JPH02303141A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02303141A
JPH02303141A JP12510289A JP12510289A JPH02303141A JP H02303141 A JPH02303141 A JP H02303141A JP 12510289 A JP12510289 A JP 12510289A JP 12510289 A JP12510289 A JP 12510289A JP H02303141 A JPH02303141 A JP H02303141A
Authority
JP
Japan
Prior art keywords
side substrate
substrate
support
reduced
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12510289A
Other languages
Japanese (ja)
Other versions
JP2775848B2 (en
Inventor
Yoshihiro Arimoto
由弘 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1125102A priority Critical patent/JP2775848B2/en
Publication of JPH02303141A publication Critical patent/JPH02303141A/en
Application granted granted Critical
Publication of JP2775848B2 publication Critical patent/JP2775848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To enhance an electric conductivity, a thermal conductivity and a mechanical strength of a support-side substrate by a method wherein a metal is diffused to the support-side substrate and the support-side substrate is alloyed. CONSTITUTION:An LSI is formed, by using an ordinary process, on an element- side substrate 3 of an SOI-structure substrate composed of the following: a support-side substrate 1 formed by pasting two 6-inch Si wafers where an SiO2 film as an insulating layer 2 has been formed on the surface; the insulating layer 2; and the element-side substrate 3. Copper is vapor-deposited in a thick ness of about 2mum on a support-side substrate 1a whose thickness has been reduced; a metal layer 4 is formed. A heat treatment is executed at 400 deg.C for 10 hr. The copper is diffused to the support-side substrate 1a whose thickness has been reduced; it is alloyed with Si of the support-side substrate 1a; the support-side substrate 1a whose thickness has been reduced becomes an alloy layer 5 of Si and Cu. The alloy layer 5 is lapped down to a thickness of about 0.1mm; an alloy layer 5a whose thickness has been reduced is formed. During this lapping operation, a mechanical strength of the support-side substrate has been enhanced by forming the alloy layer 5; as a result, this substrate is not destroyed.

Description

【発明の詳細な説明】 〔(既要〕 半導体装置の製造方法に係り、特にSol構造基板に形
成する半導体装置の製造方法に関し。
DETAILED DESCRIPTION OF THE INVENTION [(Already required)] The present invention relates to a method of manufacturing a semiconductor device, particularly a method of manufacturing a semiconductor device formed on a Sol structure substrate.

各素子の電位の浮遊を抑制し且つ温度上昇を防止するこ
とを目的とし。
The purpose is to suppress floating potential of each element and prevent temperature rise.

支持側基板、絶縁層、素子の形成された素子側基板から
なるSol構造基板の該支持側基板に。
To the supporting side substrate of a Sol structure substrate consisting of a supporting side substrate, an insulating layer, and an element side substrate on which elements are formed.

金属を拡散させて該支持側基板を合金化する半導体装置
の製造方法により構成する。
It is constructed by a method of manufacturing a semiconductor device in which the supporting substrate is alloyed by diffusing metal.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、特にSol構造
基板に形成する半導体装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device formed on a Sol structure substrate.

高速、高密度、耐放射線LSI用基板として。As a high-speed, high-density, radiation-resistant LSI substrate.

Si層/酸化膜/ S i構造のSOr措造築造基板用
である。
This is for a built-in substrate with a Si layer/oxide film/Si structure.

近年、システムの巨大化、高速化に伴い。In recent years, systems have become larger and faster.

LSIの集積度、動作速度の向上が要求されている。こ
の要求を満たすため、チップの消費電力が著しく増大し
、素子の発熱による温度上昇をいかにして抑制するかが
、集積度、動作速度の向上にとって大きな問題となって
いる。
There is a demand for improvements in the degree of integration and operating speed of LSIs. In order to meet this requirement, the power consumption of the chip increases significantly, and how to suppress the temperature rise due to heat generation of the elements has become a major problem for improving the degree of integration and operating speed.

[従来の技術] 従来、LSI基板ではパッケージの外部に冷却機構を付
加することによって素子の発熱による温度上昇を防止し
ている。しかし、素子を形成するSi層と支持側基板の
間に酸化膜のあるSol構造基板では、酸化膜の熱伝導
率が小さいので1通常のバルク基板より素子の温度が上
昇しやすく、全体としての熱伝達の効率を向上させるた
めに、素子を形成したあと支持側基板をできるだけ薄く
シて金属のパッケージにダイボンディングすることが行
われる。
[Prior Art] Conventionally, in an LSI board, a cooling mechanism is added to the outside of the package to prevent temperature rise due to heat generation of the elements. However, in a Sol structure substrate with an oxide film between the Si layer that forms the element and the support side substrate, the thermal conductivity of the oxide film is low, so the temperature of the element increases more easily than a normal bulk substrate, and the overall In order to improve the efficiency of heat transfer, after forming the device, the supporting substrate is made as thin as possible and die-bonded to the metal package.

素子の温度上昇を防ぐためには、支持側基板の厚さは薄
いほど良いが、 Siの機械的強度があまり太き(ない
ため、ラップ加工では200μm程度が限界である。
In order to prevent a rise in the temperature of the element, the thinner the supporting substrate is, the better; however, since the mechanical strength of Si is not very thick, the limit for lapping is about 200 μm.

さらに薄くして熱抵抗を下げるためには、支持側基板の
機械的強度を高めることが必要である。
In order to further reduce the thickness and lower the thermal resistance, it is necessary to increase the mechanical strength of the supporting substrate.

さらに、支持側基板の熱伝導率を上げることも有効であ
る。
Furthermore, it is also effective to increase the thermal conductivity of the supporting substrate.

また、Sol構造では、各素子が絶縁層で支持基板と完
全に分離されるため、各素子が電気的に浮遊状態になる
。このため、外部若しくは内部ノイズによって各素子が
誤動作することがある。これを防止するためには、支持
側基板の電気伝導性を高め、支持側基板との容量性結合
により各素子の電位を固定する必要がある。
Furthermore, in the Sol structure, each element is completely separated from the support substrate by an insulating layer, so each element is in an electrically floating state. Therefore, each element may malfunction due to external or internal noise. In order to prevent this, it is necessary to increase the electrical conductivity of the supporting substrate and fix the potential of each element through capacitive coupling with the supporting substrate.

ところが、支持側基板の機械的強度、熱伝導率。However, the mechanical strength and thermal conductivity of the supporting substrate.

電気伝導率については、はとんど検討されていない。Electrical conductivity has hardly been studied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って1以上述べた問題点を踏まえてSOI構造の特徴
を発揮して高性能のLSIを実現するためには、支持側
基板に大きな電気伝導率、大きな熱伝導率、大きな機械
的強度を実現することが要求される。
Therefore, in order to take advantage of the features of the SOI structure and realize a high-performance LSI based on the problems mentioned above, it is necessary to realize high electrical conductivity, high thermal conductivity, and high mechanical strength for the supporting substrate. This is required.

本発明は、これらの問題点に応えるSol構造を有する
半導体装置の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor device having a Sol structure that addresses these problems.

〔課題を解決するための手段] 上記課題は、支持側基板1.絶縁層2.素子の形成され
た素子側基板3からなるSO■構造基板の該支持側基板
1に、金属を拡散させて該支持側基板1を合金化する半
導体装置の製造方法によって解決される。
[Means for solving the problem] The above problem is solved by the support side substrate 1. Insulating layer 2. The problem is solved by a method of manufacturing a semiconductor device in which metal is diffused into the supporting substrate 1 of an SO2 structure substrate consisting of an element-side substrate 3 on which an element is formed, and the supporting substrate 1 is alloyed.

〔作用] 本発明では、支持側基板lに金属を拡散することによっ
て支持側基板1を合金化し、支持側基板1の電気伝導率
、熱伝導率2機械的強度を向上させている。
[Function] In the present invention, the supporting substrate 1 is alloyed by diffusing metal into the supporting substrate 1, thereby improving the electrical conductivity, thermal conductivity 2, and mechanical strength of the supporting substrate 1.

機械的強度を向上させることにより、支持側基板lを薄
層化することができる。このことは熱伝導率の向上と相
まって素子から発生する熱を除去する作用を効果的にす
る。
By improving the mechanical strength, the supporting substrate l can be made thinner. This, combined with the improvement in thermal conductivity, makes the effect of removing heat generated from the element more effective.

電気伝導率の向上は素子が電気的に浮遊状態になること
を抑制する作用を持つ。
Improving electrical conductivity has the effect of suppressing the element from becoming electrically floating.

さらに、支持側基板1に金属を拡散する工程は素子側基
板3に素子を形成した後に行っているので、素子側基板
3がその金属に汚染される心配がない。もし、素子形成
前に支持側基板1に金属を拡散する工程を行うと、素子
形成のプロセスで素子側基板3がその金属に汚染される
おそれがある。
Further, since the step of diffusing metal into the support side substrate 1 is performed after forming the elements on the element side substrate 3, there is no fear that the element side substrate 3 will be contaminated with the metal. If a step of diffusing metal into the support-side substrate 1 is performed before element formation, there is a risk that the element-side substrate 3 will be contaminated with the metal during the element formation process.

〔実施例〕〔Example〕

第1図(a)乃至(e)は本発明の詳細な説明するため
の図であり11は支持側基板、laは厚さを滅じた支持
側基板、2は絶縁層、3は素子の形成された素子側基板
、4は金属層、5は合金層、5aは厚さを滅じた合金層
を表す。
1(a) to (e) are diagrams for explaining the present invention in detail, 11 is a support side substrate, la is a support side substrate with reduced thickness, 2 is an insulating layer, and 3 is an element. In the formed element side substrate, 4 is a metal layer, 5 is an alloy layer, and 5a is an alloy layer with reduced thickness.

以下、第1図(a)乃至(e)を参照しながら実施例に
ついて説明する。
Examples will be described below with reference to FIGS. 1(a) to 1(e).

第1図(a)参照 表面に絶縁層2としてSiO□膜の形成された2枚の6
インチSiウェハを張り合わせた支持側基板1゜絶縁層
2.素子側基板3からなるSOI構造基板の素子側基板
3に9通常のプロセスでLSIを形成する。
FIG. 1(a) Two 6 sheets with a SiO□ film formed as an insulating layer 2 on the reference surface.
Support side substrate 1° insulating layer 2. inch Si wafer pasted together. 9. An LSI is formed on the element side substrate 3 of the SOI structure substrate consisting of the element side substrate 3 by a normal process.

各部の厚さは次の如(である。The thickness of each part is as follows.

1、支持側基板(Si)    0.6  mm2、絶
縁層(SiOz)     1  //m3、素子側基
板(Si)    0.6  mm第1図(b)参照 支持側基板lを、厚さが0.3mm程度になるまでラッ
プする。1aは0.3mm程度に厚さを滅じた支持側基
板を表す。
1. Supporting side substrate (Si) 0.6 mm2, Insulating layer (SiOz) 1 // m3, Element side substrate (Si) 0.6 mm See Figure 1(b) Supporting side substrate l, thickness 0 .Wrap until it is about 3mm thick. 1a represents a support side substrate whose thickness has decreased to about 0.3 mm.

第1図(c)参照 厚さを減じた支持側基板la上に銅(Cu)を約2μm
の厚さに蒸着し、金属層4を作る。
Figure 1 (c) Copper (Cu) is deposited to a thickness of approximately 2 μm on the support side substrate la with the reference thickness reduced.
The metal layer 4 is formed by vapor deposition to a thickness of .

第1図(d)参照 400 ’C,10時間の熱処理を行う。銅(Cu)は
厚さを滅した支持側基板1aに拡散して支持側基板1a
のSiと合金化し、厚さを滅じた支持側基板1aはSi
とCuの合金層5となる。
Refer to FIG. 1(d), heat treatment is performed at 400'C for 10 hours. Copper (Cu) is diffused into the support side substrate 1a whose thickness has been reduced and becomes the support side substrate 1a.
The support side substrate 1a is alloyed with Si and its thickness is reduced.
and Cu form an alloy layer 5.

第1図(e)参照 合金層5を厚さが0.1mm程度になるまでラッピング
することにより、厚さを減じた合金層5aを形成する。
By lapping the reference alloy layer 5 in FIG. 1(e) until the thickness becomes about 0.1 mm, an alloy layer 5a with a reduced thickness is formed.

このラッピングの際1合金層5の形成により支持側基板
の機械的強度が上がっているので、破壊することはない
During this lapping, the mechanical strength of the supporting substrate is increased due to the formation of the first alloy layer 5, so that it will not break.

その後、チップに切断し、パッケージにグイポンディグ
する。
Then, cut into chips and dig into packages.

このようにして、熱伝導率、電気伝導率がともに高い支
持側基板を持つSOI構造の半導体装置が実現する。
In this way, a semiconductor device with an SOI structure having a supporting substrate with high thermal conductivity and high electrical conductivity is realized.

なお、厚さを減じた支持側基板1a上に蒸着する金属と
して、銅(Cu)の他に金(Au)、  バリウム(B
a)等450“C以下の温度でシリコン(Si)と合金
化する金属を用いることができる。合金化のための熱処
理温度が450°Cを超えると、配線のA1がsiと反
応して断線したり、pn接合を破壊したりするので望ま
しくない。
In addition to copper (Cu), gold (Au) and barium (B
a) Metals that alloy with silicon (Si) at temperatures below 450°C can be used. If the heat treatment temperature for alloying exceeds 450°C, A1 of the wiring will react with Si and break. This is undesirable because it may damage the pn junction.

また、厚さを滅じた支持側基板1a上に泪を茎着すると
き、その支持側基板1aを450“C以下に加熱し、蒸
着と合金化を同時に行ってもよい。
Further, when depositing the resin on the supporting substrate 1a whose thickness has been reduced, the supporting substrate 1a may be heated to 450"C or less, and vapor deposition and alloying may be performed simultaneously.

(発明の効果〕 以上説明した様に1本発明によれば7支持側基板の機械
的強度を増大して支持側基板のラッピングによる薄層化
を可能にし、さらに支持側基板の熱伝導率を増大して素
子から発生する熱の流れに対する熱抵抗を低減し、素子
の温度上昇を防ぐことができる。
(Effects of the Invention) As explained above, according to the present invention, the mechanical strength of the supporting substrate 7 can be increased, the supporting substrate can be thinned by wrapping, and the thermal conductivity of the supporting substrate can be increased. It is possible to reduce the thermal resistance to the increased flow of heat generated from the element and prevent the temperature of the element from rising.

また、支持側基板の電気伝導率の向上により。Also, due to improved electrical conductivity of the supporting substrate.

各素子の電位の浮遊を抑制することができ、ノイズによ
る素子の誤動作を防ぐことができる。
It is possible to suppress floating potential of each element, and prevent element malfunction due to noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例 である。図において。 1は支持側基板であってシリコン基板。 1aは厚さを減じた支持側基板。 2は絶縁層であって5iOz膜。 3は素子の形成された素子側基板であってシリコン基板
。 4は金属層であってCuN。 5は合金層。 5aは厚さを減じた合金層 (e) 曳 施 例 第 1 図
FIG. 1 shows an example. In fig. 1 is a support side substrate, which is a silicon substrate. 1a is a support side substrate with reduced thickness. 2 is an insulating layer, which is a 5iOz film. 3 is an element side substrate on which elements are formed, which is a silicon substrate. 4 is a metal layer made of CuN. 5 is an alloy layer. 5a is an alloy layer with reduced thickness (e) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 支持側基板(1)、絶縁層(2)、素子の形成された素
子側基板(3)からなるSOI構造基板の該支持側基板
(1)に、金属を拡散させて該支持側基板(1)を合金
化することを特徴とする半導体装置の製造方法。
A metal is diffused into the support side substrate (1) of the SOI structure substrate consisting of a support side substrate (1), an insulating layer (2), and an element side substrate (3) on which an element is formed. ) is alloyed.
JP1125102A 1989-05-18 1989-05-18 Method for manufacturing semiconductor device Expired - Lifetime JP2775848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125102A JP2775848B2 (en) 1989-05-18 1989-05-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125102A JP2775848B2 (en) 1989-05-18 1989-05-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02303141A true JPH02303141A (en) 1990-12-17
JP2775848B2 JP2775848B2 (en) 1998-07-16

Family

ID=14901901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125102A Expired - Lifetime JP2775848B2 (en) 1989-05-18 1989-05-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2775848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514321A (en) * 2003-12-10 2007-05-31 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Low crosstalk circuit board for mixed signal integrated circuits
US7541644B2 (en) 2003-05-23 2009-06-02 Renesas Technology Corp. Semiconductor device with effective heat-radiation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186036A (en) * 1984-03-05 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor substrate and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186036A (en) * 1984-03-05 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor substrate and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541644B2 (en) 2003-05-23 2009-06-02 Renesas Technology Corp. Semiconductor device with effective heat-radiation
JP2007514321A (en) * 2003-12-10 2007-05-31 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Low crosstalk circuit board for mixed signal integrated circuits

Also Published As

Publication number Publication date
JP2775848B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
TWI337374B (en) Semiconductor structure, semiconductor wafer and method for fabricating the same
CN102208438B (en) Virtually substrate-less composite power semiconductor device and method
JPH1064901A (en) Semiconductor chip package element
CN101188216B (en) Semiconductor device
JPS62154778A (en) Monolithic integrated circuit and manufacture of the same
JPH05503812A (en) Semiconductor device and its manufacturing method
JP4095123B2 (en) Bonding pad and manufacturing method of semiconductor device
JPH02303141A (en) Manufacture of semiconductor device
JPH07142570A (en) Composite semiconductor substrate and manufacture thereof
JPH04370958A (en) Semiconductor substrate, semiconductor integrated circuit device using same and manufacture of semiconductor substrate
US3840982A (en) Contacts for semiconductor devices, particularly integrated circuits, and methods of making the same
JPS60224253A (en) Semiconductor device and manufacture thereof
JPS62193263A (en) Resin-sealed semiconductor device
KR20010102317A (en) Pad metallization over active circuitry
JPH05152476A (en) Semiconductor integrated circuit device, its production and electronic computer
KR100235181B1 (en) Method for packaging in use insulation by porous oxidized silicon
JP2001298169A (en) Semiconductor device and producing method therefor
JPH04199632A (en) Soi wafer and manufacture thereof
JP3249162B2 (en) Multi-chip module
JPH0521763A (en) Semiconductor substrate, device and its manufacturing method
JPH04731A (en) Semiconductor device and manufacture thereof
JPH01228154A (en) Semiconductor device
JPH0778910A (en) Semiconductor device
JP3688335B2 (en) Semiconductor integrated circuit device, manufacturing method thereof, and semiconductor wafer
JPS5917860B2 (en) Manufacturing method of semiconductor device