JPH0230571B2 - HANDOTAISOCHI - Google Patents

HANDOTAISOCHI

Info

Publication number
JPH0230571B2
JPH0230571B2 JP9719181A JP9719181A JPH0230571B2 JP H0230571 B2 JPH0230571 B2 JP H0230571B2 JP 9719181 A JP9719181 A JP 9719181A JP 9719181 A JP9719181 A JP 9719181A JP H0230571 B2 JPH0230571 B2 JP H0230571B2
Authority
JP
Japan
Prior art keywords
test
elements
aluminum
semiconductor substrate
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9719181A
Other languages
Japanese (ja)
Other versions
JPS57211274A (en
Inventor
Toshiharu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP9719181A priority Critical patent/JPH0230571B2/en
Publication of JPS57211274A publication Critical patent/JPS57211274A/en
Publication of JPH0230571B2 publication Critical patent/JPH0230571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、特にMOS集積回路装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, particularly MOS integrated circuit devices.

MOS集積回路装置は、年々高集積化、高性能
化が進み、半導体基板(ウエーハ)内部に形成す
る素子は小形化の傾向にある。一方、素子の小形
化および高集積化が進むにつれて、シリコン基板
とアルミ電極とを接続する接触部(コンタクト)
の数も増加し、このコンタクトの特性が製品の性
能および歩留まりを決定するうえに大きな役割を
果すようになつてきている。このような重要なア
ルミ電極のコンタクトの特性を、製造途中および
製品について調べるために、従来は、ペレツト内
の内部素子とは別個にテスト用のトランジスタを
形成しておき、このテスト用のトランジスタのア
ルミ電極部の特性を調べその結果をその後に形成
されるMOS集積回路装置のコンタクト部形成条
件にフイードバツクしていた。しかしながら、こ
のような方法は内部素子の数多くあるアルミ電極
の平均的コンタクト性の良否を推定しているにす
ぎず、種々のアルミ電極構造を有する製品装置に
十分対処することはできず、製品歩留りを向上さ
せるのに限度を生じていた。
MOS integrated circuit devices are becoming more highly integrated and have higher performance year by year, and the elements formed inside semiconductor substrates (wafers) tend to be smaller. On the other hand, as elements become smaller and more highly integrated, contact parts that connect silicon substrates and aluminum electrodes
The number of contacts is increasing, and the characteristics of these contacts are playing a major role in determining product performance and yield. In order to investigate the characteristics of such important aluminum electrode contacts during manufacturing and in products, conventionally a test transistor was formed separately from the internal elements in the pellet, and the test transistor was The characteristics of the aluminum electrode part were investigated and the results were fed back to the conditions for forming the contact part of the MOS integrated circuit device that was subsequently formed. However, this method only estimates the average contact quality of the many aluminum electrodes in internal elements, and cannot adequately handle product devices with various aluminum electrode structures, resulting in poor product yield. There was a limit to how much it could be improved.

本発明の目的は、このような、内部素子のアル
ミ電極部コンタクト特性に対する従来のテスト用
素子の欠点を改善した、製品歩留りをより向上さ
せるために確度の高い目安となるテスト用素子を
備えた半導体装置を提供するにある。
An object of the present invention is to improve the shortcomings of conventional test elements with respect to contact characteristics of aluminum electrode parts of internal elements, and to provide a test element that can serve as a highly accurate guide to further improve product yield. To provide semiconductor devices.

本発明の半導体装置は、トランジスタ、集積回
路などの素子が形成された半導体基板の一部に、
接触面積対アルミ面積の比をいろいろ変えてアル
ミ電極をもつ複数個のトランジスタまたはダイオ
ードなどのテスト用素子が形成されている構成を
有する。
The semiconductor device of the present invention includes a part of a semiconductor substrate on which elements such as transistors and integrated circuits are formed.
It has a configuration in which test elements such as a plurality of transistors or diodes having aluminum electrodes are formed with various ratios of contact area to aluminum area.

つぎに本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第1図aは本発明の一実施例のテスト用素子の
部分平面図、同図bは図aのA―A断面図であ
る。これらの図において、1aおよび1bは、N
型半導体基板11の一部に内部素子(図示せず)
とは別個に形成されたテスト用のMOSトランジ
スタ素子であり、トランジスタ素子1aには、P
型のソース領域12、ドレイン領域13、ゲート
電極14、さらにアルミのソース電極4、ドレイ
ン電極5を含む。また、トランジスタ素子1bに
は、P型のソース領域22、ドレイン領域23、
ゲート電極24と、さらに、アルミのソース電極
6、ドレイン電極7をそれぞれ含む。なお、3は
絶縁の表面酸化膜である。
FIG. 1a is a partial plan view of a test element according to an embodiment of the present invention, and FIG. 1b is a sectional view taken along line AA in FIG. In these figures, 1a and 1b are N
An internal element (not shown) is provided on a part of the type semiconductor substrate 11.
This is a test MOS transistor element formed separately from the transistor element 1a.
It includes a source region 12, a drain region 13, a gate electrode 14, and a source electrode 4 and a drain electrode 5 made of aluminum. Further, the transistor element 1b includes a P-type source region 22, a drain region 23,
It includes a gate electrode 24, and further includes an aluminum source electrode 6 and a drain electrode 7, respectively. Note that 3 is an insulating surface oxide film.

このようなテスト用のMOSトランジスタ素子
1aと1bとは、素子1aのソースおよびドレイ
ン電極6,7がアルミそのものの面積は同じであ
るが、酸化膜3にあけられた開孔(コンタクト領
域)を通してソースおよびドレイン領域に接触す
る接触面積が異なる。すなわち、素子1aの接触
面積は素子1bに比べて非常に小さく形成されて
いる。したがつて、このテスト用素子の電気的特
性を測定し、製品歩留りで一番良い時のこれらの
コンタクト特性を総合的に調べ、このときに対応
するテスト用素子の特性値が得られるように、そ
の後に形成される半導体装置のコンタクト部形成
条件にフイードバツクしてこのコンタクト形成の
温度、時間を制御すれば、種々の形状のアルミ電
極を有する製品の歩留りを向上させることができ
る。
In the test MOS transistor elements 1a and 1b, the source and drain electrodes 6 and 7 of the element 1a are made of aluminum with the same area, but are connected through an opening (contact region) made in the oxide film 3. The contact areas contacting the source and drain regions are different. That is, the contact area of element 1a is formed to be much smaller than that of element 1b. Therefore, we measured the electrical characteristics of this test element and comprehensively investigated these contact characteristics when the product yield was the best, so that we could obtain the corresponding characteristic values of the test element at this time. By controlling the temperature and time of contact formation by feeding back to the conditions for forming the contact portion of the semiconductor device to be formed subsequently, it is possible to improve the yield of products having aluminum electrodes of various shapes.

なお、上例では、テスト用素子は2種類だけで
あつたが、これを、接触面積対アルミの面積の比
が互いに異なる5種類のアルミ電極をそれぞれに
もつ素子1a,1b,……1eを形成し、この5
種類のテスト用素子を用いてその特性を総合的に
判断して一番良い製品歩留りが得られるコンタク
ト形成条件をみつけ、その条件を後から形成する
製品装置のコンタクト形成にフイードバツクして
適用しそれよにより得られるテスト用素子の特性
が前記製品歩留りが一番良い場合と同じようなも
のであることを確認して、製造を歩めていけば常
に最高の製品歩留りが得られることとなる。そし
て第1図の2種類のテスト素子に比べてこのよう
に5種類のテスト素子を用意すれば、多くの形状
種類のアルミ電極を有する製品の歩留りとテスト
用素子の総合特性との関係がより明確となりこれ
により的確な高い製品歩留りを得るための監視体
制が得られる。
In the above example, there were only two types of test elements, but this was replaced by elements 1a, 1b, ... 1e, each having five types of aluminum electrodes with different ratios of contact area to aluminum area. Form this 5
Using various types of test elements, we comprehensively evaluate their characteristics to find the contact formation conditions that will give the best product yield, and then apply these conditions as feedback to the contact formation in the product equipment that will be formed later. By confirming that the characteristics of the test device obtained are similar to those in the case where the product yield is the best, and proceeding with the manufacturing process, the highest product yield will always be obtained. If five types of test elements are prepared in this way compared to the two types of test elements shown in Figure 1, the relationship between the yield of products with aluminum electrodes of many shapes and types and the overall characteristics of the test elements will be improved. This provides a clear monitoring system for obtaining accurate high product yields.

第2図a,bは、それぞれテスト用素子として
ダイオード素子を形成した本発明の他の実施例の
平面図とそのA―A断面図である。11はN型半
導体基板で、2a,2bはそれぞれテスト用のダ
イオード素子である。ダイオード素子2aのアノ
ード領域15に接触するアルミのアノード電極8
の接触面積は、ダイオード素子2bのアノード領
域16に接触するアルミのアノード電極9に比べ
小面積であり、この異なる2種類の接触面積対ア
ルミ面積の比の特性と製品歩留りの特性を対応さ
せ、最高歩留りの特性を与えるテスト用素子の特
性から最高歩留り条件の目安が得られることは、
第1図の例と同様である。また、テスト用素子の
数を増やすことによつてより的確な監視体制が得
られることも第1の実施例の場合と同様である。
FIGS. 2a and 2b are a plan view and a sectional view taken along line AA of another embodiment of the present invention in which a diode element is formed as a test element, respectively. 11 is an N-type semiconductor substrate, and 2a and 2b are diode elements for testing. Aluminum anode electrode 8 in contact with anode region 15 of diode element 2a
The contact area is smaller than that of the aluminum anode electrode 9 that contacts the anode region 16 of the diode element 2b, and the characteristics of the ratio of these two different types of contact area to aluminum area are made to correspond to the characteristics of product yield. The fact that a guideline for the maximum yield conditions can be obtained from the characteristics of the test device that gives the highest yield characteristics is that
This is similar to the example in FIG. Further, as in the case of the first embodiment, a more accurate monitoring system can be obtained by increasing the number of test elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bはそれぞれ本発明の一実施例に係
るテスト用MOSトランジスタの平面図およびそ
のA―A断面図、第2図a,bはそれぞれ本発明
の他の実施例に係るテスト用ダイオードの平面図
およびそのA―A断面図である。 1a,1b……テスト用MOSトランジスタ素
子、2a,2b……テスト用ダイオード素子、3
……表面酸化膜、4,6……アルミソース電極、
5,7……アルミドレイン電極、8,9……アル
ミアノード電極、11……N型シリコン基板、1
2,22……P型ソース領域、13,23……P
型ドレイン領域、14,24……ゲート電極、1
5,16……P型アノード領域。
FIGS. 1a and 1b are a plan view and an AA sectional view thereof of a test MOS transistor according to one embodiment of the present invention, and FIGS. 2a and 2b are respectively a test MOS transistor according to another embodiment of the present invention. FIG. 2 is a plan view of a diode and a cross-sectional view thereof taken along line AA. 1a, 1b... MOS transistor element for testing, 2a, 2b... diode element for testing, 3
...Surface oxide film, 4,6...Aluminum source electrode,
5, 7... Aluminum drain electrode, 8, 9... Aluminum anode electrode, 11... N-type silicon substrate, 1
2, 22...P type source region, 13, 23...P
type drain region, 14, 24... gate electrode, 1
5, 16...P-type anode region.

Claims (1)

【特許請求の範囲】[Claims] 1 トランジスタ、集積回路などの素子が形成さ
れた半導体基板の一部に第1および第2のテスト
用素子がたがいに近くに設けられ、前記第1およ
び第2のテスト用素子のそれぞれは、前記半導体
基板内に形成された不純物領域と、該不純物領域
と所定の接触面積で接続しかつ該不純物領域以外
とはどことも電気的に接続せずに島状の形状をも
つて前記半導体基板上に形成されたアルミ電極と
を有し、前記第1のテスト用素子の前記アルミニ
ウム電極と前記第2のテスト用素子の前記アルミ
電極とはたがいに同じ大きさをもつて前記半導体
基板上にたがいに連立して形成され、かつ、前記
第1のテスト用素子の前記接触面積と前記第2の
テスト用素子の前記接触面積とはたがいに異なる
大きさであることを特徴とする半導体装置。
1. First and second test elements are provided close to each other on a part of a semiconductor substrate on which elements such as transistors and integrated circuits are formed, and each of the first and second test elements An impurity region formed in a semiconductor substrate is connected to the impurity region with a predetermined contact area and is not electrically connected to anything other than the impurity region, and has an island shape on the semiconductor substrate. an aluminum electrode formed on the semiconductor substrate, the aluminum electrode of the first test element and the aluminum electrode of the second test element having the same size; A semiconductor device formed in parallel, and wherein the contact area of the first test element and the contact area of the second test element have different sizes.
JP9719181A 1981-06-23 1981-06-23 HANDOTAISOCHI Expired - Lifetime JPH0230571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9719181A JPH0230571B2 (en) 1981-06-23 1981-06-23 HANDOTAISOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9719181A JPH0230571B2 (en) 1981-06-23 1981-06-23 HANDOTAISOCHI

Publications (2)

Publication Number Publication Date
JPS57211274A JPS57211274A (en) 1982-12-25
JPH0230571B2 true JPH0230571B2 (en) 1990-07-06

Family

ID=14185683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9719181A Expired - Lifetime JPH0230571B2 (en) 1981-06-23 1981-06-23 HANDOTAISOCHI

Country Status (1)

Country Link
JP (1) JPH0230571B2 (en)

Also Published As

Publication number Publication date
JPS57211274A (en) 1982-12-25

Similar Documents

Publication Publication Date Title
US20160358853A1 (en) Method of manufacturing semiconductor device and semiconductor device
US4916508A (en) CMOS type integrated circuit and a method of producing same
JPH0581052B2 (en)
JPH09311432A (en) Pattern forming method for semiconductor device
US3616348A (en) Process for isolating semiconductor elements
JPS61158177A (en) Semiconductor device
US4685199A (en) Method for forming dielectrically isolated PMOS, NMOS, PNP and NPN transistors on a silicon wafer
US11437478B2 (en) Semiconductor device, manufacture thereof, and a radiation measurement method
KR100558064B1 (en) Method of fabricating test pattern for junction leakage current
JP2007123407A (en) Manufacturing method of semiconductor device
JPH0230571B2 (en) HANDOTAISOCHI
JPS5914906B2 (en) Method for manufacturing field effect transistors
CN111128871B (en) Etching process method of contact hole
US3975818A (en) Method of forming closely spaced electrodes onto semiconductor device
TW201637215A (en) Power MOSFET and manufacturing method thereof
US20240170532A1 (en) Shared source/drain contact for stacked field-effect transistor
US20240290667A1 (en) Test key structure
US20240105851A1 (en) Semiconductor device structure and method for forming the same
JPH04333255A (en) Semiconductor integrated circuit
US3400308A (en) Metallic contacts for semiconductor devices
JPS5871655A (en) Semiconductor device
JPS58197882A (en) Manufacture of semiconductor device
JPH05326844A (en) Semiconductor integrated circuit
JPH05144906A (en) Semiconductor device and manufacture thereof
JPS581542B2 (en) Manufacturing method of semiconductor integrated circuit