JPH02303657A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH02303657A
JPH02303657A JP12355389A JP12355389A JPH02303657A JP H02303657 A JPH02303657 A JP H02303657A JP 12355389 A JP12355389 A JP 12355389A JP 12355389 A JP12355389 A JP 12355389A JP H02303657 A JPH02303657 A JP H02303657A
Authority
JP
Japan
Prior art keywords
mold
cooling water
downstream
guide plates
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12355389A
Other languages
Japanese (ja)
Inventor
Akihiro Yamanaka
章裕 山中
Takaharu Nakajima
敬治 中島
Takeshi Nakai
中井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12355389A priority Critical patent/JPH02303657A/en
Publication of JPH02303657A publication Critical patent/JPH02303657A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent spouting-up of cooling water and to prevent the degradation of surface quality in a cast slab by constituting separately a continuous casting mold having rectangular cross section and enabling the shift of cooling guide plates attachably/detachably. CONSTITUTION:Two pairs of mold walls 1 mutually faced in the continuous casing assembling mold having the rectangular cross section, are divided into two or more steps to casting direction and downstream mold wall 2 is divided to the lateral direction of the cast slab with cooling water guide plates 3 and further, the pair of cooling water guide plates 3 constituting the downstream mold walls 2 are constituted so as to be attachable/detachable. Further, by pressurized-supplying high viscosity liquid between the most upstream side and the downstream side molds through pipings 13, the gap between the mold walls is controlled and the cooling water is interrupted. By this method, the cooling water in the downstream side mold is prevented from the spouting-up to the upstream side and the damage of the surface quality in the cast slab is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造用鋳型の下部構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lower structure of a continuous casting mold.

(従来の・技術) 連続鋳造用鋳型は通常600 =12(loamの長さ
を有するもので鋳型内壁は高い熱伝導率を有する材料、
すなわち銅または銅合金等により構成されている。
(Conventional technology) Continuous casting molds usually have a length of 600 = 12 (loam), and the inner wall of the mold is made of a material with high thermal conductivity.
That is, it is made of copper, copper alloy, or the like.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型壁
内部に供給される冷却媒体(例えば水)により間接的に
冷却作用を受け、鋳型壁に接する部分から漸次凝固が進
行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧力
に耐え得る程度まで成長するに伴い凝固シェルは収縮し
、鋳型壁と凝固シェルの間に空隙を生じる事になる。
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, forming a solidified shell. As the thickness of the solidified shell grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell contracts, creating a void between the mold wall and the solidified shell.

特に矩形断面を有する鋳型においては、鋳型の広面壁中
央部と接する鋳片凝固シェルは内部の溶鋼圧力により外
側に膨出し易く鋳型壁面と比較的よく接触し易いが、鋳
型広面側端部および挟置側の下部においては空隙が顕著
に現れ易い傾向がある。
Particularly in a mold with a rectangular cross section, the solidified slab shell in contact with the center of the wide wall of the mold tends to bulge outward due to the internal molten steel pressure and comes into relatively good contact with the mold wall. There is a tendency for voids to appear conspicuously in the lower part of the mounting side.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著しく
低下させ、鋳片の凝固シェル成長を大きく阻害し、凝固
シェル厚さの不均一による表面縦割れ等品質欠陥の誘因
となり、さらには凝固シェル破損によるブレークアウト
の大きな要因となる場合が多い。これは現状連続鋳造設
備の大きな基本的問題点となっており、特に高速鋳造化
指向への最大の障害になっている。
This generation of voids significantly reduces the efficiency of heat transfer from the slab to the mold wall, greatly inhibits the growth of the solidified shell of the slab, and causes quality defects such as surface vertical cracks due to uneven thickness of the solidified shell. This is often a major cause of breakout due to damage to the solidified shell. This is a major fundamental problem with the current continuous casting equipment, and is the biggest obstacle to achieving high-speed casting.

そこで本出願人は平成1年特許願第36643号明細書
及び図面において、鋳型下部に形成される鋳片と鋳型間
の空隙による鋳型冷却能の低下を防止することによって
凝固シェルの形成を増進均一化し、潤滑の改善による鋳
型壁の甚だしい摩耗防止を目的として、「矩形断面を有
する連給鋳造組立鋳型において、相対する2対の鋳型壁
のうちの何れか一方もしくは両方の鋳型壁を鋳片鋳込方
向に2段以上に分割形成すると共に、最上流側鋳型壁を
除く下流側鋳型壁を複数の冷却水ガイド板で鋳片幅方向
に分割構成し、対を成す下流側鋳型壁を構成する前記夫
々の冷却ガイド板を互いに接離移動可能に構成した連続
鋳造用鋳型」を提案した。
Therefore, in the specification and drawings of Patent Application No. 36643 of 1999, the present applicant has proposed that the formation of a solidified shell can be improved and uniformed by preventing the mold cooling ability from decreasing due to the gap between the slab and the mold formed at the bottom of the mold. With the aim of preventing severe wear on the mold walls by improving lubrication and improving lubrication, there is In addition, the downstream mold wall excluding the most upstream mold wall is divided in the slab width direction by a plurality of cooling water guide plates to form a pair of downstream mold walls. We have proposed a continuous casting mold in which the respective cooling guide plates are movable toward and away from each other.

(発明が解決しようとする課H) 本出願人が平成1年特許願第36643号で提案した連
続鋳造用鋳型は上記した目的を達成できる優れた発明で
あるが、その明細書中に記載しているように、下流側鋳
型に高速水膜による強冷却の機能を持たせるためには冷
却水の平均流速を6m/sec以上に保つ必要がある。
(Problem H to be solved by the invention) The continuous casting mold proposed by the present applicant in Patent Application No. 36643 of 1999 is an excellent invention that can achieve the above-mentioned purpose. As shown in Figure 2, in order to provide the downstream mold with a strong cooling function using a high-speed water film, it is necessary to maintain the average flow velocity of the cooling water at 6 m/sec or more.

しかしこの場合には上流側鋳型方向への冷却水の吹き上
げが懸念される。
However, in this case, there is a concern that the cooling water may blow up toward the upstream mold.

そこで、本出願人が提案した前記発明においては、この
冷却水の吹き上げを防止するためには、下流側鋳型を構
成する冷却水ガイド板の最上段の列を排水口とすること
が望ましいことを開示している。
Therefore, in the invention proposed by the present applicant, in order to prevent this cooling water from blowing up, it is desirable to use the uppermost row of cooling water guide plates that constitute the downstream mold as a drain port. Disclosed.

しかし、その後の実験により、冷却水の平均流速が15
 m/sec程度までの場合は、冷却水ガイド板の最上
段の列を排水口としただけで冷却水の吹き上げを防止で
きるが、15 m/secを越えた場合には前記最上段
の列を排水口としただけでは冷却水の吹き上げを効果的
に防止できないということが判明した。これは冷却水の
運動方向と排水口の向きが異なるため、大きな運動量で
移動している水の方向転換が困難なためである。
However, subsequent experiments revealed that the average flow rate of cooling water was 15
m/sec, it is possible to prevent the cooling water from blowing up by simply using the top row of the cooling water guide plate as a drainage port, but if the speed exceeds 15 m/sec, the top row of the cooling water guide plate should be used as a drain port. It was found that simply using a drain port could not effectively prevent cooling water from blowing up. This is because the direction of movement of the cooling water and the direction of the drain port are different, making it difficult to change the direction of water that is moving with a large amount of momentum.

しかして、下流側鋳型部における凝固シェルに較べてそ
の厚さの薄い上流側鋳型部における凝固シェルは、その
強度も弱いため、下流側鋳型部より冷却水が吹き上がる
と、その吹き上がった冷却水によって冷却が不均一とな
り、鋳片の表面品質の悪化の一因となると考えられる。
However, the solidified shell in the upstream mold part is thinner than the solidified shell in the downstream mold part, and its strength is weaker, so when the cooling water blows up from the downstream mold part, the blown up cooling It is thought that the water causes non-uniform cooling and contributes to the deterioration of the surface quality of the slab.

本発明は上記した問題点に鑑みて成されたものであり、
下流側鋳型の冷却水が上流側鋳型に吹き上がるのを防止
することにより、鋳片の表面品質を損なわないようにで
きる連続鋳造用鋳型を提供することを目的としている。
The present invention has been made in view of the above problems, and
It is an object of the present invention to provide a continuous casting mold that can prevent the surface quality of slabs from being damaged by preventing cooling water from a downstream mold from blowing up into an upstream mold.

(課題を解決するための手段) 本発明は、上記目的を達成するために本発明者等が種々
実験、研究を行った結果に基づいて成されたものであり
、その要旨とするところは、矩形断面を有する連続鋳造
組立鋳型において、相対する2対の鋳型壁のうちの何れ
か一方もしくは両方の鋳型壁を鋳片鋳込方向に2段以上
に分割形成すると共に、最上流側鋳型壁を除く下流側鋳
型壁を複数の冷却水ガイド板で鋳片幅方向に分割構成し
、対を成す下流側鋳型壁を構成する前記夫々の冷却ガイ
ド板を互いに接離移動可能に構成すると共に、最上流側
鋳型と該鋳型に続く下流側鋳型間に高粘性の液体を圧入
供給する手段を設けたことである。
(Means for Solving the Problems) The present invention has been accomplished based on the results of various experiments and research conducted by the inventors in order to achieve the above object, and the gist thereof is as follows: In a continuous casting assembly mold having a rectangular cross section, one or both of the two opposing mold walls are divided into two or more stages in the slab casting direction, and the most upstream mold wall is The downstream mold wall excluding the downstream mold wall is divided in the slab width direction by a plurality of cooling water guide plates, and the respective cooling guide plates constituting the paired downstream mold wall are configured to be movable towards and away from each other. A means for press-feeding a highly viscous liquid between an upstream mold and a downstream mold following the mold is provided.

(作  用) 本発明は上記した構成を採用することにより、鋳片と鋳
型壁間の間隔を鋳片幅方向に均一となるように制御でき
ると共に、下流側鋳型より吹き上げてくる冷却水を高粘
性の液体によって完全に遮断することができる。
(Function) By adopting the configuration described above, the present invention can control the distance between the slab and the mold wall to be uniform in the width direction of the slab, and can also increase the cooling water blown up from the downstream mold. Can be completely blocked by viscous liquids.

(実 施 例) 以下本発明を第1図〜第3図に示す一実施例に基づいて
説明する。
(Example) The present invention will be described below based on an example shown in FIGS. 1 to 3.

第1図は本発明の一実施例を示したものであり、連続鋳
造用鋳型を上流側鋳型1と下流側鋳型2の二分割にした
場合の組込み構造を示す。
FIG. 1 shows an embodiment of the present invention, and shows an assembly structure in which a continuous casting mold is divided into two parts, an upstream mold 1 and a downstream mold 2.

ところで、上流側鋳型lLよ通常、テーパーを付与され
た鋳型壁、または相対する2対の平行鋳型壁を有する。
Incidentally, the upstream mold LL usually has a tapered mold wall or two pairs of opposing parallel mold walls.

一方、下流側鋳型2は例えば第1図に示す短冊状または
亀甲状に類する形状(図示せず)の複数の冷却水ガイド
板3より構成され、それぞれ例えばシリンダ4等の移動
装置にリンク8を介して連結され、対を成す鋳型壁面が
接離移動できるように成されている。また前記冷却水ガ
イド板3には給水口5列と排水口6列を交互に設け、第
2図に示すように当該給水部と排水部とに設けられた圧
力検知器7により圧力を検出し、この検出値に応じてシ
リンダ4により各冷却水ガイド板3を移動できるように
している。
On the other hand, the downstream mold 2 is composed of a plurality of cooling water guide plates 3 each having a rectangular shape or a hexagonal shape (not shown) shown in FIG. The mold walls are connected through the mold wall so that the mold wall surfaces forming a pair can move toward and away from each other. Further, the cooling water guide plate 3 is provided with five rows of water supply ports and six rows of drain ports alternately, and as shown in FIG. , each cooling water guide plate 3 can be moved by the cylinder 4 according to this detected value.

なお、上流側鋳型1方向への冷却水の吹き上げを防止す
るため、冷却水ガイド板3の最上段の列は排水口とした
方が望ましい。
In addition, in order to prevent the cooling water from blowing up in the direction of the upstream mold 1, it is preferable that the uppermost row of the cooling water guide plate 3 be used as a drain port.

また給水口5および排水口6の少なくともどちらか一方
をスリット状長孔とすることによって、鋳片10と冷却
水ガイド板3間に形成された水膜内の冷却水の均一な流
れを実現できる。なお第1図中9はスプリングを示す。
Furthermore, by forming at least one of the water supply port 5 and the drain port 6 into a slit-like elongated hole, a uniform flow of cooling water within the water film formed between the slab 10 and the cooling water guide plate 3 can be realized. . Note that 9 in FIG. 1 indicates a spring.

前記した上流側鋳型lと下流側鋳型2の境界部の間隙に
は高粘性の液体の噴出ノズル11が鋳型の長辺側及び短
辺側共同−レベル位置で配置され、高粘性の液体を貯留
しておくタンク12から配管13を介して所要の圧力で
高粘性の液体を供給されるように成されている。この圧
力は、前記噴出ノズル11の出口部で溶鋼静圧とバラン
スする大きさに調節して凝固シェルを支持する機能を持
たせることが望ましい。この圧力が溶鋼静圧より小さい
と、前記境界部の間隙部分で凝固シェルの支持ができな
(なるからである。
In the gap between the above-mentioned upstream mold 1 and downstream mold 2, a high-viscosity liquid jet nozzle 11 is placed at a common level position on the long and short sides of the mold, and stores the high-viscosity liquid. A highly viscous liquid is supplied from a tank 12 via a pipe 13 at a required pressure. It is desirable that this pressure be adjusted to a level that balances the static pressure of the molten steel at the outlet of the jet nozzle 11 so as to have the function of supporting the solidified shell. If this pressure is lower than the static pressure of molten steel, the solidified shell cannot be supported in the gap at the boundary.

前記噴出ノズル11の出口部は、第3図に示すように、
出口形状をスリット状とすると共に、該スリット孔部1
4に至るまでは複数の細孔15とすることによって高粘
性の液体を供給できるようにするのが望ましい。
As shown in FIG. 3, the outlet part of the jet nozzle 11 is
The outlet shape is a slit, and the slit hole 1
It is preferable to provide a plurality of pores 15 up to 4 so that a highly viscous liquid can be supplied.

スリット状とした場合には下流側鋳型から上流側鋳型に
吹き上がってくる冷却水を完全に遮断すべく高粘性の液
体が鋳片全体の周方向に均一に広がるからである。なお
スリット孔部14は第1図及び第2図に示すように下方
に傾斜を持たすように配置することが好ましい。
This is because when the slit shape is used, the highly viscous liquid spreads uniformly in the circumferential direction of the entire slab in order to completely block the cooling water blowing up from the downstream mold to the upstream mold. Note that it is preferable that the slit hole portion 14 be arranged so as to have a downward slope as shown in FIGS. 1 and 2.

高粘性の液体で冷却水の吹き上げを遮断できるのは、高
粘性の液体膜が障壁となって冷却水の上方向への運動エ
ネルギーを吸収し、かつ液体自身も高粘性であることに
より相当量の剪断力を与えなければ流動しないからであ
る。
High viscosity liquid can block cooling water from blowing up because the high viscosity liquid film acts as a barrier and absorbs the upward kinetic energy of the cooling water, and the liquid itself is also highly viscous. This is because it will not flow unless a shearing force of .

液体の粘度としては、鋳型と鋳片間の温度域において水
の粘度の100〜10000倍程度高いものが望ましい
。水の粘度の100倍未満の粘度であると、本発明者等
の実験によれば本発明の目的の一つを達成するための冷
却水の最低限の速度6m/secでも、その剪断力によ
って液体が流動し、遮断できなくなるからである。一方
、遮断の点からは粘度は高い方が良いが、10000倍
を超えると流動性が極めて低下し、鋳片と鋳型間に実際
に液体の供給が出来なくなるからである。
The viscosity of the liquid is preferably about 100 to 10,000 times higher than the viscosity of water in the temperature range between the mold and the slab. According to experiments conducted by the present inventors, if the viscosity is less than 100 times that of water, even at the minimum speed of 6 m/sec for cooling water to achieve one of the objects of the present invention, the shear force This is because the liquid will flow and cannot be shut off. On the other hand, from the viewpoint of shutoff, the higher the viscosity, the better; however, if the viscosity exceeds 10,000 times, the fluidity will be extremely reduced, making it impossible to actually supply liquid between the slab and the mold.

次に本発明の効果を確認するために行った実験の結果に
ついて説明する。
Next, the results of experiments conducted to confirm the effects of the present invention will be explained.

1ヒート50トンの低炭素アルミキルド鋼を2〜6 m
/sinなる鋳造速度で、第1図に示す2段式連続鋳造
鋳型を備えた連続鋳造機により、厚さ105扁、幅10
50■の鋳片を製造した。この際使用した上流側鋳型の
長さは350■(メニスカスより下側の長さ250■)
であり、下流側鋳型には第1図に示す短冊状冷却水ガイ
ド板(幅:100m、長さ2550m)を22個取り付
けた((鋳型広面側10個、鋳型挟置側1個)×2)。
2 to 6 m of low carbon aluminum killed steel weighing 50 tons per heat
A continuous casting machine equipped with a two-stage continuous casting mold shown in FIG.
A slab of 50 cm was produced. The length of the upstream mold used at this time was 350cm (the length below the meniscus was 250cm).
22 rectangular cooling water guide plates (width: 100 m, length 2550 m) shown in Fig. 1 were attached to the downstream mold ((10 on the mold wide side, 1 on the mold sandwiching side) x 2. ).

冷却水ガイド板の給水口、排水口の詳細は次のとおりで
ある。
Details of the water inlet and drain outlet of the cooling water guide plate are as follows.

給水口:高さ1.5gX幅12!I11排水口:高さ2
.2閣×幅12II111給水口及び排水口の相互間隔
:それぞれ2aa給水口と排水口の横方向ピッチ: 1
4mm+給水口列と排水口列との間隔:50舗 鋳造中、下流側鋳型の冷却水の流速を6〜40m/se
cの範囲で変化させて鋳造した。
Water inlet: Height 1.5g x Width 12! I11 drain: height 2
.. 2 cabinets x width 12II 111 Interval between water inlets and drains: 2aa each Horizontal pitch of water inlets and drains: 1
4mm + Distance between water supply port row and drain port row: During 50 castings, the flow rate of cooling water in the downstream mold was set at 6 to 40 m/sec.
Casting was performed by changing the temperature within the range of c.

そして、本発明装置の噴出ノズルとして、スリット孔部
を10mの幅で深さ5閤、細孔を直径がφ3mのものを
横方向に14mピッチで等間隔に配したものを用いた。
As the ejection nozzle of the apparatus of the present invention, a slit hole portion having a width of 10 m and a depth of 5 mm, and pores having a diameter of 3 m were arranged at equal intervals of 14 m in the horizontal direction.

また、高粘性の液体としては、市販のシリコンオイルで
粘度が200cpのものと3000cpのものを2種類
使用した。
Further, as the highly viscous liquid, two types of commercially available silicone oils with a viscosity of 200 cp and 3000 cp were used.

更に比較として、噴出ノズルを使用しない2段式連続鋳
造用鋳型(形状、サイズ、仕様は共に同じ)のみで、同
一鋳造速度で実験を行い、冷却水の吹き上げ状態を比較
した。
Furthermore, for comparison, an experiment was conducted using only a two-stage continuous casting mold (same shape, size, and specifications) that does not use a jet nozzle at the same casting speed, and the blow-up state of cooling water was compared.

その結果、鋳造速度の上昇とともに、下流側鋳型からの
冷却水の速度も6 m/secより徐々に増して行くが
、冷却水の速度の増加により、比較法の鋳型では、上流
側鋳型への冷却水の吹き上げが激しくなって行き、冷却
水速度が15 m/secで、上流側鋳型への冷却水の
侵入が観察された。
As a result, as the casting speed increases, the speed of cooling water from the downstream mold gradually increases from 6 m/sec. The blowing up of the cooling water became more intense, and at a cooling water speed of 15 m/sec, it was observed that the cooling water entered the upstream mold.

一方、本発明例の場合、高粘性の液体として200cp
のシリコンオイルを使用した場合は、冷却水の速度が2
5 m /secまでは上流側鋳型への吹き出しは、見
られなかったが、25m/sec以上になるシリコンオ
イルの液膜が冷却水によって破断され、冷却水とシリコ
ンオイルの混合体となって上流側鋳型に吹き出し始めた
。さらに高粘性液体として、3000cpのシリコンオ
イルを使用した場合は、最大流速の40 m /sec
まで、冷却水の吹き上げは全く観察されず、完全に遮断
された。
On the other hand, in the case of the present invention, 200 cp as a highly viscous liquid
When using silicone oil, the cooling water speed is 2.
No blow-out to the upstream mold was observed up to 5 m/sec, but at 25 m/sec or more, the liquid film of silicone oil was broken by the cooling water and turned into a mixture of cooling water and silicone oil, which flowed upstream. It started to blow out into the side mold. Furthermore, when using 3000 cp silicone oil as a highly viscous liquid, the maximum flow rate is 40 m/sec.
Until then, no cooling water was observed blowing up, and it was completely shut off.

以上の様に、高粘性の液体を適切に選択する事により、
下流側鋳型からの冷却水の吹き上げを効果的に遮断でき
る。
As mentioned above, by appropriately selecting a high viscosity liquid,
It is possible to effectively block cooling water from blowing up from the downstream mold.

また、本発明では鋳造速度が高速になっても凝固シェル
厚さが確保され、下流側鋳型壁の摩耗、摩擦力の上昇も
なく鋳片の表面品質も良好であった。
Furthermore, in the present invention, even when the casting speed was increased, the solidified shell thickness was maintained, and the surface quality of the slab was also good without wear on the downstream mold wall or increase in frictional force.

(発明の効果) 以上説明したように本発明によれば、鋳型広面側端部お
よび挟置側下部に形成される空隙による鋳型冷却能低下
を防止し、凝固シェル形成を増進・均一化し、さらに潤
滑の改善により鋳型壁の甚だしい摩耗防止が図られると
共に、下流側鋳型からの冷却水が上流側鋳型へ吹き上が
るのが防止され、安定して表面品質の良い鋳片が製造で
きる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to prevent the mold cooling ability from decreasing due to the voids formed at the end of the wide side of the mold and the lower part of the clamping side, to improve and make the solidified shell formation uniform, and to Improved lubrication prevents severe wear on the mold walls, and also prevents cooling water from the downstream mold from blowing up into the upstream mold, allowing slabs with good surface quality to be produced stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋳型の一実施例を示す図面、第2図は冷
却水ガイド板部分を断面して示す側面図、第3図は噴出
ノズルの説明図である。 1は上流側鋳型、2は下流側鋳型、3は冷却水ガイド板
、4はシリンダ、5は給水口、6は排水口、7は圧力検
知器、8はリン°り、11は噴出ノズル。
FIG. 1 is a drawing showing an embodiment of the mold of the present invention, FIG. 2 is a side view showing a section of a cooling water guide plate portion, and FIG. 3 is an explanatory view of a jet nozzle. 1 is an upstream mold, 2 is a downstream mold, 3 is a cooling water guide plate, 4 is a cylinder, 5 is a water supply port, 6 is a drain port, 7 is a pressure sensor, 8 is a ring, and 11 is a jet nozzle.

Claims (1)

【特許請求の範囲】[Claims] (1)矩形断面を有する連続鋳造組立鋳型において、相
対する2対の鋳型壁のうちの何れか一方もしくは両方の
鋳型壁を鋳片鋳込方向に2段以上に分割形成すると共に
、最上流側鋳型壁を除く下流側鋳型壁を複数の冷却水ガ
イド板で鋳片幅方向に分割構成し、対を成す下流側鋳型
壁を構成する前記夫々の冷却ガイド板を互いに接離移動
可能に構成すると共に、最上流側鋳型と該鋳型に続く下
流側鋳型間に高粘性の液体を圧入供給する手段を設けた
ことを特徴とする連続鋳造用鋳型。
(1) In a continuous casting assembly mold having a rectangular cross section, one or both of the two opposing mold walls are divided into two or more stages in the slab casting direction, and the most upstream side The downstream mold wall other than the mold wall is divided in the slab width direction by a plurality of cooling water guide plates, and the cooling guide plates forming the pair of downstream mold walls are configured to be movable toward and away from each other. A continuous casting mold, further comprising means for press-feeding a highly viscous liquid between the most upstream mold and the downstream mold following the mold.
JP12355389A 1989-05-17 1989-05-17 Mold for continuous casting Pending JPH02303657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12355389A JPH02303657A (en) 1989-05-17 1989-05-17 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12355389A JPH02303657A (en) 1989-05-17 1989-05-17 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH02303657A true JPH02303657A (en) 1990-12-17

Family

ID=14863451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12355389A Pending JPH02303657A (en) 1989-05-17 1989-05-17 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH02303657A (en)

Similar Documents

Publication Publication Date Title
RU2163179C2 (en) Ladle nozzle for introduction of molten metal into mold of metal continuous casting plant
US6220335B1 (en) Casting metal strip
AU721266B2 (en) Strip casting apparatus
RU2240892C2 (en) Liquid-cooled mold
EP2106311A1 (en) Delivery nozzle with more uniform flow and method of continuous casting by use thereof
US6012508A (en) Strip casting
EP1140392B1 (en) High speed continuous casting device and relative method
CN111054896A (en) Water-cooling dummy bar head device for casting
JPH02303657A (en) Mold for continuous casting
CN106180603A (en) Magnesium alloy slab casting crystallizer
JPH0819842A (en) Method and device for continuous casting
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JP6668568B2 (en) Tundish for continuous casting and continuous casting method using the tundish
CN1209212C (en) Blank drawing technology for crystallizer of conticaster and special crystallizer structure
JPH03291148A (en) Dummy bar for drawing billet and continuous casting method
KR100805043B1 (en) Submerged nozzle for continuous casting
AU731277B2 (en) Strip casting
JP2808633B2 (en) Continuous casting mold and control method thereof
JPH11291000A (en) Continuous casting, particularly, steel continuous casting equipment
KR100533126B1 (en) Metal strip casting method and apparatus
KR100470661B1 (en) A Device For Supplying Molten Steel Uniformly And A Continuous Caster
JP4549112B2 (en) Continuous casting method
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPH08206786A (en) Mold for continuous casting
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus