JPH03107438A - Aluminum alloy for heat exchanger fin material excellent in thermal conductivity and sacrificial anode effect - Google Patents

Aluminum alloy for heat exchanger fin material excellent in thermal conductivity and sacrificial anode effect

Info

Publication number
JPH03107438A
JPH03107438A JP24231989A JP24231989A JPH03107438A JP H03107438 A JPH03107438 A JP H03107438A JP 24231989 A JP24231989 A JP 24231989A JP 24231989 A JP24231989 A JP 24231989A JP H03107438 A JPH03107438 A JP H03107438A
Authority
JP
Japan
Prior art keywords
thermal conductivity
sacrificial anode
fin material
alloy
anode effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24231989A
Other languages
Japanese (ja)
Other versions
JPH0689429B2 (en
Inventor
Shigenori Yamauchi
重徳 山内
Yuji Suzuki
祐治 鈴木
Kenji Kato
健志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP1242319A priority Critical patent/JPH0689429B2/en
Publication of JPH03107438A publication Critical patent/JPH03107438A/en
Publication of JPH0689429B2 publication Critical patent/JPH0689429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To manufacture the Al alloy for a heat exchanger fin material excellent in thermal conductivity after brazing and sacrificial anode effect by preparing an Al alloy contg. specified ratios of Fe, Si, Mn, Zr, Cu, In, Sn, Ga and Bi. CONSTITUTION:An Al alloy contg. 0.2 to 1.8% Fe, 0.2 to 0.6% Si, 0.1 to 0.35% Mn, 0.05 to 0.20% Zr and <=0.3% Cu, furthermore contg. one or more kinds among 0.005 to 0.1% In, 0.01 to 0.1% Sn, 0.01 to 0.2% Ga and 0.01 to 0.1% Bi and the balance Al with inevitable impurities is prepd. Furthermore, about <=0.2% Mg, about <=0.05% Cr and about <=0.05% Ti may be incorporated thereto. In this way, the Al alloy for a heat exchanger fin material excellent in high temp. buckling resistance and strength and executable of thinning can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ラジェータやカーエアコンなどのようにフィ
ンと作動流体通路構成材料とかろうイ4により接合され
る熱交換器のフィン利用アルミニウム合金に関し、特に
ろう付け後の熱伝導度が高く、犠牲陽極効果にすぐれた
フィン利用アルミニウム合金に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum alloy that utilizes fins in heat exchangers such as radiators and car air conditioners, where the fins and the working fluid passage constituent material are joined by a metal alloy 4. In particular, the present invention relates to a fin-based aluminum alloy that has high thermal conductivity after brazing and excellent sacrificial anode effect.

[従来の技術] 自動車などのラジェータ、エアコン、インタークーラや
オイルクーラなどの熱交換器においては、Al−Cu系
合金、A I −M n系合金、Al−Mn−Cu系合
金などの作動流体通路構成材料と、アルミニウム系合金
のフィン材とがろう付けにより組立てられている。そし
て、フィン材には、作動流体通路構成材料を防食するた
めに犠牲陽極効果が要求され、又、ろう付け時に高温加
熱によって変形したり、ろうが侵食したりしないように
優れた耐高温座屈性が要求される。ろう付け時の変形や
ろうの侵食を防ぐためにはMnの添加が有効であり、フ
ィン材には3003や3203などのA I −Mn系
合金が用いられる。そして、犠牲陽極効果を付与するた
めには、Al−Mn合金にZn、Sn、Inなどを添加
して電気化学的に卑にする方法(例えば特開明62−1
20455号公報参照)が、又、耐高温座屈性(耐高温
サグ性)を更に向上させるためには、C「、Ti5Zr
などを添加する方法(例えば特開昭50−118919
号公報参照)が提案されている。
[Prior Art] In heat exchangers such as radiators, air conditioners, intercoolers, and oil coolers for automobiles, working fluids such as Al-Cu alloys, AI-Mn alloys, and Al-Mn-Cu alloys are used. The passage forming material and the aluminum-based alloy fin material are assembled by brazing. The fin material is required to have a sacrificial anode effect to prevent corrosion of the working fluid passage material, and also has excellent high-temperature buckling resistance to prevent deformation due to high-temperature heating and corrosion of the solder during brazing. sexuality is required. Addition of Mn is effective in preventing deformation and corrosion of the solder during brazing, and an AI-Mn alloy such as 3003 or 3203 is used as the fin material. In order to impart a sacrificial anode effect, Zn, Sn, In, etc. are added to the Al-Mn alloy to make it electrochemically less noble (for example, JP-A-62-1
20455), but in order to further improve the high temperature buckling resistance (high temperature sag resistance), C", Ti5Zr
etc. (for example, Japanese Patent Application Laid-Open No. 50-118919
(see Publication No.) is proposed.

[発明が解決しようとする課題] ところで、近年、熱交換器の軽量化、コストの低減など
の要求が強く、これに対応するためには熱交換器の構成
材料(作動流体通路構成材やフィン材など)を薄肉化す
ることが必要となっている。しかしフィン材を薄肉化す
ると伝熱断面積が小さくなるために、熱交換性能に支障
をきたすという問題が生じている。
[Problems to be Solved by the Invention] In recent years, there has been a strong demand for lighter heat exchangers and lower costs. It is now necessary to make the materials thinner (such as materials). However, when the fin material is made thinner, the heat transfer cross-sectional area becomes smaller, which poses a problem in that heat exchange performance is impaired.

この問題を解消するためには、ろう付け後のフィン材の
熱伝導度を高めることが有効であるが、Al−Mn系合
金の場合、ろう付け時に高温でMnが固溶するため、熱
伝導度の低下が著しい。熱伝導性にすぐれたフィン材と
して、Mn :  0.1〜0.8%、Z r : 0
.02〜0.2%及びSi:0.1〜0.8%を含むア
ルミニウム合金も提案されているが(特公昭B3−23
2[i0号公報参照)、この場合、Mnが少ないために
ろう付け後の強度が低く使用中にフィン倒れや変形が生
じやすい。又、フィン材の電位が卑でないため、犠牲陽
極効果が小さい。又、S i : 0.03〜0.3%
、F e : 0.05〜0.B%を含み、Z r :
 0.01〜0.4%、M n : 0.01〜0.3
%の1種または2種を含有するアルミニウム合金に提案
されているが(特開昭83−45352号公報参照)、
この場合はフィン材の電位が卑でないため、犠牲陽極効
果が小さい。更に、熱伝導度が高い純アルミニウム(1
050、■070など)にZnSSn、InあるいはC
rs Ti5Zrなどを添加したフィン材を使用する試
みも行なわれているが、この場合、熱伝導度は高いもの
のろう付け後の強度が低いためにフィン倒れが生じやす
く、問題の根本的な解決にはなっていない。
In order to solve this problem, it is effective to increase the thermal conductivity of the fin material after brazing, but in the case of Al-Mn alloys, Mn dissolves in solid solution at high temperatures during brazing, so thermal conductivity There is a significant decrease in the degree of As a fin material with excellent thermal conductivity, Mn: 0.1 to 0.8%, Zr: 0
.. Aluminum alloys containing Si: 02 to 0.2% and Si: 0.1 to 0.8% have also been proposed (Japanese Patent Publication Sho B3-23
2 (see Publication No. i0), in this case, since the Mn content is low, the strength after brazing is low and the fins tend to collapse or deform during use. Furthermore, since the potential of the fin material is not base, the sacrificial anode effect is small. Moreover, Si: 0.03 to 0.3%
, Fe: 0.05-0. Including B%, Z r :
0.01-0.4%, Mn: 0.01-0.3
It has been proposed for aluminum alloys containing one or two types of
In this case, since the potential of the fin material is not base, the sacrificial anode effect is small. Furthermore, pure aluminum with high thermal conductivity (1
050, ■070, etc.) with ZnSSn, In or C
Attempts have also been made to use fin materials containing additives such as rs Ti5Zr, but in this case, although the thermal conductivity is high, the strength after brazing is low and the fins tend to collapse, making it impossible to fundamentally solve the problem. It's not.

本発明はこの点を根本的に解決せんとするものである。The present invention aims to fundamentally solve this problem.

[課題を解決するための手段] 本発明者らは、種々のアルミニウム合金について検討を
行い、従来のAl−Mn系合金に比べてろう付け後の強
度を大幅に低下させることなく、熱伝導度が大幅に向上
し、犠牲陽極効果及び耐高温座屈性にすぐれたフィン材
用アルミニウム合金を見出し、本発明を完成した。
[Means for Solving the Problems] The present inventors investigated various aluminum alloys, and found that the thermal conductivity of We have discovered an aluminum alloy for fin materials that has significantly improved sacrificial anode effect and high-temperature buckling resistance, and completed the present invention.

すなわち、本発明は、F e :  0.2〜1.8%
、S i :  0.2〜0.8%、M n :  0
.1〜0.35%、Z r : 0.05〜0.20%
、Cu:0.3%以下を含有し、更にI n :  0
,005〜0.1%、Sn:0.01〜0.1%、Ga
:O,吋〜0,2%およびB i : 0.01〜06
1%のうち1種又は2種5以上を含有し−、残部AI及
び不可避的不純物からなることを特徴とするろう付け後
熱伝導度及び犠牲陽極効果にすぐれた熱交換器フィン材
用アルミニウム合金である。
That is, in the present invention, Fe: 0.2 to 1.8%
, Si: 0.2-0.8%, Mn: 0
.. 1-0.35%, Zr: 0.05-0.20%
, Cu: 0.3% or less, and In: 0
,005~0.1%, Sn:0.01~0.1%, Ga
:O, ˜0.2% and B i : 0.01-06
An aluminum alloy for heat exchanger fin material having excellent post-brazing thermal conductivity and sacrificial anode effect, characterized by containing 5 or more of 1 or 2 of 1% and the remainder consisting of AI and unavoidable impurities. It is.

本発明における各成分の限定理由は次のとおりである。The reasons for limiting each component in the present invention are as follows.

Fe : Feは合金の強度すなわちろう付け前のフィ
ン材の強度とともにろう付け後の強度を向上させる。本
発明合金はMn、Stを含んでいるので、Fe:0.2
%以上で強度向上の効果が現われる。0.2%未満では
効果が十分でない。一方1.8%を超えると鋳造時に粗
大な晶出物が生成し、板材の製造が困難になる。
Fe: Fe improves the strength of the alloy, that is, the strength of the fin material before brazing, as well as the strength after brazing. Since the alloy of the present invention contains Mn and St, Fe: 0.2
% or more, the effect of improving strength appears. If it is less than 0.2%, the effect is not sufficient. On the other hand, if it exceeds 1.8%, coarse crystallized substances will be generated during casting, making it difficult to manufacture plate materials.

St :SiはAl−Mn−3i系あるいはAl−Mn
−Fe−8i系の化合物を生成してMnの固溶量を減少
させ、熱伝導度を向上させる。その含有量が0.2%未
満では効果が十分でなく、0.6%を越えると逆に熱伝
導度が低下する。
St:Si is Al-Mn-3i system or Al-Mn
A -Fe-8i type compound is produced to reduce the amount of solid solution of Mn and improve thermal conductivity. If the content is less than 0.2%, the effect will not be sufficient, and if it exceeds 0.6%, the thermal conductivity will decrease.

Mn:Feと同様にろう付け前およびろう付け後の強度
を向上させる。又、耐高温座屈性および成形加工性を改
良する。0.1%未満で効果が十分でな(,0,15%
を越えると熱伝導度が低下する。
Mn: Like Fe, improves strength before and after brazing. It also improves high temperature buckling resistance and moldability. The effect is not sufficient if it is less than 0.1% (0.15%
When the temperature exceeds 100%, the thermal conductivity decreases.

Zr : Zrは耐高温座屈性を向上させる。下限未満
では効果が十分でなく、上限を越えるとろう付後の熱伝
導度が低下する。
Zr: Zr improves high temperature buckling resistance. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, the thermal conductivity after brazing will decrease.

Cu:ろう付後のフィンの強度を向上させる。Cu: Improves the strength of the fin after brazing.

上限を越えると電位が貴になり、犠牲陽極効果が損われ
る。
If the upper limit is exceeded, the potential becomes noble and the sacrificial anode effect is impaired.

In5SnSGa、Bi :フィン材の電位を卑にし、
犠牲陽極効果を付与する。下限未満では効果が十分でな
く、上限を越えると効果が飽和するばかりでなく、自己
耐食性、圧延加工性が劣化する。
In5SnSGa, Bi: Makes the potential of the fin material base,
Adds sacrificial anode effect. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, the effect will not only be saturated, but also the self-corrosion resistance and rolling workability will deteriorate.

その他の元素では、本発明合金の効果を損わない範囲で
、Mg、Cr5Tiなどを含んでもよい。ただし、いず
れも含有量が多くなると熱伝導度が低下するので、Mg
は0.2%以下、Crは0.05%以下、Tiは0.0
5%以下にすることが望ましい。Mgは、フッ化物フラ
ックスろう付けを行う場合にはフラックスと反応するの
で更に低く、すなわち0,1%以下に抑えることが望ま
しい。Tiは鋳造時の結晶微細化のために合金元素とし
て添加してもよいし、AI−Ti−B微細化剤として添
加してもよいが、上記の範囲内に抑えることが望ましい
Other elements may include Mg, Cr5Ti, etc. within a range that does not impair the effects of the alloy of the present invention. However, as the content of both increases, the thermal conductivity decreases, so Mg
is 0.2% or less, Cr is 0.05% or less, Ti is 0.0
It is desirable to keep it below 5%. Since Mg reacts with the flux when fluoride flux brazing is performed, it is desirable to keep it even lower, that is, below 0.1%. Ti may be added as an alloying element for crystal refinement during casting or as an AI-Ti-B refiner, but it is desirable to suppress it within the above range.

[実施例] 第1表に示す合金No、1〜29を溶解・鋳造し、均質
化処理、熱間圧延、冷間圧延、中間焼鈍および仕上げ冷
間圧延を行い、0.07+n+n厚さのフィン材を得た
。得られたフィン材をろう付け後の条件とするために5
X 10’ Torr以下の真空中で600℃×3分間
の加熱処理を行った後、引張試験、熱伝導度を測定した
。一般に金属の熱伝導度と電気伝導度との間には比例関
係があるので、ここでは熱伝導度に代えて電気伝導度(
25℃)を測定した。また、犠牲陽極効果を評価するた
め、pH3に調整した3%NaC1水溶液中に8時間浸
漬後、自然電極電位を測定した。
[Example] Alloy Nos. 1 to 29 shown in Table 1 were melted and cast, and subjected to homogenization treatment, hot rolling, cold rolling, intermediate annealing, and final cold rolling to form a fin with a thickness of 0.07+n+n. I got the material. In order to make the obtained fin material into conditions after brazing, 5
After heat treatment at 600° C. for 3 minutes in a vacuum of X 10' Torr or less, a tensile test and thermal conductivity were measured. Generally, there is a proportional relationship between the thermal conductivity and electrical conductivity of metals, so here we will use electrical conductivity (instead of thermal conductivity).
25°C) was measured. In addition, in order to evaluate the sacrificial anode effect, the natural electrode potential was measured after immersion in a 3% NaCl aqueous solution adjusted to pH 3 for 8 hours.

また、フィン材にコルゲート加工を施し、3003材を
芯材とし4004材を皮材(ろう材)とするプレート材
の上に乗せて、真空ろう付けを行い、ろう付け性を調べ
た。また、フィンとプレートの接合部についてCASS
試験をJISD 0201に基づき1ケ月間行い、プレ
ートの最大腐食深さの測定と、フィンの腐食状況を観察
した。
In addition, the fin material was corrugated, placed on a plate material with 3003 material as the core material and 4004 material as the skin material (brazing material), and vacuum brazed to examine the brazing properties. Also, regarding the joint between the fin and the plate, CASS
The test was conducted for one month based on JISD 0201, and the maximum corrosion depth of the plate was measured and the corrosion status of the fin was observed.

結果を第1表に併記する。The results are also listed in Table 1.

本発明に係わる合金No、1〜13材は、引張強度が8
.8kgf/n+m2以上と高く、電気伝導度も46%
以上と高く (従来材の3003は38%)熱伝導度が
高いことを示している。また、ろう付け性も良好であり
、自然電極電位も−740から一79flnVvsSC
Eの範囲であり電気化学的に卑である。
Alloy Nos. 1 to 13 materials related to the present invention have a tensile strength of 8
.. High at over 8kgf/n+m2 and electrical conductivity of 46%
This shows that the thermal conductivity is high (38% for the conventional material 3003). In addition, it has good brazing properties, and the natural electrode potential ranges from -740 to -79 flnV vs SC.
E range and is electrochemically base.

また、CASS試験後試験−−ト材の最大腐食深さは、
0.05〜0.07n+mと小さく犠牲陽極効果に優れ
ている。また、フィンの腐食状況も正常である。これに
対し、比較合金のNo、14は、Fe含有量が0.11
%と少ないため、引張強度が7.8kgf/+nm2と
低い。
In addition, the maximum corrosion depth of the test material after the CASS test is
It is small, 0.05 to 0.07 n+m, and has an excellent sacrificial anode effect. Furthermore, the corrosion of the fins is also normal. On the other hand, comparative alloy No. 14 has an Fe content of 0.11
%, the tensile strength is as low as 7.8 kgf/+nm2.

No、15は、Fe含有量が2.03%と多いため、鋳
造時に粗大晶出物が生じたため、圧延が困難となり、試
験を中断した。
In No. 15, since the Fe content was as high as 2.03%, coarse crystallized substances were generated during casting, making rolling difficult, and the test was discontinued.

No、18は、Si含有量が0.13%と少ないため、
電気伝導度が42%IACSと低く、熱伝導度が低い。
No. 18 has a low Si content of 0.13%, so
It has a low electrical conductivity of 42% IACS and a low thermal conductivity.

No、17は、Si含有量がo、85%と多いため、電
気伝導度が41%lAC3と低く、熱伝導度が低い。
No. 17 has a high Si content of 85%, so the electrical conductivity is low at 41% lAC3, and the thermal conductivity is low.

No、18は、Mn含有量が0.08%と少ないため、
引張強度が8.0kgf/+nm’と低い。
No. 18 has a low Mn content of 0.08%, so
The tensile strength is as low as 8.0 kgf/+nm'.

No、19は、Mn含有量が0.49%と多いため、電
気伝導度が42%IACSと低く、熱伝導度が低い。
No. 19 has a high Mn content of 0.49%, so the electrical conductivity is low at 42% IACS, and the thermal conductivity is low.

No、20はZr含有量が0.02%と少ないため、ろ
う付け試験でフィンに座屈が生じた。これはフィン材中
へろうが侵食したためである。
Since No. 20 had a low Zr content of 0.02%, buckling occurred in the fin in the brazing test. This is because the wax eroded into the fin material.

No、21は、Zr含有量が0.29%と多いため、電
気伝導度が42%lAC3と低く、熱伝導度が低い。
No. 21 has a high Zr content of 0.29%, so the electrical conductivity is low at 42%lAC3, and the thermal conductivity is low.

No、22はCu含有量が0.49%と多いため、自然
電極電位が一700mVvsS CEであり、電気化学
的に貴となり、犠牲陽極効果に劣るものである。このた
めプレート材の最大腐食深さも0.42+nmと大きく
なった。
Since No. 22 has a high Cu content of 0.49%, the natural electrode potential is 1700 mV vs S CE, which is electrochemically noble and inferior in sacrificial anode effect. Therefore, the maximum corrosion depth of the plate material also increased to 0.42+nm.

N o、23は、I n SS n s G a s 
B iを含有し 0 ないために自然電極電位が一710mV vsS CE
と電気化学的に貴であり、犠牲陽極効果に劣るものであ
る。このためプレート材の最大腐食深さも0.40と大
きくなった。
No, 23 is I n SS n s Gas
Since it does not contain B i, the natural electrode potential is 1710 mV vs S CE
It is electrochemically noble and inferior to the sacrificial anode effect. For this reason, the maximum corrosion depth of the plate material also increased to 0.40.

No、24から27は、I n s  S n s G
 a及びBi含有量が発明の範囲より多いため、フィン
材の自己耐食性が劣り、フィンの消耗が顕著である。
No. 24 to 27 are I n s S n s G
Since the a and Bi contents are higher than the range of the invention, the self-corrosion resistance of the fin material is poor and the wear of the fins is significant.

No、28は、従来使用されてきた3003合金の場合
であり、電気伝導度が88%lAC3と低く、熱伝導度
が低い。また、自然電極電位が一680mVvsSCE
と電気化学的に貴で、犠牲陽極効果に劣るものである。
No. 28 is the case of the conventionally used 3003 alloy, which has a low electrical conductivity of 88% lAC3 and a low thermal conductivity. In addition, the natural electrode potential is 1680 mV vs SCE
It is electrochemically noble and inferior to the sacrificial anode effect.

このためプレート材の最大腐食深さも0.45++un
と大きくなった。
Therefore, the maximum corrosion depth of the plate material is also 0.45++un
It got bigger.

N o、29は、従来使用されてきた3003合金にG
aを添加した場合であり、Gaの含有のために自然電極
電位が一740mVvsS CEとなり、犠牲陽極効果
は改善されるが、電気伝導度は27%lAC3と低く、
熱伝導度が低い。
No. 29 is G in the conventionally used 3003 alloy.
In this case, the natural electrode potential becomes 1740 mV vs S CE due to the addition of Ga, and the sacrificial anode effect is improved, but the electrical conductivity is as low as 27% lAC3.
Low thermal conductivity.

13 [発明の効果] 本発明によると、熱伝導度、犠牲陽極効果、耐高温座屈
性、強度に優れたフィン材が提供でき、フィン材の薄肉
化が可能となり、熱交換器の軽量化、低コスト化に寄与
する。
13 [Effects of the Invention] According to the present invention, a fin material with excellent thermal conductivity, sacrificial anode effect, high-temperature buckling resistance, and strength can be provided, and the fin material can be made thinner, resulting in a lighter heat exchanger. , contributing to cost reduction.

Claims (1)

【特許請求の範囲】[Claims] Fe:0.2〜1.8%、Si:0.2〜0.6%、M
n:0.1〜0.35%、Zr:0.05〜0.20%
、Cu:0.3%以下を含有し、更にIn:0.005
〜0.1%、Sn:0.01〜0.1%、Ga:0.0
1〜0.2%及びBi:0.01〜0.1%のうち1種
又は2種以上を含有し、残部Al及び不可避的不純物か
らなることを特徴とするろう付け後熱伝導度及び犠牲陽
極効果にすぐれた熱交換器フィン材用アルミニウム合金
Fe: 0.2-1.8%, Si: 0.2-0.6%, M
n: 0.1-0.35%, Zr: 0.05-0.20%
, Cu: 0.3% or less, and In: 0.005
~0.1%, Sn: 0.01~0.1%, Ga: 0.0
1 to 0.2% and Bi: 0.01 to 0.1%, and the remainder consists of Al and inevitable impurities. Aluminum alloy for heat exchanger fin material with excellent anode effect.
JP1242319A 1989-09-20 1989-09-20 Aluminum alloy for heat exchanger fin material which has excellent thermal conductivity after brazing and sacrificial anode effect Expired - Fee Related JPH0689429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242319A JPH0689429B2 (en) 1989-09-20 1989-09-20 Aluminum alloy for heat exchanger fin material which has excellent thermal conductivity after brazing and sacrificial anode effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242319A JPH0689429B2 (en) 1989-09-20 1989-09-20 Aluminum alloy for heat exchanger fin material which has excellent thermal conductivity after brazing and sacrificial anode effect

Publications (2)

Publication Number Publication Date
JPH03107438A true JPH03107438A (en) 1991-05-07
JPH0689429B2 JPH0689429B2 (en) 1994-11-09

Family

ID=17087441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242319A Expired - Fee Related JPH0689429B2 (en) 1989-09-20 1989-09-20 Aluminum alloy for heat exchanger fin material which has excellent thermal conductivity after brazing and sacrificial anode effect

Country Status (1)

Country Link
JP (1) JPH0689429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513552A (en) * 2008-03-03 2011-04-28 ハネウェル・インターナショナル・インコーポレーテッド Heat transfer system, method, heat transfer fluid and additive package comprising brazed aluminum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124811A (en) * 1978-03-22 1979-09-28 Sumitomo Light Metal Ind Fin material for heat exchanger comprising aluminium alloy and production
JPS6110024A (en) * 1984-06-07 1986-01-17 ヘンケル・コマンデイツトゲゼルシヤフト・アウフ・アクチエン Hot water manufacture of transparent sodium silicate solution
JPH01234541A (en) * 1988-03-16 1989-09-19 Furukawa Alum Co Ltd Aluminum alloy fin material for brazing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124811A (en) * 1978-03-22 1979-09-28 Sumitomo Light Metal Ind Fin material for heat exchanger comprising aluminium alloy and production
JPS6110024A (en) * 1984-06-07 1986-01-17 ヘンケル・コマンデイツトゲゼルシヤフト・アウフ・アクチエン Hot water manufacture of transparent sodium silicate solution
JPH01234541A (en) * 1988-03-16 1989-09-19 Furukawa Alum Co Ltd Aluminum alloy fin material for brazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513552A (en) * 2008-03-03 2011-04-28 ハネウェル・インターナショナル・インコーポレーテッド Heat transfer system, method, heat transfer fluid and additive package comprising brazed aluminum

Also Published As

Publication number Publication date
JPH0689429B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4002352B2 (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger using the same
JP3407965B2 (en) Aluminum alloy fin material
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
KR100329686B1 (en) Aluminum Alloy Fin Material for Heat Exchanger
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JPH03107438A (en) Aluminum alloy for heat exchanger fin material excellent in thermal conductivity and sacrificial anode effect
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JP2002012935A (en) Aluminum alloy sheet with protective corrosion prevention and its composite material
JPH0788677A (en) Manufacture of aluminum alloy brazing sheet and heat exchanger made of aluminum alloy
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JPH0390529A (en) Aluminum alloy for heat exchanger fin material excellent in thermal conductivity after brazed and sacrificial anode effect
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability
JP2000135591A (en) Aluminum alloy clad material for heat exchanger superior in corrosion resistance
JPH07102337A (en) Production of aluminum alloy fin material for brazing and heat exchanger made of aluminum alloy
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JPH03104834A (en) Aluminum alloy for heat exchanger fin material having excellent thermal conductivity after brazing and sacrificial anode effect
JPH05247570A (en) Aluminum alloy for heat exchanger fin material excellent in strength after brazing and sacrificial anode effect
JPH0382729A (en) Aluminum alloy for heat exchanger fin material excellent in thermal conductivity after brazed and sacrificial anode effect
JPH04193927A (en) Brazable fin material for aluminum heat exchanger having superior heat conductivity and significant sacrificial anode effect after brazing
JP2943482B2 (en) Al-Heat Exchanger Working Fluid Channel Forming Structural Member with Skin Material Exhibiting Sacrificial Anode Effect for Long Term
JPH04198449A (en) Brazing fin material for aluminum heat exchanger excellent in thermal conductivity after brazing and sacrificial anode effect
JPH05179380A (en) Aluminum alloy clad fin material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees