JPH02304803A - Electrically conductive elastic cable conductor - Google Patents

Electrically conductive elastic cable conductor

Info

Publication number
JPH02304803A
JPH02304803A JP12467689A JP12467689A JPH02304803A JP H02304803 A JPH02304803 A JP H02304803A JP 12467689 A JP12467689 A JP 12467689A JP 12467689 A JP12467689 A JP 12467689A JP H02304803 A JPH02304803 A JP H02304803A
Authority
JP
Japan
Prior art keywords
conductor
base material
strength
elasticity
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12467689A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12467689A priority Critical patent/JPH02304803A/en
Publication of JPH02304803A publication Critical patent/JPH02304803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title conductor of great tensile strength sufficient to stand such stresses as flexure, torsion, tension, etc. by forming an alloy which contains 0.25 to 10wt.% of Cr and yet 0.001 to 3.0wt.% in the aggregate of Sn, Zr, Mg, Mn, Zn, etc., and which has the rest of contained elements, namely, Cu and P having its content restricted to less than 100ppm. CONSTITUTION:Cr grains drawn in the processing direction thereof are dispersedly arranged respectively in the base material of a conductor in the processing direction so as to raise the elasticity of the base material at a jump. P content exceeding 100 ppm of the base material causes the formation of an intermetallic compound consisting of Cr and P for decreasing the number of the Cr grains being drawn and for readily coarsening them to have a bad influence on the elasticity. The purpose of adding a group of specified elements including Sn to the base material is to improve strength, flexibility, heat resistance, etc. without having an influence on the act of drawing the Cr grains as the result of fusing Cr in a Cu radical and forming a Cr compound with Cu alone. Thus, the conductor being excellent in strength, conductivity and elasticity can be obtained at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強度、導電性及び耐屈曲性を必要とする導電用
耐屈曲性ケーブル導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a bend-resistant cable conductor for electrical conduction that requires strength, electrical conductivity, and bend resistance.

〔従来の技術〕[Conventional technology]

一般に自動車用及び電子機器配線用ケーブル導体として
は、軟銅線が使用されてきたが、工場自動化(F A)
や事務合理化(OA)が進むにつれ、最近では配線材に
占める可動用ケーブルの比率が増加している。このよう
な可動ケーブル導体としても、従来と同様の発想からこ
れまでは軟銅線が使用されてきた。
Generally, annealed copper wire has been used as a cable conductor for automotive and electronic device wiring, but with factory automation (FA)
With the progress of office automation (OA), the proportion of movable cables in wiring materials has recently increased. So far, annealed copper wire has been used as such a movable cable conductor based on the same idea as before.

近年医療機器用、フロッピディスク用、ロボット用等の
機器用可動ケーブル導体として従来のTPC軟銅線より
も高い強度と共に導電性と耐屈曲性を有する導体の要求
が増加している。
In recent years, there has been an increasing demand for conductors that have higher strength, electrical conductivity, and bending resistance than conventional TPC annealed copper wires as movable cable conductors for devices such as medical devices, floppy disks, and robots.

医療機器用ケーブルというのは複雑な動きをするため、
曲げ、捩り、引張り等のくみあわさった繰返し応力を受
ける。またフロッピーディスフ用ケーブルもヘットが横
移動等の動きをするため、U字曲げを主体とした複雑な
繰返し応力を受ける。
Medical device cables have complex movements, so
It is subjected to a combination of repeated stresses such as bending, torsion, and tension. In addition, since the head of the floppy disk cable moves laterally, it is subjected to complex repeated stress mainly caused by U-shaped bending.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような可動ケーブル導体としても、従来と同様の発
想からこれまでは軟銅線が使用されてきたが、ケーブル
の軽量化に伴う導体の細線化傾向、更には電子機器装置
組立ラインの自動化1機械化等により、以前よりもケー
ブル導体への引張り9曲げ、捩り等の負荷が大きくなっ
ており、下記のような問題が生じてきた。
So far, annealed copper wire has been used as the conductor of such movable cables based on the same idea as before, but due to the trend toward thinner conductors due to the weight reduction of cables, and furthermore, the automation of electronic device assembly lines1 Mechanization As a result, the loads such as tension, bending, and twisting on cable conductors have become greater than before, and the following problems have arisen.

最近のケーブル導体の細線化、軽量化の動向に対し、導
体の強度が低下するため、組立作業−中に断線しやすい
。また従来の軟銅線ケーブルを可動用ケーブルとして使
用すると耐屈曲性が劣るため、使用中にケーブル導体が
疲労により断線する。
With the recent trend toward thinner and lighter cable conductors, the strength of the conductors has decreased, making them more likely to break during assembly work. Furthermore, when a conventional annealed copper wire cable is used as a movable cable, its bending resistance is poor, so that the cable conductor may break due to fatigue during use.

そのため撚線の撚合せピッチを細かくするなどの改善策
がとられてきたが、その効果は不十分であった。またこ
のようなケーブルの軽量化に伴う導体の細線化傾向、更
には電子機器装置の組立ラインの自動化1機械化等によ
り、以前よりケーブル導体の引張り9曲げ、捩り等の負
荷が大きくなっており、柔軟性があり、耐屈曲性に富み
、配線の高密度化に伴う発熱を緩和するため、高い放熱
性(導電性)を持つ導体の開  −発が望まれている。
Therefore, improvement measures have been taken such as making the twisting pitch of the stranded wire finer, but the effects have not been sufficient. In addition, due to the trend toward thinner conductors due to the reduction in the weight of cables, as well as the automation and mechanization of assembly lines for electronic equipment, the loads such as tension, bending, and twisting on cable conductors have become greater than before. It is desired to develop a conductor that is flexible, highly resistant to bending, and has high heat dissipation (electrical conductivity) in order to alleviate the heat generated by higher wiring densities.

このような機器配線用導体としては、下記のような特性
が要求されている。
Such equipment wiring conductors are required to have the following characteristics.

(1)曲げ、捩り、引張り等の組合わさった繰返し応力
に十分耐えられる高い引張強さを有すること。
(1) It must have high tensile strength that can sufficiently withstand the combined repeated stress of bending, torsion, tension, etc.

(2)配線や接続の自動化に耐える高い引張強さを有す
ること。
(2) It must have high tensile strength to withstand automation of wiring and connections.

(3)半田付は時の熱影響で物性が劣化しないこと。(3) The physical properties of soldering should not deteriorate due to the effects of heat over time.

(4)半田付は根元で鋭い屈曲に耐えること。(4) Soldering must withstand sharp bending at the base.

(5)材料費や加工費が安く、低価格であること。(5) Materials and processing costs are low, and the price is low.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明はこれに鑑み、材料費や加工費が高いりん青銅や
銅被覆鋼線に代り、低コストのCu合金を機器配線用導
体として使用するべ(強度。
In view of this, the present invention aims to use low-cost Cu alloy as a conductor for equipment wiring instead of phosphor bronze or copper-coated steel wire, which have high material and processing costs.

屈曲性、耐熱性、半田信頼性、放熱性等について鋭意研
究の結果、強度、導電性及び耐屈曲性の優れた導電用耐
屈曲性ケーブル導体を開発したものである。
As a result of intensive research on flexibility, heat resistance, solder reliability, heat dissipation, etc., we have developed a flexible conductive cable conductor with excellent strength, conductivity, and bending resistance.

即ち本発明は、Cr O,25〜IGv1%(以下w1
%を%と略記)を含み、更にS n 0.001〜0.
5%。
That is, in the present invention, CrO, 25 to IGv1% (hereinafter w1
% is abbreviated as %), and S n 0.001 to 0.
5%.

Z r 0.001〜0.5%、 Mg0.001〜0
.5%。
Zr 0.001~0.5%, Mg0.001~0
.. 5%.

M n 0.001〜0.5%、  Z n 0.00
1〜2.0%。
Mn 0.001-0.5%, Zn 0.00
1-2.0%.

AIO,OQ1〜0.5%、 Ni  O,001〜0
.5%。
AIO, OQ1~0.5%, NiO,001~0
.. 5%.

F e O,001〜G、 5%、 T i  Q、0
01〜[1,2%。
F e O,001~G, 5%, T i Q, 0
01~[1,2%.

Co 0.001〜0.5%、  Cd Q、001〜
0.5%。
Co 0.001~0.5%, Cd Q, 001~
0.5%.

V O,001〜0.05%、 Ag 0.001〜0
.05%、  InQ、OQ1〜0.2%、 T e 
O,OQ1〜[1,2%、YO,OQ1〜0.05%、
  Si  Q、001〜0.01%の範囲内で、何れ
か1種又は2種以上を合計0.001〜3.0%含み、
残部CuとP含有量を1100pp以下に制限した不可
避的不純物の合金からなる、加工方向に伸長したCr粒
子を持つ導電用耐屈曲性ケーブル導体。
VO, 001~0.05%, Ag 0.001~0
.. 05%, InQ, OQ1~0.2%, Te
O, OQ1~[1,2%, YO, OQ1~0.05%,
Si Q, within the range of 001 to 0.01%, containing any one type or two or more types in a total of 0.001 to 3.0%,
A bend-resistant cable conductor for electrical conduction having Cr particles elongated in the processing direction, made of an alloy of unavoidable impurities with the balance Cu and P content limited to 1100 pp or less.

〔作用〕[Effect]

本発明において、加工方向に延伸したCr粒子は導体基
材中に加工方向に分散配列することにより、耐屈曲性を
飛躍的に高める働きを示すもので、細棒形状のCr粒子
が均一に分散しているもの程、耐屈曲性を向上する。し
かしながらその伸長アクネ十分で径が粗大化し、その分
布密度が低下した場合には、耐屈曲性を低下する。
In the present invention, the Cr particles stretched in the processing direction are dispersed and arranged in the processing direction in the conductor base material, thereby dramatically increasing the bending resistance, and the thin rod-shaped Cr particles are uniformly dispersed. The more it is, the better the bending resistance will be. However, if the diameter of the elongated acne increases and the distribution density decreases, the bending resistance decreases.

分散密度としては、102〜106本/s(単位断面積
当たりのCr粒子数)程度とすることが望ましい。
The dispersion density is preferably about 102 to 106 particles/s (number of Cr particles per unit cross-sectional area).

しかしてCr含有量を0.25〜10%と限定したのは
、上記のような延伸したCr粒子を形成するための必要
不可欠の含有量であり、下限未満では満足すべきCr粒
子を得ることができず、上限を越えて含有せしめると冷
間加工性を低下せしめるばかりか、耐屈曲性をあまり向
上せしめないなど経済的でないためである。
However, the reason why the Cr content is limited to 0.25 to 10% is that the content is indispensable for forming the above-mentioned stretched Cr particles, and if it is less than the lower limit, satisfactory Cr particles cannot be obtained. This is because if the content exceeds the upper limit, it not only reduces cold workability but also does not improve bending resistance very much, which is not economical.

また不可避的不純物中のP含有量を1100pp以下に
制限したのは、P量がIooppmを越えて含まれると
、CrとPの金属間化合物を形成し、伸長するCr粒子
を減少させてしまうことと、粗大化しやすいために耐屈
曲性に悪影響を及ぼすと共に、伸線加工中破断の原因と
なりやすく、製造性を著しく害するためである。尚同様
の理由から不可避的不純物中のS含有量もIOppm以
下に制限することが望ましい。
In addition, the P content in the inevitable impurities was limited to 1100 pp or less because if the P content exceeds Iooppm, an intermetallic compound between Cr and P will be formed, reducing the number of elongated Cr particles. This is because the wire tends to coarsen, which adversely affects the bending resistance, and also tends to cause breakage during wire drawing, which significantly impairs manufacturability. For the same reason, it is also desirable to limit the S content in the inevitable impurities to IOppm or less.

更にSn以下の元素群(以下A元素という)において、
S n O,001〜I1.5%、  Z ro、OQ
I 〜0.5%、 Mg0.001〜0.5%、 Mn
0.001〜0.5%、  ZnO,QOI 〜2.0
%、 A/ 0.0G1〜05%、 N i  O,0
01〜0.5%、 Fe O,[lD1〜0.5%、 
T i  O,001〜0.2%、  Co O,00
1〜0.5 %、  Cd O,001〜0.5 %、
 V O,001〜0.05%、 Ag 0.001〜
0.05%、  I n 0.001〜0.2%。
Furthermore, in the element group below Sn (hereinafter referred to as A element),
S n O, 001-I1.5%, Z ro, OQ
I ~0.5%, Mg0.001~0.5%, Mn
0.001-0.5%, ZnO, QOI ~2.0
%, A/0.0G1~05%, N i O,0
01~0.5%, FeO, [lD1~0.5%,
T i O,001-0.2%, Co O,00
1-0.5%, CdO, 001-0.5%,
VO, 001~0.05%, Ag 0.001~
0.05%, In 0.001-0.2%.

T e  O,001〜0.2%、 Yo、001〜0
.05%、Si0.001〜0.01%の範囲内で、何
れか1種又は2種以上を合計0.001〜3.0%添加
するのは、これ等の範囲内ではCu基中に固溶したり、
単独又はCuとの化合物はを形成し、Cr粒子の伸長作
用に影響を与えることなく、強度、可撓性。
T e O, 001~0.2%, Yo, 001~0
.. Adding any one or more of them within the range of 0.001 to 0.01% in a total of 0.001 to 3.0% is because within these ranges, it is hard to solidify into the Cu base. Melt or
Alone or in compounds with Cu, Cr particles can form strength, flexibility, without affecting the elongation effect.

耐熱性等を向上するも、下限未満では添加による向上が
見られず、上限を越えて含有せしめると、導電率を低下
させたり、鋳造性や熱間加工性も大きく劣化させるため
である。特にSiに関しては金属間化合物CrxSiを
形成し、伸長するCr粒子を減少させてしまい、本発明
導体の特徴である耐屈曲性の向上がはかれない。
This is because although it improves heat resistance etc., if it is below the lower limit, no improvement will be seen by adding it, and if it is added above the upper limit, it will lower the electrical conductivity and greatly deteriorate the castability and hot workability. In particular, Si forms an intermetallic compound CrxSi and reduces the number of elongated Cr particles, making it impossible to improve the bending resistance, which is a feature of the conductor of the present invention.

尚本発明導体は半田付は性を高め、又は/及び絶縁被覆
形成時のガスが導体に悪影響を及ぼすのを避け、且つ接
触抵抗を低減させるため、Sn、5n−Pb合金、Ag
又はAg合金を被覆する。ただし、これ等の問題がない
場合はこれ等金属又は合金の被覆は必要としない。
The conductor of the present invention is made of Sn, 5n-Pb alloy, Ag, etc. in order to improve soldering properties and/or to prevent gas from having an adverse effect on the conductor during the formation of the insulation coating, and to reduce contact resistance.
Or coated with Ag alloy. However, if there are no such problems, coating with these metals or alloys is not necessary.

〔実施例〕〔Example〕

第1表に示す組成の合金を溶解し、急冷することなく金
型に鋳造して25mm角、長さ300 mmの鋳塊とし
、これを1面当たり2.5mmの厚さに面側して20m
m角とし、900°Cで2時間保持した後、熱間加工に
より直径8mmの線材とした。これに伸線加工と熱処理
を施して直径1.6胴の線材とし、更に走間焼鈍炉を用
いて焼鈍し、引き続いてSnの溶融メッキを施して導体
とした。焼鈍はN2雰囲気中550℃の温度で行ない、
線の走行速度を180m/minとした。
An alloy having the composition shown in Table 1 was melted and cast into a mold without quenching to form an ingot 25 mm square and 300 mm long. 20m
The wire rod was made into a m-square shape, held at 900°C for 2 hours, and then hot-worked into a wire rod with a diameter of 8 mm. This was subjected to wire drawing and heat treatment to obtain a wire rod with a diameter of 1.6, which was further annealed using a running annealing furnace, and subsequently hot-dip plated with Sn to form a conductor. Annealing was performed at a temperature of 550°C in a N2 atmosphere,
The running speed of the line was 180 m/min.

このようにして作製したSnメッキ導体について、引張
強さ、伸び、導電率、屈曲疲労強度。
Tensile strength, elongation, electrical conductivity, and bending fatigue strength of the Sn-plated conductor produced in this way.

半田濡れ性、製造の難易性を求めた。これ等の結果を従
来の65/35黄銅、8%りん青銅及びタフピッチ銅か
らなる導体と比較して第2表に示す。
We looked for solder wettability and manufacturing difficulty. These results are shown in Table 2 in comparison with conventional conductors made of 65/35 brass, 8% phosphor bronze, and tough pitch copper.

屈曲疲労強度は、ガイドを垂直に貫通する試験線に70
gの荷重を吊るし、ガイド上の試験線を左右水平に折り
曲げ、破断するまでの屈曲回数を求めた。回数は右に曲
げて元に戻して1回。
The bending fatigue strength is 70 on a test line that passes through the guide perpendicularly.
A load of g was suspended, the test line on the guide was bent horizontally from side to side, and the number of bends until breakage was determined. Bend to the right and return to the original position once.

左に曲げて元に戻して2回と数えた。I bent it to the left and brought it back down for a count of two.

引張強さはインストロン型試験機を用い、標点間距離1
00mmで行った。
The tensile strength was measured using an Instron type tester, with a gage distance of 1
00mm.

導電率は4端子法を用い、標点間距離250 mで20
℃のオイルバス中で測定した。
The conductivity was measured using the 4-terminal method, with a distance between gauges of 250 m and 20
The measurement was carried out in an oil bath at ℃.

半田濡れ性は、5n−40%pb共晶半田浴に5秒間浸
漬後、その濡れ具合を実体顕微鏡で目視により判定し、
濡れ性良好なものを○印、やや劣るものをΔ印、劣るも
のをX印で表わした。
Solder wettability was determined by immersing the product in a 5N-40% PB eutectic solder bath for 5 seconds and visually observing the wettability using a stereomicroscope.
Those with good wettability are marked with ○, those with slightly poor wettability are marked with Δ, and those with poor wettability are marked with X.

半田接合性については、5n−40%pb共晶半田を用
い、活性化ロジンをフラックスとして供試材を半田付け
し、これを大気中150℃で1000時間加熱してから
、その接合界面を観察し、剥離のないものを○印、剥離
を起したものを×印で表わした。
Regarding solder bondability, we soldered the test materials using 5N-40% PB eutectic solder and activated rosin as a flux, heated this in the atmosphere at 150°C for 1000 hours, and then observed the bonding interface. Those with no peeling are marked with a circle, and those with peeling are marked with an x.

また製造工程において通常の伸線により断線が発生する
かどうかで製造の難易性を評価し、容易なものを○印、
やや困難なものをΔ印、困     、難なものをX印
で表わした。
In addition, the difficulty of manufacturing is evaluated based on whether wire breakage occurs during normal wire drawing during the manufacturing process, and those that are easy are marked with a circle.
Slightly difficult ones are marked with a Δ, and those that are difficult or difficult are marked with an X.

組成 導 体    NcL   Cr(%)  A元素群(
%)本発明導体   1    0.16    Sn
O,04,znO,42”   2  1.02  Z
r0.08.\IgO,ll〃3  1.87  AI
o、Q7. NiO,12〃4  3.12  SnO
,24,Yo、007〃5  5.64  Mg0.0
3.〜!nO,13〃6  8.Oznl、3. Te
a、007/17  1.13  FeO,23,Si
O,04〃8  1.24  Ti、(104,Ag(
1,[11〃9  1.04  Vo、008. Zn
1.2〃10  1.84  Cod、14、CdO,
10゜比較導体  11   0.18   SnO,
04,MgO,lO/112 12.2  Fed、3
4. Yo、008〃13  1.31  Ti(1,
0311141,11Vo、14. In0.35従来
導体  15  Cu−352n (65/35黄銅)
〃     16   8%りん青銅 〃17   TPC(タフピッチ胴) 第1表 Cr粒子分布 P (ppm)   S (ppm)    02  
(ppm)   密度(本/mm2)8     2 
     3      10〜10217     
4      4       >10232    
 5      4       > 10257  
   3      5       > 10316
     8      14       >103
71     8      15       >1
041544>t02 24     3      4       >10
219     3      3       >1
0’In0.013  9     2      5
       >1021323>10 64     9      14       > 
104129     4      2      
 >102第 強度  伸び  導電: 導体  NFL  (kgf/mm2)   (%)(
%z人1本発明導体   1    54,3    
 19.Q      76.8〃2  59.6  
1?、4  72.4〃362、I      16.
4     631゜〃4  65.4  16,2 
 58.1〃5  67J   16,3  56.3
”    6  72.5  15,555.!1〃7
  59.4  1?、 5  70.8〃860、I
   17.8  71.1〃9  58.7  17
.6  68.4”   10  56.0  17.
2  73.4比較導体  II    37.2  
 20.0    87.4〃12  74.1  1
4,1  50.4〃13  56.7  10.1 
  ?0.0〃14  −   −   − 従来導体  15   48. l    15.3 
  25.0/116  47.7  2&、5  1
3.0〃17  26J   18.5  1002表 亭   屈曲強度   半田漏れ   半田接合   
製造のSS)    (回)      性     
 性    難 易+09      0     0
    01+2      0     0    
 △110       △      ○     
 X60××       △ 一一一× 50      0      ×      ×第1
表及び第2表より明らかなように、本発明導体Nα1〜
10は何れも従来導体Nα15〜17と比較し、強度、
導電率、屈曲強度が優れ、半田濡れ性や接合性も良く、
製造性も優れており、導電用耐屈曲性ケーブル導体とし
て適していることが判る。
Composition conductor NcL Cr (%) A element group (
%) Conductor of the present invention 1 0.16 Sn
O,04,znO,42" 2 1.02 Z
r0.08. \IgO,ll〃3 1.87 AI
o, Q7. NiO, 12〃4 3.12 SnO
,24,Yo,007〃5 5.64 Mg0.0
3. ~! nO, 13〃6 8. Oznl, 3. Te
a, 007/17 1.13 FeO,23,Si
O,04〃8 1.24 Ti, (104,Ag(
1, [11〃9 1.04 Vo, 008. Zn
1.2〃10 1.84 Cod, 14, CdO,
10° comparison conductor 11 0.18 SnO,
04, MgO, lO/112 12.2 Fed, 3
4. Yo, 008〃13 1.31 Ti(1,
0311141, 11Vo, 14. In0.35 conventional conductor 15 Cu-352n (65/35 brass)
16 8% phosphor bronze 17 TPC (tough pitch cylinder) Table 1 Cr particle distribution P (ppm) S (ppm) 02
(ppm) Density (books/mm2) 8 2
3 10-10217
4 4 >10232
5 4 > 10257
3 5 > 10316
8 14 >103
71 8 15 >1
041544>t02 24 3 4 >10
219 3 3 >1
0'In0.013 9 2 5
>1021323>10 64 9 14>
104129 4 2
>102nd Strength Elongation Conductivity: Conductor NFL (kgf/mm2) (%) (
%z person 1 invention conductor 1 54,3
19. Q 76.8〃2 59.6
1? , 4 72.4〃362, I 16.
4 631゜〃4 65.4 16,2
58.1〃5 67J 16.3 56.3
” 6 72.5 15,555.!1〃7
59.4 1? , 5 70.8〃860,I
17.8 71.1〃9 58.7 17
.. 6 68.4” 10 56.0 17.
2 73.4 Comparison conductor II 37.2
20.0 87.4〃12 74.1 1
4,1 50.4〃13 56.7 10.1
? 0.0〃14 - - - Conventional conductor 15 48. l 15.3
25.0/116 47.7 2 &, 5 1
3.0〃17 26J 18.5 1002 front bending strength Solder leakage Solder joint
Manufacturing SS) (times)
Gender difficulty +09 0 0
01+2 0 0
△110 △ ○
X60×× △ 111× 50 0 × ×1st
As is clear from Table and Table 2, the conductors of the present invention Nα1~
10 are all compared with conventional conductors Nα15 to 17, strength,
It has excellent conductivity and bending strength, as well as good solder wettability and bonding properties.
It can be seen that it has excellent manufacturability and is suitable as a bend-resistant cable conductor for electrical conduction.

これに対しCr量の少ない比較導体Nα11では強度や
屈曲強度が不十分≠あり、Cr含有量の多い比較導体N
α12では加工性が悪く製造が困難であった。またP含
有量の多い比較導体Nα13では屈曲強度や半田濡れ性
と接合性が劣り、A元素群の含有量が多い比較合金Nα
14では溶解鋳造はできたが、熱間加工時に大きく割れ
てしまい、供試材が作製できなかった。
On the other hand, the comparative conductor Nα11 with a low Cr content has insufficient strength and bending strength, and the comparative conductor Nα11 with a high Cr content has insufficient strength and bending strength.
α12 had poor workability and was difficult to manufacture. Furthermore, the comparative conductor Nα13, which has a high P content, has poor bending strength, solder wettability, and bonding properties, and the comparative conductor Nα, which has a high content of A element group, has poor bending strength, solder wettability, and bonding properties.
No. 14 was able to be melted and cast, but it cracked significantly during hot working, and a test material could not be produced.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、強度、導電性及び耐屈曲性
の優れた導体が安価に得られ、導電用耐屈曲性ケーブル
導体として軽量化に伴う導体の細線化、電子機器装置の
組立ラインの自動化1機械化等を容易にする等工業上顕
著な効果を奏するものである。
As described above, according to the present invention, a conductor with excellent strength, conductivity, and bending resistance can be obtained at a low cost, and can be used as a bending-resistant cable conductor for conductive use, as well as thinning of the conductor due to weight reduction, and assembly lines for electronic devices. It has remarkable industrial effects, such as facilitating automation and mechanization.

Claims (1)

【特許請求の範囲】[Claims] Cr0.25〜10wt%を含み、更にSn0.001
〜0.5wt%,Zr0.001〜0.5wt%,Mg
0.001〜0.5wt%,Mn.0.001〜0.5
wt%,Zn0.001〜2.0wt%,Al0.00
1〜0.5wt%,Ni0.001〜0.5wt%,F
e0.901〜0.5wt%,Ti0.001〜0.2
wt%,Co0.001〜0.5wt%,Cd0.00
1〜0.5wt%,V0.001〜0.05wt%,A
g0.001〜0.05wt%,In0.001〜0.
2wt%,Te0.001〜0.2wt%,Y0.00
1〜0.05wt%,Si0.001〜0.01wt%
の範囲内で、何れか1種又は2種以上を合計0.001
〜3.0wt%含み、残部CuとP含有量を100pp
m以下に制限した不可避的不純物の合金からなる、加工
方向に伸長したCr粒子を持つ導電用耐屈曲性ケーブル
導体。
Contains Cr0.25-10wt% and further Sn0.001
~0.5wt%, Zr0.001~0.5wt%, Mg
0.001-0.5wt%, Mn. 0.001-0.5
wt%, Zn0.001-2.0wt%, Al0.00
1~0.5wt%, Ni0.001~0.5wt%, F
e0.901~0.5wt%, Ti0.001~0.2
wt%, Co0.001-0.5wt%, Cd0.00
1-0.5wt%, V0.001-0.05wt%, A
g0.001-0.05wt%, In0.001-0.
2wt%, Te0.001-0.2wt%, Y0.00
1~0.05wt%, Si0.001~0.01wt%
A total of 0.001 of any one or two or more types within the range of
Contains ~3.0wt%, balance Cu and P content is 100pp
A bend-resistant cable conductor for electrical conduction having Cr particles elongated in the processing direction and made of an alloy containing unavoidable impurities limited to less than m.
JP12467689A 1989-05-18 1989-05-18 Electrically conductive elastic cable conductor Pending JPH02304803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12467689A JPH02304803A (en) 1989-05-18 1989-05-18 Electrically conductive elastic cable conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12467689A JPH02304803A (en) 1989-05-18 1989-05-18 Electrically conductive elastic cable conductor

Publications (1)

Publication Number Publication Date
JPH02304803A true JPH02304803A (en) 1990-12-18

Family

ID=14891311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12467689A Pending JPH02304803A (en) 1989-05-18 1989-05-18 Electrically conductive elastic cable conductor

Country Status (1)

Country Link
JP (1) JPH02304803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299886A (en) * 1991-03-28 1992-10-23 Tatsuta Electric Wire & Cable Co Ltd Printed wiring board having electromagnetic wave shield
JPH04299887A (en) * 1991-03-28 1992-10-23 Tatsuta Electric Wire & Cable Co Ltd Flexible printed board
WO2009130949A1 (en) * 2008-04-25 2009-10-29 三菱マテリアル株式会社 Solar cell interconnector material and solar cell interconnector
JP2013151748A (en) * 2011-12-28 2013-08-08 Yazaki Corp Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299886A (en) * 1991-03-28 1992-10-23 Tatsuta Electric Wire & Cable Co Ltd Printed wiring board having electromagnetic wave shield
JPH04299887A (en) * 1991-03-28 1992-10-23 Tatsuta Electric Wire & Cable Co Ltd Flexible printed board
WO2009130949A1 (en) * 2008-04-25 2009-10-29 三菱マテリアル株式会社 Solar cell interconnector material and solar cell interconnector
JP4725688B2 (en) * 2008-04-25 2011-07-13 三菱マテリアル株式会社 Material for interconnector for solar cell and interconnector for solar cell
JP2013151748A (en) * 2011-12-28 2013-08-08 Yazaki Corp Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire

Similar Documents

Publication Publication Date Title
WO2003076672A1 (en) High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS633936B2 (en)
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JPH07258803A (en) Production of titanium-copper alloy excellent in bendability and stress relaxation property
JPH02304803A (en) Electrically conductive elastic cable conductor
JPH0830234B2 (en) High strength and high conductivity copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
JPS6328971B2 (en)
JPH02197013A (en) Cable conductor with high bending strength
JPH02304804A (en) Manufacture of electrically conductive elastic cable conductor
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPH0830231B2 (en) Flexible cable conductor
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JP2562447B2 (en) Flexible cable conductor
JPH02213001A (en) Flexible cable conductor
JPH02114403A (en) Cable conductor with resistance against bending
US11738412B2 (en) Lead-free solder composition
JPH01206506A (en) Conductive bending-resistant cable conductor
JPS63243239A (en) High electroconductive copper alloy having excellent bending resistance and tensile strength
JPS6176636A (en) Heat-resistant high-strength copper alloy having high electric conductivity