JPH02302687A - Seismometer and apparatus using the same - Google Patents

Seismometer and apparatus using the same

Info

Publication number
JPH02302687A
JPH02302687A JP1125343A JP12534389A JPH02302687A JP H02302687 A JPH02302687 A JP H02302687A JP 1125343 A JP1125343 A JP 1125343A JP 12534389 A JP12534389 A JP 12534389A JP H02302687 A JPH02302687 A JP H02302687A
Authority
JP
Japan
Prior art keywords
seismic intensity
circuit
effective value
period
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1125343A
Other languages
Japanese (ja)
Other versions
JPH07113671B2 (en
Inventor
Kiyoshi Kato
加藤 澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1125343A priority Critical patent/JPH07113671B2/en
Publication of JPH02302687A publication Critical patent/JPH02302687A/en
Publication of JPH07113671B2 publication Critical patent/JPH07113671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To continuously measure a mean zero cross cycle by simple circuit constitution by operating the effective value of an input acceleration speed signal and that of the time differentiation signal of input acceleration. CONSTITUTION:The output of an accelerometer 1 is amplified by an amplifier 2 and converted to acceleration synthetic amplitude A by a vector synthesizing circuit 3 to be inputted to a seismic intensity operation circuit 4 and a control circuit 11. One component of the output is inputted to an effective value operation circuit 6a and a differentiation circuit 5 and the output of the circuit 5 is inputted to an effective value operation circuit 6b and the effective values X of an acceleration signal respectively being the outputs of the effective value operation circuits 6a, 6b and the effective value vector of a differentiation signal are operated according to a specific formula by an operator 7 to obtain a mean zero cross cycle T0 which is, in turn, operated along with the synthetic amplitude A in the circuit 4 to calculate seismic intensity. Subsequently, a max. value detection circuit 8 is controlled by a circuit 11 judging the occurrence and termination of an earthquake to renew and record the max. seismic intensity IMAX according to the elapse of time at each time when an earthquake occurs and cleared after the termination of the earthquake. The max. seismic intensity IMAX is displayed on a display part 9 as data and the alarm corresponding to a seismic intensity value is emitted from an alarm 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は震度計に関し、特に震動の加速度値を震動周期
で補正し震度換算する方式の震度計に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a seismic intensity meter, and more particularly to a seismic intensity meter that corrects the acceleration value of vibration using the vibration period and converts it into a seismic intensity.

〔従来技術〕[Prior art]

従来この種の分野の技術としては、「震度観測検討委員
会報告書震度観測検討委員会、(昭和62年2月)に開
示されたものがあった。
Conventional technology in this type of field was disclosed in the ``Report of the Seismic Intensity Observation Study Committee, Seismic Intensity Observation Study Committee'' (February 1986).

上記文献に開示されたものは、体感や被害状況判断で定
義されている「震度」を計測可能な震度加速度値と震動
周期値の2量で定義することによって震度計への方向付
けを示すものである。
What is disclosed in the above-mentioned document shows the orientation to seismic intensity meters by defining "seismic intensity", which is defined by bodily sensation and judgment of damage situation, as two measurable quantities: seismic intensity acceleration value and seismic period value. It is.

従来、物理量による震度換算は、震動加速度のみによっ
て行なうものが一般的であったが、換算された震度と、
上記体感に°よる本来の震度と相違する場合が多かった
。上記文献においては、この相違を少なくするため、震
動周期を取り入れ加速度による換算値を補正する方式を
示したものである。
Conventionally, seismic intensity conversion using physical quantities was generally performed using only seismic acceleration, but the converted seismic intensity and
In many cases, the seismic intensity was different from the actual seismic intensity based on the experience described above. In order to reduce this difference, the above-mentioned document shows a method of correcting the conversion value based on acceleration by incorporating the vibration period.

この周期補正方式による震度計の実現上問題になるのは
周期の測定方法である。
The problem in realizing a seismic intensity meter using this period correction method is the method of measuring the period.

地震動波形は不規則振動波形てあり、従来その周期の測
定技術として、ゼロクロス法、FFTによるスペクトル
分析法などがある。
The seismic motion waveform is an irregular vibration waveform, and conventional techniques for measuring its period include the zero-cross method and the spectrum analysis method using FFT.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ゼロクロス法は、加速度即ち力の方向の反転を検出する
という点で体感の周期に近いものであるが、技術的には
雑音による測定誤差を伴う他、−周期毎にしか測定値を
得られない欠点がある。
The zero-crossing method is similar to the periodic experience in that it detects acceleration, that is, the reversal of the direction of force, but technically it involves measurement errors due to noise, and it can only obtain measured values every -period. There are drawbacks.

FFT法は成る時間幅内のスペクトル分析により、その
時間幅内の卓越周期を算出するものであるが、連続的測
定には不向きであり、装置も複雑となる。
Although the FFT method calculates the dominant period within a time width by analyzing the spectrum within that time width, it is not suitable for continuous measurement and requires a complicated device.

また、周期を連続的に測定する従来技術として、多数の
帯域フィルタを用い周波数要素を分解し、そ振幅比較に
より卓越周期を求める方法があるが、測定精度を上げる
ためには、帯域フィルタの数も多くなり現実的でない。
In addition, as a conventional technique for continuously measuring the period, there is a method of decomposing frequency elements using a large number of bandpass filters and finding the dominant period by comparing their amplitudes. There are too many, which is not realistic.

また、震度計の用途としては、本来の震度測定の他に地
震防災システムの中での地震検知センサとして用途があ
る。震度の測定値は、地震終了後に得られる形式でもよ
いが、地震防災用として他設備の制御や安全管理に用い
るためには、時間変化に対する即応性が求められ、装置
としても極力簡潔な構成であることが要求さされる。し
かしながら、上記従来の周期測定技術を用いて、同期補
正方式の震度計を実現するためには種々の難点がある。
Furthermore, seismic intensity meters are used not only for measuring seismic intensity, but also as earthquake detection sensors in earthquake disaster prevention systems. Measured values of seismic intensity may be obtained in a format obtained after the earthquake has ended, but in order to be used for earthquake disaster prevention, control of other equipment, and safety management, quick response to time changes is required, and the device must be configured as simply as possible. Something is required. However, there are various difficulties in realizing a synchronous correction type seismic intensity meter using the above-mentioned conventional period measurement technology.

本発明は上述の点に鑑みてなきれたもので、上記周期測
定上の問題点を除去するために、簡単な回路構成で平均
ゼロクロス周期を測定する手段を用いて周期補正した震
度を連続的に測定できる震度計を提供することを目的と
する。
The present invention has been developed in view of the above-mentioned problems, and in order to eliminate the above-mentioned problems in period measurement, the present invention uses a means for measuring the average zero-crossing period with a simple circuit configuration to continuously measure period-corrected seismic intensities. The purpose is to provide a seismic intensity meter that can measure seismic intensity.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため未発明は、加速度値と周期値か
ら震度を計測する周期補正方式の震度計において、入力
加速度の実効値を計測する手段と、該入力加速度の時間
微分信号の実効値を計測、する手段と、これに2つの実
効値を演算して平均ゼロクロス周期を算出する手段を設
けたことを特徴とする。
In order to solve the above problems, the present invention provides a seismic intensity meter using a periodic correction method that measures seismic intensity from an acceleration value and a periodic value. The present invention is characterized in that it is provided with means for measuring and means for calculating an average zero-cross period by calculating two effective values.

〔作用〕[Effect]

上記の如く周期補正方式の震度計を構成することにより
、入力加速度信号の実効値と入力加速度の時間微分信号
の実効値とを演算して平均ゼロクロス周期を算出するの
で、ゼロクロス周期を平均ゼロクロス周期の形で連続測
定することが可能となる。
By configuring the seismic intensity meter using the period correction method as described above, the average zero-crossing period is calculated by calculating the effective value of the input acceleration signal and the effective value of the time-differentiated signal of the input acceleration. It becomes possible to perform continuous measurements in the form of

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る震度計の構成を示すブロック図で
あって、水平直交2成分の地震動加速度のベクトル合成
値と平均ゼロクロス周期による周期補正方式震度計の構
成を示すものである。加速度計1は東西(N−8)及び
南北(E−W)方向に配置された2台の加速度計1−1
.1−2で構成され、各々の出力は増幅器2によって所
定のレベルに増幅された後、ベクトル合成回路3によっ
て合成振幅Aとなって震度演算回路4と制御回路11に
与えられる。制御回路11は入力レベルを常時蜜視して
、地震の発生、終了を判定するものであり、最大値検出
回路8の動作制御を行なう。
FIG. 1 is a block diagram showing the configuration of a seismic intensity meter according to the present invention, and shows the configuration of a period correction type seismic intensity meter using a vector composite value of two horizontal orthogonal components of seismic motion acceleration and an average zero-cross period. Accelerometer 1 consists of two accelerometers 1-1 arranged in the east-west (N-8) and north-south (E-W) directions.
.. 1-2, the output of each of which is amplified to a predetermined level by an amplifier 2, and then converted into a composite amplitude A by a vector synthesis circuit 3 and given to a seismic intensity calculation circuit 4 and a control circuit 11. The control circuit 11 constantly monitors the input level to determine the occurrence and termination of an earthquake, and controls the operation of the maximum value detection circuit 8.

一方墳幅器2の出力の内1成分は実効値演算回路6aと
微分回路5に与えられ、微分回路5の出力は実効値演算
回路6bに与えられる。この2つの実効値演算回路6a
及び実効値演算回路6bは同一特性を有するものであり
、各々の出力X及び交は加速度信号の実効値及び微分信
号の実効値である。この2つの実効値出力X、Xは周期
演算回路7によって後述する式(10)の演算により平
均ゼロクロス周期工、とじて前述の震度演算回路4に与
えられる。以下平均ゼロクロス周期τ。の演算原理を説
明する。
On the other hand, one component of the output of the mulcher 2 is given to an effective value calculation circuit 6a and a differentiation circuit 5, and the output of the differentiation circuit 5 is given to an effective value calculation circuit 6b. These two effective value calculation circuits 6a
and the effective value calculation circuit 6b have the same characteristics, and their respective outputs X and intersection are the effective value of the acceleration signal and the effective value of the differential signal. These two effective value outputs X, X are given to the above-mentioned seismic intensity calculation circuit 4 as an average zero-cross periodic output by the period calculation circuit 7, which calculates the formula (10) described later. Below is the average zero-crossing period τ. The calculation principle of is explained.

前述のように地震動波形は第1図に示すように一般に不
規則振動波形であり、その分析にはフーリエスペクトル
分析が行なわれる。波形の瞬時値を時間の開数x(t)
で表わし、任意の時刻t0から、時間幅Tの範囲につい
てフーリエ展開することにより、着目範囲におけるx(
t)は、式(1)のようにN個のスペクトルで表わすこ
とができる。
As mentioned above, the seismic motion waveform is generally an irregular vibration waveform as shown in FIG. 1, and its analysis is performed using Fourier spectrum analysis. The instantaneous value of the waveform is expressed as the time integral x(t)
By performing Fourier expansion over a range of time width T from an arbitrary time t0, x(
t) can be expressed by N spectra as in equation (1).

x (t)−ΣA1(sin(2πKft+θK)+(
t@≦t≦t、+T)(a/ ・・・・(1) ここで、kは1〜Nの整数で、AIC+03は各スペク
トルの振幅及び位相角である。fは基本波スペクトル(
K−1)の周波数であり、着目する時間幅Tの逆数(1
/T)である、Tは測定対象周期範囲の上限値とする。
x (t)−ΣA1(sin(2πKft+θK)+(
t@≦t≦t, +T) (a/...(1) Here, k is an integer from 1 to N, AIC+03 is the amplitude and phase angle of each spectrum. f is the fundamental wave spectrum (
K-1), which is the reciprocal of the time width T of interest (1
/T), where T is the upper limit of the period range to be measured.

また、地震動波形は直流成分は殆ど含まれないため式(
1)は直流分を含まない表現を用いている。
In addition, since the seismic motion waveform contains almost no DC component, the formula (
1) uses expressions that do not include DC components.

式(1)において、x(t)の0≦t≦Tでの・・・・
(2) :、 X *−ΣAIC”(+ms)        
  ・・・・(3)ここにAIC(+am)は各々スペ
クトルの実効値(=Ak/、ff)である。
In formula (1), x(t) at 0≦t≦T...
(2) :, X *-ΣAIC” (+ms)
(3) Here, AIC (+am) is the effective value (=Ak/, ff) of each spectrum.

式(1)で表わされる合成波のゼロクロス数を求めるた
め、各スペクトルを実効値X(共通)。
In order to find the number of zero crossings of the composite wave expressed by equation (1), each spectrum is given an effective value X (common).

周波数kf、継続時間T1の波に置きかえ、時間列に並
べかえてみる(第3図参照) 6波のT1を対応するAIC(++ma)で表わし、’
r t −(ム9.。、)/X)T         
         ・・・・(4)とすれば、この並べ
かえは式(1)と近似的に等価である。
Replace it with a wave of frequency kf and duration T1 and rearrange it in a time sequence (see Figure 3). Express the T1 of the 6 waves by the corresponding AIC (++ma), '
r t −(Mu9..,)/X)T
...(4), this rearrangement is approximately equivalent to equation (1).

式(4)でTKとTとの関係は式(3)を用いて、 ΣTK””T”                ・・
・・(5)gm/ の関係が得られる。
The relationship between TK and T in equation (4) is expressed as ΣTK""T" using equation (3).
...(5) The relationship gm/ is obtained.

周波数kfの波が、Tにの間にゼロクロスする数は、1
往復を1回と数えればkf−TK回である。
The number of zero crossings of the wave of frequency kf during T is 1
If the round trip is counted as one time, it is kf-TK times.

時間Tでの合成波の全ゼロクロス数をNとすれば、式(
4)と式(5)から、 従って、平均ゼロクロス周期をT、とすればここで式(
1)の時間微分を計算するとX = 27r 、、  
(kfAct teat)”   ・・’ ・(9)で
あり、式(7)の丁・は式(10)で表わすことができ
る。
If the total number of zero crossings of the composite wave at time T is N, then the formula (
4) and equation (5), therefore, if the average zero-cross period is T, then equation (
Calculating the time differential of 1), X = 27r,,
(kfAct treat)'' . . . (9), and the expression (7) can be expressed by the expression (10).

τ。=(2πX)/X           ・・・・
(10)<(10)は平均ゼロクロス周期が入力波形信
号と、その微分波形信号の各実効値から演算できること
を示すものである。実効値を測定する場合の時定数は測
定対象とする最大周期Tを基準に設定すればよく、入力
波形信号の時間経過と共に平均ゼロクロス周期を移動的
に連続的に第1図の周期演算回路7の出力〒。とじて測
定することができる。
τ. =(2πX)/X...
(10)<(10) indicates that the average zero-cross period can be calculated from the input waveform signal and each effective value of its differential waveform signal. The time constant when measuring the effective value may be set based on the maximum period T to be measured, and the period calculation circuit 7 of FIG. The output of 〒. It can be measured by closing.

震度演算回路4は前述の加速度合成振幅Aと上記T、に
所定の演算を行なって震度Iを算出する。上記震度観測
検討委員会報告書では、式(11)でIを定義している
The seismic intensity calculation circuit 4 calculates the seismic intensity I by performing a predetermined calculation on the above-mentioned acceleration composite amplitude A and the above-mentioned T. In the above-mentioned report of the Seismic Intensity Observation Review Committee, I is defined by equation (11).

I  = 21ogA+0.7+1ogK4     
           ・・・・(11)ここで、Kは
定数、Tは周期である。
I = 21ogA+0.7+1ogK4
(11) Here, K is a constant and T is a period.

Tをτ、に書きかえ式(11)を整理すれば、Iキ1o
g5KA1′T、・・・・(12)となる。
If we rewrite T as τ and rearrange equation (11), we get Iki1o
g5KA1'T, (12).

震度演算回路4の出力Iは最大値検出回路8にあたえら
れる。最大値検出回路8は前述の制御回路11によって
制御されており、地震発生毎に時間経過に追従した最大
震度IMANを更新記憶し、地震終了後データをクリア
する。
The output I of the seismic intensity calculation circuit 4 is applied to the maximum value detection circuit 8. The maximum value detection circuit 8 is controlled by the aforementioned control circuit 11, updates and stores the maximum seismic intensity IMAN that follows the passage of time every time an earthquake occurs, and clears the data after the earthquake ends.

最大震度INAXは表示器9でデータとして表示される
と共に、警報出力回路10によって震度値に応じた段階
別に警報信号として外部に出力され、各種制御に用いら
れる。
The maximum seismic intensity INAX is displayed as data on the display 9, and is also output to the outside as an alarm signal in stages according to the seismic intensity value by the alarm output circuit 10, and is used for various controls.

第1図に示す構成の震度計は、プリンタ、時計、レコー
ダ等を付加することにより、データ及び時刻の印字又は
震動波形の記録等の機能を容易に付加することができる
。また、計測された震度値を小数点以下を四捨五入して
震度階として計測を行なうことも容易である。
By adding a printer, a clock, a recorder, etc. to the seismic intensity meter configured as shown in FIG. 1, functions such as printing data and time or recording vibration waveforms can be easily added. Furthermore, it is also easy to round off the measured seismic intensity value to the nearest whole number and measure it as a seismic intensity scale.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、下記のような優れ
た効果が得られる。
As explained above, according to the present invention, the following excellent effects can be obtained.

(1)体感との対応のよい、ゼロクス周期た平均ゼロク
ロス周期の連続測定できる周期補正方式の震度計を、市
販の部品を用いて簡易に構成し、提供できる。
(1) It is possible to easily construct and provide a period-corrected seismic intensity meter using commercially available parts that can continuously measure the average zero-crossing period and the zero-crossing period and has good correspondence with bodily sensation.

(2)また、簡単な地震防災システムの地震警報及び各
種制御を行なわせる装置として利用も可能となる。
(2) It can also be used as a device for earthquake warning and various controls in a simple earthquake disaster prevention system.

(3)また、震度階計測器への応用も容易に可能となる
(3) Also, it can be easily applied to seismic intensity scale measuring instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る震度計の構成を示すブロック図、
第2図は地震動波形例を示す図、第3図は波形スペクト
ル説明図である。 図中、1・・・・加速度計、2・・・・増幅器、3・・
・・ベクトル合成回路、4・・・・震度演算回路、5・
・・・微分回路、6a・・・・実効値演算回路、6b・
・・・実効値演算回路、7・・・・周期演算回路、8・
・・・最大値検出回路、9・・・・表示器、1o・・・
・警報出力回路、11・・・・制御回路。
FIG. 1 is a block diagram showing the configuration of a seismic intensity meter according to the present invention,
FIG. 2 is a diagram showing an example of a seismic motion waveform, and FIG. 3 is an explanatory diagram of a waveform spectrum. In the figure, 1...accelerometer, 2...amplifier, 3...
...Vector synthesis circuit, 4...Seismic intensity calculation circuit, 5.
...Differential circuit, 6a...Effective value calculation circuit, 6b.
... Effective value calculation circuit, 7... Period calculation circuit, 8.
...Maximum value detection circuit, 9...Display device, 1o...
- Alarm output circuit, 11... control circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)加速度値と周期値から震度を計測する周期補正方
式の震度計において、入力加速度の実効値を計測する手
段と、該入力加速度の時間微分信号の実効値を計測する
手段と、前記2つの実効値を演算して平均ゼロクロス周
期を算出する手段を具備することを特徴とする震度計。
(1) In a period correction type seismic intensity meter that measures seismic intensity from an acceleration value and a period value, means for measuring an effective value of input acceleration, means for measuring an effective value of a time differential signal of the input acceleration; A seismic intensity meter characterized by comprising means for calculating an average zero-cross period by calculating two effective values.
(2)請求項(1)記載の震度計に表示器及び警報出力
回路を付加し、地震警報及び各種制御を行なわせること
を特徴とする装置。
(2) A device characterized by adding a display and an alarm output circuit to the seismic intensity meter according to claim (1), and causing the seismic intensity meter to perform earthquake warning and various controls.
(3)請求項(1)記載の震度計に該震度計で計測され
た震度値の小数点以下を四捨五入する手段を付加し、震
度階を測定することを特徴とする装置。
(3) An apparatus characterized in that the seismic intensity meter according to claim (1) is further provided with means for rounding off the seismic intensity values measured by the seismic intensity meter to the nearest whole number, thereby measuring the seismic intensity scale.
JP1125343A 1989-05-17 1989-05-17 Seismic intensity meter and device using the seismic intensity meter Expired - Lifetime JPH07113671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125343A JPH07113671B2 (en) 1989-05-17 1989-05-17 Seismic intensity meter and device using the seismic intensity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125343A JPH07113671B2 (en) 1989-05-17 1989-05-17 Seismic intensity meter and device using the seismic intensity meter

Publications (2)

Publication Number Publication Date
JPH02302687A true JPH02302687A (en) 1990-12-14
JPH07113671B2 JPH07113671B2 (en) 1995-12-06

Family

ID=14907771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125343A Expired - Lifetime JPH07113671B2 (en) 1989-05-17 1989-05-17 Seismic intensity meter and device using the seismic intensity meter

Country Status (1)

Country Link
JP (1) JPH07113671B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085146A (en) * 2014-10-28 2016-05-19 国立研究開発法人防災科学技術研究所 Earthquake alarm system
JP2016205920A (en) * 2015-04-20 2016-12-08 株式会社ミツトヨ Earthquake intensity value calculation system and earthquake intensity calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085146A (en) * 2014-10-28 2016-05-19 国立研究開発法人防災科学技術研究所 Earthquake alarm system
JP2016205920A (en) * 2015-04-20 2016-12-08 株式会社ミツトヨ Earthquake intensity value calculation system and earthquake intensity calculation method

Also Published As

Publication number Publication date
JPH07113671B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JP2958362B2 (en) Measurement, analysis and judgment method of ground structure
KR102044041B1 (en) Apparatus for measuring earthquake intensity and method for the same
JP2011002371A (en) Seismic intensity estimation method and device
KR100972278B1 (en) Apparatus and Method for Measuring Dynamic Displacement and Velocity History from Measured Acceleration of Structure
EP0691530B1 (en) Method and apparatus for measuring axle load of a running vehicle
JPH02302687A (en) Seismometer and apparatus using the same
Herranen et al. Acceleration data acquisition and processing system for structural health monitoring
Volkova et al. Qualitative theory and identification of dynamic system with one degree of freedom
DE502004012113D1 (en) ECG SYSTEM AND METHOD FOR LARGE MEASUREMENT OF ECG SIGNALS
JP2022131025A (en) Measurement method, measurement device, measurement system, and measurement program
JPH0263194B2 (en)
JP2002188955A (en) Strength deterioration detection method of structure by using ambiguous external force
SU748324A1 (en) Gravimeter
Azzara et al. Measurement of the vibration response of the medieval Maddalena Bridge (Italy)
EP1626255A1 (en) Method and apparatus of processing oscillatory data
Almarshad Building drift estimation using acceleration and strain measurements
RU30208U1 (en) A device for dynamic compensation of the influence of feedback of a physical dynamic system on its output signals
JP3350915B2 (en) Axle load measuring device and measuring method for traveling vehicle
JP2776307B2 (en) Signal display device
JPH03262930A (en) Method and instrument for measuring intensity of eartquake motion
JPS6144016B2 (en)
Cook Laboratory standard microphones
RU2263942C2 (en) Device for dynamic compensation of influence of check connection of physical dynamic system on its output system
Chimonas Reynolds stress deflections of the bivane anemometer
Montalvão Introduction to Sensors and Signal Processing