchanger
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JPH04154932A (en) Aluminum alloy fin material for heat exchanger excellent in self-corrosion resistance and sacrificial anode effect
JPH0480107B2 (en)
JPH03107438A (en) Aluminum alloy for heat exchanger fin material excellent in thermal conductivity and sacrificial anode effect
JP3396521B2 (en) Al alloy fin material with excellent post-brazing strength and brazing properties
JPH03104834A (en) Aluminum alloy for heat exchanger fin material having excellent thermal conductivity after brazing and sacrificial anode effect
JPH04128337A (en) Aluminum alloy fin material for heat exchanger excellent in thermal conductivity after brazing and sacrificial anode effect
JP2846544B2 (en) Aluminum alloy high thermal conductive fin material
JPH05247570A (en) Aluminum alloy for heat exchanger fin material excellent in strength after brazing and sacrificial anode effect
JPH1017968A (en) Aluminum alloy clad fin material
JPH0382729A (en) Aluminum alloy for heat exchanger fin material excellent in thermal conductivity after brazed and sacrificial anode effect
JPH04198694A (en) Heat exchanger having good anticorrosion and heat transfer property
JP2003147465A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPH04193927A (en) Brazable fin material for aluminum heat exchanger having superior heat conductivity and significant sacrificial anode effect after brazing