JPH02305468A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02305468A
JPH02305468A JP1126871A JP12687189A JPH02305468A JP H02305468 A JPH02305468 A JP H02305468A JP 1126871 A JP1126871 A JP 1126871A JP 12687189 A JP12687189 A JP 12687189A JP H02305468 A JPH02305468 A JP H02305468A
Authority
JP
Japan
Prior art keywords
ion implantation
region
concentration
well
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126871A
Other languages
Japanese (ja)
Inventor
Shigeki Komori
重樹 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1126871A priority Critical patent/JPH02305468A/en
Publication of JPH02305468A publication Critical patent/JPH02305468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high speed element high in resistance to latch-up by a method wherein a well under a field oxide film is decreased to a proper value in concentration by a first ion implantation into the well and the high concentration region of a retrograde well is formed deeper through a second ion implantation. CONSTITUTION:A first ion implantation process in which a well 4a under a field oxide film 2 is decreased to a proper value in concentration, a second ion implantation process in which a region 3 deeper than the well 4a is enhanced in concentration, a third ion implantation process in which a region 6 shallower than the first implantation depth is increased in concentration, and a fourth ion implantation process in which an intermediate region 5 located at an intermediate depth between the implantation depths of the first and the second ion implantation is increased in concentration are included. That is, the well 4a under the field oxide film 2 is decreased to a proper value in concentration by the first ion implantation, and a high concentration region 3 of a retrograde well base is formed deep in a board through the second ion implantation. By this setup, not only a junction capacitance can be made small but also a parasitic bipolar transistor can be made small in amplification factor, so that an high speed element high in resistance to latch-up can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関し、特にウェル底
部に高濃度領域をもつレトログレードウェルの形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming a retrograde well having a high concentration region at the bottom of the well.

〔従来の技術〕[Conventional technology]

MO3型トランジスタを集積した半導体装1においてN
MO3もしくはPMO3型O3ンジスタのみからなる回
路よりも、両方のトランジスタを組み合わせて構成した
CMO3型の半導体装置がその低消費電力などの利点か
ら広く求められている。NMO3型O3ンジスタとPM
O3型O3ンジスタが同一基板上のそれぞれのウェルに
存在するCMO3型の構成では、必然的に寄生のバイポ
ーラトランジスタができ、電源ラインにノイズが乗るな
どの原因によって素子が破壊されるほどに大電流が流れ
る、いわゆるラッチアップが生じるという問題があった
。しかるに、ウェル底部に高濃度領域をもつレトログレ
ードウェルでは寄生のバイポーラトランジスタの増幅率
を低下でき、ラッチアップを大幅に低減できる。
In the semiconductor device 1 integrated with MO3 type transistors, N
A CMO3 type semiconductor device constructed by combining both MO3 type or PMO3 type O3 transistors is widely sought after due to its advantages such as low power consumption, rather than a circuit consisting only of MO3 type or PMO3 type O3 transistors. NMO3 type O3 resistor and PM
In a CMO3 type configuration in which O3 type O3 transistors exist in each well on the same substrate, a parasitic bipolar transistor is inevitably created, and a current so large that the device is destroyed due to noise on the power supply line etc. There was a problem in that so-called latch-up occurred. However, in a retrograde well having a high concentration region at the bottom of the well, the amplification factor of the parasitic bipolar transistor can be lowered, and latch-up can be significantly reduced.

第3図に高エネルギーイオン注入を使って実現した従来
のレトログレードウェルの工程を示す。
Figure 3 shows a conventional retrograde well process realized using high-energy ion implantation.

この方法ではまず第3図(a)に示すように、素子分離
のために通常のLOCO3法(LOCal 0xida
tion of 5ilicon ;下敷酸化膜上に窒
化膜をパターニングし、これをマスクとして基板を酸化
する方法)により、シリコン基板1にフィールド酸化膜
2を形成し、後工程でトランジスタなどの素子を形成す
る活性領域7を定義する。ここで活性領域7上には厚さ
300人程変度下敷酸化膜2が残っている。
In this method, as shown in FIG. 3(a), the usual LOCO3 method (LOCal Oxida
A field oxide film 2 is formed on a silicon substrate 1 by patterning a nitride film on an underlying oxide film and using this as a mask to oxidize the substrate. Define region 7. Here, the underlying oxide film 2 with a thickness of about 300 mm remains on the active region 7.

次に第3図(b)に示すように、レトログレードウェル
底部の高濃度領域4を形成するためボロン(Blの場合
、200keV、  リフ(P”)(7)場合600k
eVの高エネルギーで5×10′z〜5X I Q ”
cr”程度の注入量でイオン注入を行い高濃度領域4を
形成する。このときの該領域4の不純物濃度は第4図(
b)を参照されたい。ここでこの高濃度領域4は同時に
フィールド酸化膜2の直下(4a)にもかかるように注
入し、ここに該高濃度領域がない場合にフィールド酸化
膜2上に堆積された配線材料に印加されている電圧によ
ってフィールド酸化膜2下が容易に他の導電型に反転し
てしまい、隣接する素子との分離が不能になる、という
ことがないようにしている。このため、この高濃度領域
4はフィールド酸化膜2直下(4a)にもかかるように
上述のように通常200 k e V。
Next, as shown in FIG. 3(b), in order to form the high concentration region 4 at the bottom of the retrograde well, the voltage was set at 200 keV for boron (Bl) and 600 keV for rif (P'') (7).
5×10′z~5X IQ” at high energy of eV
A high concentration region 4 is formed by ion implantation with an implantation amount of about 1.5 cr". The impurity concentration of the region 4 at this time is as shown in
See b). Here, this high concentration region 4 is simultaneously implanted so as to be directly under the field oxide film 2 (4a), and if there is no high concentration region here, the voltage will be applied to the wiring material deposited on the field oxide film 2. This is to prevent the underside of the field oxide film 2 from being easily inverted to another conductivity type due to the applied voltage, thereby making isolation from adjacent elements impossible. Therefore, the high concentration region 4 is normally 200 k e V as described above so as to extend directly below the field oxide film 2 (4a).

600keVを超えるエネルギーで注入して形成してお
り、このため、活性領域7下の高濃度領域4の深さはこ
のエネルギーを決めるフィールド酸化膜2の厚みで決定
される。このときの該領域4aの不純物濃度は第4図(
a)を参照されたい。
It is formed by implantation with an energy exceeding 600 keV, and therefore the depth of the high concentration region 4 below the active region 7 is determined by the thickness of the field oxide film 2, which determines this energy. The impurity concentration of the region 4a at this time is shown in FIG.
Please refer to a).

次に、第3図(C)の工程では、活性領域7下の、(b
)で形成した高濃度領域4までの浅い領域6の濃度を適
正にするために、(b)で注入したイオンと同種のイオ
ンをポロン(B1)の場合100keV。
Next, in the step of FIG. 3(C), the area (b) below the active region 7 is
In order to make the concentration of the shallow region 6 up to the high concentration region 4 formed in step (b) appropriate, ions of the same type as the ions implanted in step (b) were implanted at 100 keV in the case of poron (B1).

リン(B2)の場合200keV等、のより低エネルギ
ーで1回あるいは複数回注入する。このときの11 m
l域6の不純物濃度は第4図ら)を参照されたい。また
このときのイオン注入量は、注入の回数及びエネルギー
に応じて適宜設定し、その結果、第4図(b)に示す領
域6の不純物濃度が得られるようにする。
In the case of phosphorus (B2), one or more implants are performed at a lower energy, such as 200 keV. 11 m at this time
For the impurity concentration in region 6, see FIG. 4, etc.). Further, the amount of ion implantation at this time is appropriately set according to the number of times of implantation and the energy, so that the impurity concentration in the region 6 shown in FIG. 4(b) is obtained as a result.

続いて、第3図(d)の工程では、シリコン基板1をア
ニールし、先の(b)及び(C)の工程で注入された不
純物を活性化する。
Subsequently, in the step of FIG. 3(d), the silicon substrate 1 is annealed to activate the impurities implanted in the previous steps of (b) and (C).

第4図(a)は上記でものべたが、第3図に基づいて処
理された場合のフィールド酸化膜2下の領域4aの不純
物濃度プロファイルを示し、同図(ハ)は同じ場合の活
性領域7下の領域6,4aの不純物濃度プロファイルを
示す。
As described above, FIG. 4(a) shows the impurity concentration profile of the region 4a under the field oxide film 2 when processed based on FIG. 3, and FIG. 4(c) shows the active region in the same case. 7 shows the impurity concentration profile of regions 6 and 4a below 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のレトログレードウェル形成工程は以上のように行
われていたので、レトログレードウェル底部の高濃度点
がフィールド酸化膜厚で決定されていた。近年、半導体
装置の微細化が進むにつれてフィールド酸化膜の活性領
域へのくい込み、いわゆるバーズビークを低減するため
、フィールド酸化膜厚は薄(する方向にあるが、このた
めこのようにして形成される従来装置では、ますます活
性領域下の高濃度領域の深さが浅くなり、活性領域での
素子とレトログレードウェル間の空乏層が伸びにくく、
接合容量が大きくなって素子の速度を低下させるという
問題があった。
Since the conventional retrograde well forming process was performed as described above, the high concentration point at the bottom of the retrograde well was determined by the field oxide film thickness. In recent years, as the miniaturization of semiconductor devices has progressed, field oxide films have become thinner in order to reduce the penetration of the field oxide film into the active region, the so-called bird's beak. In devices, the depth of the high concentration region under the active region is becoming shallower, making it difficult for the depletion layer between the element and the retrograde well in the active region to grow.
There was a problem in that the junction capacitance increased and the speed of the device decreased.

本発明は上記のような問題点を解消するためになされた
もので、ウェル底部の深くに高濃度領域を持ち、従来よ
りラッチアップに強いレトログレードウェルを実現でき
るとともに、接合容量の少ない高速な素子を実現できる
半導体装置の製造方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems. It has a high concentration region deep at the bottom of the well, making it possible to realize a retrograde well that is more resistant to latch-up than conventional wells. The purpose of this invention is to obtain a method for manufacturing a semiconductor device that can realize an element.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、第1のイオン
注入では従来の不必要なまでに高濃度だったフィールド
酸化膜下への注入量を適正な注入量に下げるとともに、
第2のイオン注入によりレトログレードウェル特有の高
濃度領域をより深(に形成するようにしたものである。
The method for manufacturing a semiconductor device according to the present invention reduces the amount of ions implanted under the field oxide film, which was conventionally unnecessarily high concentration, to an appropriate amount in the first ion implantation.
By the second ion implantation, the high concentration region unique to retrograde wells is formed deeper.

〔作用〕[Effect]

この発明においては、フィールド酸化膜下の注入量を下
げることによって接合容量を低下させて、高速な素子を
実現でき、またより深いところに高濃度領域を形成する
ことによって寄生バイポーラトランジスタの増幅率を低
下させることにより、よりラッチアップに強い素子が形
成可能である。
In this invention, by lowering the implantation amount under the field oxide film, the junction capacitance is lowered and a high-speed device can be realized, and the amplification factor of the parasitic bipolar transistor can be increased by forming a deeper high concentration region. By lowering the resistance, it is possible to form an element that is more resistant to latch-up.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるレトログレードウェ
ルの形成工程を示し、以下本製造方法について説明する
FIG. 1 shows a process for forming a retrograde well according to an embodiment of the present invention, and the manufacturing method will be described below.

第1図(a)において、素子分離のために通常のLoc
os法により、シリコン基板1上にフィールド酸化膜2
を形成する。
In FIG. 1(a), a normal Loc is used for element isolation.
A field oxide film 2 is formed on a silicon substrate 1 by the OS method.
form.

次に同図(b)に示すように、フィールド酸化膜下の部
分(4a)が容易に反転しないようにするため、上記同
様200keV、600keVを超える高エネルギー注
入により不純物層4を形成するが、このときの注入量は
、フィールド酸化膜2上に堆積された配線材料への印加
電圧によってフィールド酸化M2下に反転層ができるよ
うな電位をそれほど高くない適正な電位とする程度の注
入量で良く、従来の高濃度は必要としない。即ち、フィ
ールド酸化膜2直下4aの濃度は第2図(a)に示され
るように、従来の5X 10”c+++−3(I E 
17 )に対し、I X 10 ”cm−’でよい。こ
れによって接合容量を従来のレトログレードウェルより
低くすることができる。このときのイオン注入量は該第
2図(a)に示す領域4aの濃度が得られるよう適宜設
定する。
Next, as shown in FIG. 4B, in order to prevent the portion (4a) under the field oxide film from easily inverting, an impurity layer 4 is formed by high-energy implantation of 200 keV or more than 600 keV as described above. The amount of implantation at this time may be such that the voltage applied to the wiring material deposited on the field oxide film 2 brings the potential to an appropriate potential that is not so high that an inversion layer is formed under the field oxide M2. , do not require conventional high concentrations. That is, as shown in FIG. 2(a), the concentration 4a directly under the field oxide film 2 is 5X 10"c++-3 (I E
17), it may be I x 10 "cm-'. This allows the junction capacitance to be lower than that of the conventional retrograde well. The ion implantation amount at this time is the same as that of the region 4a shown in FIG. 2(a). Adjust as appropriate to obtain a concentration of .

続いてレトログレードウェルに特有な底部の高濃度領域
3を形成するため、B゛の場合2MeV。
Next, in order to form the high concentration region 3 at the bottom, which is unique to retrograde wells, the voltage was set at 2 MeV in the case of B.

Poの場合3MeV等の高エネルギーで2〜4μm程度
の深さにイオン注入を行い、高濃度領域3を形成する。
In the case of Po, ions are implanted to a depth of about 2 to 4 μm at high energy such as 3 MeV to form the high concentration region 3.

このときの高濃度領域3の不純物濃度は第2図(a)、
 (b)に示すとおりであり、またイオン注入量は、第
2図(a)、 (b)に示す領域3の濃度が得られるよ
う適宜設定する。
The impurity concentration of the high concentration region 3 at this time is as shown in FIG. 2(a).
2(b), and the ion implantation amount is appropriately set so as to obtain the concentration in region 3 shown in FIGS. 2(a) and 2(b).

次に第1図(C)に示すように、上記不純物注入層4よ
り浅い領域6の不純物濃度を上げる。B゛の場合200
keV以下、P3の場合600keV以下の低エネルギ
ーの1回もしくは複数回の注入(第3のイオン注入)を
行うとともに、上記不純物注入N4と高濃度領域3との
間の領域(中間領域)5の濃度を上げる。B・の場合2
00keV以上、2MeV以下、P9の場合600ke
V以上、3MeV以下のエネルギーの1回もしくは複数
回のイオン注入(第4のイオン注入)を行う。
Next, as shown in FIG. 1C, the impurity concentration in the region 6 shallower than the impurity injection layer 4 is increased. 200 in case of B
One or more low energy implantations (third ion implantation) of keV or less, 600 keV or less in the case of P3 are performed, and the region (intermediate region) 5 between the impurity implantation N4 and the high concentration region 3 is implanted. Increase concentration. Case 2 of B.
00keV or more, 2MeV or less, 600ke for P9
Ion implantation is performed once or multiple times (fourth ion implantation) with an energy of V or more and 3 MeV or less.

この第3および第4のイオン注入におけるイオン注入量
は、それぞれ注入の回数及びエネルギーに応じて適宜設
定し、その結果、第2図(a)、 (b)に示す領域6
.5の不純物濃度が得られるようにする。
The ion implantation amounts in the third and fourth ion implantations are set appropriately depending on the number of implantations and the energy, and as a result, the area 6 shown in FIGS. 2(a) and 2(b)
.. An impurity concentration of 5 is obtained.

続いて同図(d)の工程で同図(b)、 (C)で行わ
れた注入層を活性化するためにアニール処理を行う。
Subsequently, in the process shown in FIG. 10(d), an annealing treatment is performed to activate the injection layer that was performed in FIG.

第2図(a)は上記でも述べたが、第1図に従って処理
されたシリコン基板1のフィールド酸化膜2下の領域4
a、5.3の不純物濃度プロファイルを示し、同図(b
)は同じ場合の活性領域7下の領域6.4,5.3の不
純物濃度プロファイルを示す。
As mentioned above, FIG. 2(a) shows the region 4 under the field oxide film 2 of the silicon substrate 1 processed according to FIG.
a, shows the impurity concentration profile of 5.3, and the same figure (b
) shows the impurity concentration profile of regions 6.4 and 5.3 below the active region 7 in the same case.

これらの図から従来法の第4図に比べて深いウェルが形
成されていることがわかる。
It can be seen from these figures that a deeper well is formed compared to the conventional method shown in FIG.

なお、上記実施例では注入完了後に不純物活性化のため
にアニールを行っていたが、ソース/ドレインドライブ
に代表される後工程での熱処理をもって活性化を行うも
のとして、このアニール工程を省略してもよい。
Note that in the above embodiment, annealing was performed to activate the impurity after the implantation was completed, but this annealing step was omitted because activation was performed through heat treatment in a post-process, typically for source/drain drive. Good too.

また、アニール処理を省略した場合、活性領域内に形成
するMO3型トランジスタのチャネル注入をもレトログ
レードウェル形成のための注入後に引き続いて行うよう
にすれば、ウェル写真製版工程とチャネル注入写真製版
工程をマージ(共通化)でき、半導体装置の形成期間を
大幅に短縮できる。
In addition, if the annealing process is omitted, if the channel implantation of the MO3 type transistor formed in the active region is performed successively after the implantation for forming the retrograde well, the well photolithography process and the channel injection photolithography process can be merged (commoned), and the period for forming semiconductor devices can be significantly shortened.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればフィールド酸化膜下の
ウェル濃度を第1のイオン注入により適正な値に下げ、
さらにレトログレードウェル底部の高濃度領域を第2の
イオン注入により基板深くに形成したので、接合容量を
小さくできるとともに、寄生バイポーラトランジスタの
増幅率も低下させることができ、高速でかつラッチアッ
プに強い素子を得ることができる効果がある。
As described above, according to the present invention, the well concentration under the field oxide film is lowered to an appropriate value by the first ion implantation,
Furthermore, since the high concentration region at the bottom of the retrograde well is formed deep into the substrate by second ion implantation, it is possible to reduce the junction capacitance and also reduce the amplification factor of the parasitic bipolar transistor, resulting in high speed and resistance to latch-up. There is an effect that a device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるレトログレードウェル
形成方法を示す図である。 第2図は第1図に従って形成した場合の不純物濃度プロ
ファイルを示す図である。 第3図は従来のレトログレードウェル形成方法を示す図
である。 第4図は第3図に従って形成した場合の不純物濃度プロ
ファイルを示す図である。 1はシリコン基板、2はフィールド酸化膜、4は不純物
層、3は高濃度領域、4aはフィールド酸化膜2下の濃
度を上げた注入層、5は中間領域、6は浅い領域である
。 なお、図中同一符号は同一または同一部分を示す。
FIG. 1 is a diagram showing a method for forming a retrograde well according to an embodiment of the present invention. FIG. 2 is a diagram showing an impurity concentration profile when formed according to FIG. 1. FIG. 3 is a diagram showing a conventional retrograde well formation method. FIG. 4 is a diagram showing an impurity concentration profile when formed according to FIG. 3. 1 is a silicon substrate, 2 is a field oxide film, 4 is an impurity layer, 3 is a high concentration region, 4a is an implantation layer with increased concentration under the field oxide film 2, 5 is an intermediate region, and 6 is a shallow region. Note that the same reference numerals in the figures indicate the same or the same parts.

Claims (1)

【特許請求の範囲】[Claims] (1)MOS構造を有する半導体装置の製造方法におい
て、 半導体基板のフィールド酸化工程に統くウェル形成工程
は、 フィールド酸化膜下のウェル濃度を上げる第1のイオン
注入を行う工程と、 それよりも深い領域の濃度を上げる第2のイオン注入を
行う工程と、 第1の注入深さより浅い領域の濃度を上げる第3のイオ
ン注入を行う工程と、 第1の注入深さと第2の注入深さの中間領域の濃度を上
げる第4のイオン注入を行う工程とを含むものであるこ
とを特徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device having a MOS structure, the well formation step integrated with the field oxidation step of the semiconductor substrate includes a first ion implantation step to increase the well concentration under the field oxide film, and a step more than that. a step of performing a second ion implantation to increase the concentration in a deep region; a step of performing a third ion implantation to increase the concentration in a shallower region than the first implantation depth; a fourth ion implantation step for increasing the concentration in the intermediate region of the semiconductor device.
JP1126871A 1989-05-19 1989-05-19 Manufacture of semiconductor device Pending JPH02305468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126871A JPH02305468A (en) 1989-05-19 1989-05-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126871A JPH02305468A (en) 1989-05-19 1989-05-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02305468A true JPH02305468A (en) 1990-12-19

Family

ID=14945905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126871A Pending JPH02305468A (en) 1989-05-19 1989-05-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02305468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846058A (en) * 1994-08-01 1996-02-16 Nec Corp Manufacture of mos semiconductor device
JPH09190984A (en) * 1995-12-29 1997-07-22 Hyundai Electron Ind Co Ltd Method of forming well of semiconductor element
EP0793858A1 (en) * 1994-11-22 1997-09-10 Genus, Inc. CONSTRUCTING CMOS VERTICALLY MODULATED WELLS BY CLUSTERED MeV BURIED IMPLANTED LAYER FOR LATERAL ISOLATION
EP0827205A2 (en) * 1996-08-29 1998-03-04 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device
US6255693B1 (en) 1997-08-11 2001-07-03 Micron Technology, Inc. Ion implantation with programmable energy, angle, and beam current

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846058A (en) * 1994-08-01 1996-02-16 Nec Corp Manufacture of mos semiconductor device
EP0793858A1 (en) * 1994-11-22 1997-09-10 Genus, Inc. CONSTRUCTING CMOS VERTICALLY MODULATED WELLS BY CLUSTERED MeV BURIED IMPLANTED LAYER FOR LATERAL ISOLATION
EP0793858A4 (en) * 1994-11-22 1998-08-19 Genus Inc CONSTRUCTING CMOS VERTICALLY MODULATED WELLS BY CLUSTERED MeV BURIED IMPLANTED LAYER FOR LATERAL ISOLATION
JPH09190984A (en) * 1995-12-29 1997-07-22 Hyundai Electron Ind Co Ltd Method of forming well of semiconductor element
EP0827205A2 (en) * 1996-08-29 1998-03-04 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device
EP0827205A3 (en) * 1996-08-29 1998-09-23 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device
US6255693B1 (en) 1997-08-11 2001-07-03 Micron Technology, Inc. Ion implantation with programmable energy, angle, and beam current

Similar Documents

Publication Publication Date Title
JPH05190781A (en) Semiconductor device and manufacture thereof
JPS6379368A (en) Manufacture of high performance bicmos composition with polycrystalline silicon emitter and silicide base
JPS62174966A (en) Manufacture of semiconductor device
TW200300586A (en) Method for producing semiconductor device
JPS6016456A (en) Semiconductor device
JPH04239760A (en) Manufacture of semiconductor device
JPS60100469A (en) Semiconductor device
JPH02305468A (en) Manufacture of semiconductor device
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPH02264464A (en) Manufacture of semiconductor device
JPS61236153A (en) Semiconductor device
JP2947816B2 (en) Method for manufacturing semiconductor device
JPS6380560A (en) Method of manufacturing bipolar transistor and complementary field effect transistor simultaneously with the minimum number of masks
JP2000216108A (en) Manufacture of semiconductor device
JP2005051191A (en) Semiconductor device having a plurality of kinds of wells, and manufacturing method thereof
JPS63302562A (en) Manufacture of mos type semiconductor device
JP3188132B2 (en) Method for manufacturing semiconductor device
JPS6126234B2 (en)
JPH023270A (en) Manufacture of hct semiconductor device
JPH0348664B2 (en)
JP2000183175A (en) Manufacture of semiconductor device
JPS63164313A (en) Manufacture of semiconductor device
JPS60226169A (en) Manufacture of semiconductor device
JPS628553A (en) Semiconductor device