JP2016085146A - Earthquake alarm system - Google Patents

Earthquake alarm system Download PDF

Info

Publication number
JP2016085146A
JP2016085146A JP2014218866A JP2014218866A JP2016085146A JP 2016085146 A JP2016085146 A JP 2016085146A JP 2014218866 A JP2014218866 A JP 2014218866A JP 2014218866 A JP2014218866 A JP 2014218866A JP 2016085146 A JP2016085146 A JP 2016085146A
Authority
JP
Japan
Prior art keywords
earthquake
motion index
area
threshold
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218866A
Other languages
Japanese (ja)
Other versions
JP6358923B2 (en
Inventor
卓 ▲功▼刀
卓 ▲功▼刀
Taku Kunugi
中村洋光
Hiromitsu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nat Res Inst For Earth Science And Disaster Resilience
National Research Institute for Earth Science and Disaster Prevention (NIED)
Original Assignee
Nat Res Inst For Earth Science And Disaster Resilience
National Research Institute for Earth Science and Disaster Prevention (NIED)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Res Inst For Earth Science And Disaster Resilience, National Research Institute for Earth Science and Disaster Prevention (NIED) filed Critical Nat Res Inst For Earth Science And Disaster Resilience
Priority to JP2014218866A priority Critical patent/JP6358923B2/en
Publication of JP2016085146A publication Critical patent/JP2016085146A/en
Application granted granted Critical
Publication of JP6358923B2 publication Critical patent/JP6358923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake alarm system capable of distributing an earthquake alarm in a standpoint considering safety.SOLUTION: An earthquake alarm system 300 comprises: a data processing part for dividing an area to be an object of an alarm into plural areas, then arranging one or more observation points on each of the areas, and performing data processing based on an area earthquake motion index which is calculated by a reception part 201; and an earthquake alarm processing device 200 having a distribution part for outputting an alarm according to a processing result of the data processing part. The earthquake alarm processing device 200 outputs a first kind of alarm to each area whose earthquake motion index exceeds a first threshold when it is determined that there are areas whose earthquake motion index exceeds the first threshold, outputs a second kind of alarm to each area whose earthquake motion index exceeds a second threshold when it is determined that there are areas whose earthquake motion index exceeds the second threshold lower than the first threshold, and then outputs a third kind of alarm to each area adjacent to the area whose earthquake motion index exceeds the first threshold, on the basis of adjacent area data stored in a storage part 202.SELECTED DRAWING: Figure 1

Description

本発明は、地震の加速度を計測し、その計測値から計算される地震動指標を用いた地震警報システムに関する。   The present invention relates to an earthquake warning system that measures the acceleration of an earthquake and uses an earthquake motion index calculated from the measured value.

緊急地震速報(非特許文献1参照)として知られている地震警報システムが現在利用されている。この地震警報システムでは、全国を複数の領域に分割し、いずれかの領域で震度5弱以上が予想される地震が発生した場合に、震度4以上が予想される全ての領域に対し警報を発することを目的の一つとしている。この地震警報システムでは、地震観測データから、地震の位置(緯度、経度、深さ)、および規模(マグニチュード)を推定し、距離減衰式を用いて震度を予想する。また、観測地点で上下動加速度100ガル以上を観測した場合は、その地点の震度を5弱以上と推定する(非特許文献2参照)。   An earthquake warning system known as emergency earthquake warning (see Non-Patent Document 1) is currently used. In this earthquake warning system, the whole country is divided into a plurality of areas, and if an earthquake with a seismic intensity of less than 5 occurs in any area, an alarm is issued for all areas where a seismic intensity of 4 or more is expected. This is one of the purposes. In this earthquake warning system, the position (latitude, longitude, depth) and magnitude (magnitude) of an earthquake are estimated from seismic observation data, and the seismic intensity is predicted using a distance attenuation formula. Moreover, when the vertical acceleration of 100 gal or more is observed at the observation point, the seismic intensity at the point is estimated to be 5 or less (see Non-Patent Document 2).

http://www.data.jma.go.jp/svd/eew/data/nc/http: // www. data. jma. go. jp / svd / eew / data / nc / http://www.data.jma.go.jp/svd/eew/data/nc/katsuyou/reference.pdf (緊急地震速報の概要や処理手法に関する技術的参考資料)http: // www. data. jma. go. jp / svd / eew / data / nc / katsuyou / reference. pdf (Technical reference material for overview and processing method of earthquake early warning)

上記のような地震警報システムの成否は、震源決定の精度に因っており、震源決定の結果が大きな誤差を持つ場合は適切に警報が出されない。さらに、二つ以上の地震が同時に発生した場合には現行方法では対応できない。また、上下動加速度100ガル以上を観測した場合に震度5弱以上とする判定方法は大きな誤差を含んでいる。   The success or failure of the earthquake warning system as described above depends on the accuracy of the hypocenter determination, and if the result of the hypocenter determination has a large error, the alarm is not properly issued. Furthermore, if two or more earthquakes occur simultaneously, the current method cannot be used. Moreover, the determination method which makes seismic intensity 5 or less when a vertical motion acceleration of 100 gal or more is observed includes a large error.

本来、警報というものは、より安全サイドにたった観点でなされるべきものであるにも関わらず、従来の地震警報システムはそのようなものでない、という課題を有している。本発明は、前記課題を解決するために、震源決定を行うこと無く、実測された地震記録から計算された地震動指標を用いて、地震警報を発する方法およびシステムを提供することを目的とする。   Originally, although alarms should be made from a safer viewpoint, there is a problem that conventional earthquake alarm systems are not such. In order to solve the above-described problems, an object of the present invention is to provide a method and a system for issuing an earthquake warning using a seismic motion index calculated from an actually measured earthquake record without performing a hypocenter determination.

前記課題を解決するために、本発明の請求項1に係る発明は、警報の対象とする領域を複数の領域に分割し、各領域に1つ以上の観測点を配置し、各観測点に地震動指標を即時に概算する装置(地震動指標概算装置)を備え、また、前記地震動指標概算装置から各観測点における地震動指標(観測点地震動指標)を受信し各領域を代表する地震動指標(領域地震動指標)を計算する受信部を有し、さらに、それぞれの領域に隣接する領域を記憶する隣接領域データを記憶する記憶部と、前記記憶部に記憶されたデータと、受信部が計算した領域地震動指標に基づきデータ処理を行うデータ処理部と、前記データ処理部の処理結果に応じて警報を発する配信部を有する地震警報処理装置からなる地震警報システムにおいて、前記地震警報処理装置は、第1閾値を超える地震動指標の領域があると判断すると、第1閾値を超える地震動指標の領域に1種警報を発し、第1閾値より低い第2閾値を超える地震動指標の領域があると判断すると、第2閾値を超える地震動指標の領域に2種警報を発し、前記記憶部に記憶される隣接領域データに基づいて、第1閾値を超える地
震動指標の領域に隣接する領域に3種警報を発することを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention divides the area to be alarmed into a plurality of areas, arranges one or more observation points in each area, and sets each observation point. A device that immediately estimates the earthquake motion index (earthquake motion index estimation device) is received, and the earthquake motion index (observation point earthquake motion index) at each observation point is received from the earthquake motion index estimation device, and the seismic motion index that represents each region (regional ground motion) A receiving unit that calculates an index), a storage unit that stores adjacent region data that stores a region adjacent to each region, data stored in the storage unit, and area earthquake motion calculated by the receiving unit An earthquake warning system comprising: a data processing unit that performs data processing based on an index; and an earthquake warning processing device that includes a distribution unit that issues an alarm according to a processing result of the data processing unit. If it is determined that there is a region of the earthquake motion index exceeding the first threshold, one type of alarm is issued in the region of the earthquake motion index exceeding the first threshold, and there is a region of the earthquake motion index exceeding the second threshold lower than the first threshold If it judges, it will issue 2 types of alarms to the area of the earthquake motion index exceeding the second threshold, and 3 types of alarms to the area adjacent to the area of the earthquake motion index exceeding the first threshold based on the adjacent area data stored in the storage unit. It is characterized by emitting.

また、請求項2に係る発明は、警報の対象とする領域を複数の領域に分割し、各領域に1つ以上の観測点を配置し、各観測点に加速度を検出する加速度計を備え、また、前記加速度計から各観測点における加速度を受信する受信部と、前記受信部で受信された加速度に基づいて各観測点における地震動指標(観測点地震動指標)を概算し、観測点地震動指標から各領域を代表する地震動指標(領域地震動指標)を計算する地震動指標概算部を有し、さらに、それぞれの領域に隣接する領域を記憶する隣接領域データを記憶する記憶部と、前記記憶部に記憶されたデータと、地震動指標概算部が計算した領域地震動指標に基づきデータ処理を行うデータ処理部と、前記データ処理部の処理結果に応じて警報を発する配信部を有する地震警報処理装置からなる地震警報システムにおいて、前記地震警報処理装置は、第1閾値を超える地震動指標の領域があると判断すると、第1閾値を超える地震動指標の領域に1種警報を発し、第1閾値より低い第2閾値を超える地震動指標の領域があると判断すると、第2閾値を超える地震動指標の領域に2種警報を発し、前記記憶部に記憶される隣接領域データに基づいて、第1閾値を超える地震動指標の領域に隣接する領域に3種警報を発することを特徴とする。   Further, the invention according to claim 2 includes an accelerometer that divides a region to be alarmed into a plurality of regions, arranges one or more observation points in each region, and detects acceleration at each observation point, In addition, a receiving unit that receives acceleration at each observation point from the accelerometer, and an approximate seismic motion index (observation point seismic motion index) at each observation point based on the acceleration received by the receiving unit, A seismic motion index estimating unit for calculating a seismic motion index representing each region (regional seismic motion index); a storage unit for storing adjacent region data for storing a region adjacent to each region; and storing in the storage unit Alarm processing including a data processing unit that performs data processing based on the generated data, a region earthquake motion index calculated by the earthquake motion index estimation unit, and a distribution unit that issues an alarm according to the processing result of the data processing unit In the seismic warning system comprising the device, when the earthquake warning processing device determines that there is a region of the ground motion index exceeding the first threshold value, the earthquake warning processing device issues a type 1 warning to the region of the ground motion index exceeding the first threshold value. If it is determined that there is an area of the earthquake motion index exceeding the low second threshold, two types of alarms are issued to the area of the earthquake motion index exceeding the second threshold, and the first threshold is set based on the adjacent area data stored in the storage unit. It is characterized in that three types of alarms are issued in the area adjacent to the area of the seismic motion index that exceeds.

また、請求項3に係る発明は、請求項1又は請求項2に記載の地震警報システムにおいて、前記地震警報処理装置は、第2閾値より低い第3閾値を全ての領域で下回ると、警報を解除することを特徴とする。   The invention according to claim 3 is the earthquake alarm system according to claim 1 or 2, wherein the earthquake alarm processing device issues an alarm when the third threshold value lower than the second threshold value falls below all regions. It is characterized by releasing.

また、請求項4に係る発明は、請求項1乃至請求項3のいずれか1項に記載の地震警報システムにおいて、前記地震警報処理装置は、第1閾値を超える地震動指標の領域があると判断すると、第1閾値より低い第4閾値を超える観測点が他にあるか否かが判定され、ない場合は警報を発しないことを特徴とする。   According to a fourth aspect of the present invention, in the earthquake warning system according to any one of the first to third aspects, the earthquake warning processing device determines that there is a region of an earthquake motion index exceeding a first threshold value. Then, it is determined whether or not there are other observation points that exceed the fourth threshold value that is lower than the first threshold value.

また、請求項5に係る発明は、請求項1乃至請求項4のいずれか1項に記載の地震警報システムにおいて、前記地震警報処理装置は、それぞれの領域に必ずしも隣接しない領域(広域隣接領域)を記憶する広域隣接領域データを記憶する記憶部を有し、第1閾値よりも高い第5閾値を超える地震動指標の領域があると判断すると、極めて強い地震が発生したと判断して、前記記憶部に記憶される第5閾値を超えた領域の広域隣接領域に4種警報を発することを特徴とする。   The invention according to claim 5 is the earthquake alarm system according to any one of claims 1 to 4, wherein the earthquake alarm processing device is not necessarily adjacent to each area (wide area adjacent area). And having a storage unit for storing wide-area adjacent region data, and determining that there is a region of an earthquake motion index exceeding a fifth threshold that is higher than the first threshold, it is determined that an extremely strong earthquake has occurred, and the storage A four-type alarm is issued to a wide area adjacent to the area exceeding the fifth threshold stored in the section.

また、請求項6に係る発明は、請求項1乃至請求項4のいずれか1項に記載の地震警報システムにおいて、前記地震警報処理装置は、それぞれの領域に必ずしも隣接しない領域(広域隣接領域)を記憶する広域隣接領域データを記憶する記憶部を有し、第6閾値を超える領域が一定数以上になったと判断すると、巨大地震が発生したと判断して、前記記憶部に記憶される第1閾値を超えた領域の広域隣接領域に5種警報を発することを特徴とする。   The invention according to claim 6 is the earthquake alarm system according to any one of claims 1 to 4, wherein the earthquake alarm processing device is not necessarily adjacent to each area (wide area adjacent area). Having a storage unit for storing wide-area adjacent region data, and determining that the number of regions exceeding the sixth threshold exceeds a certain number, it is determined that a huge earthquake has occurred, and is stored in the storage unit. Five types of alarms are issued in a wide area adjacent to an area exceeding one threshold.

また、請求項7に係る発明は、請求項1乃至請求項6のいずれか1項に記載の地震警報システムにおいて、地震動指標として計測震度概算値を用いることを特徴とする。   The invention according to claim 7 is characterized in that, in the earthquake warning system according to any one of claims 1 to 6, a measured seismic intensity approximate value is used as an earthquake motion index.

本発明に係わる地震警報システムによれば、より安全サイドにたった観点で地震警報を配信することが可能となる。また、本発明に係る地震警報システムは、震源決定によらないため、二つ以上の地震の発生や広域な震源域をもつ地震に対しても対応可能である。   According to the earthquake warning system according to the present invention, it is possible to distribute the earthquake warning from the viewpoint of the safer side. Further, since the earthquake warning system according to the present invention does not depend on the determination of the epicenter, it can cope with the occurrence of two or more earthquakes or an earthquake having a wide seismic area.

本発明の第1の実施形態に係る地震警報システム300の主要構成を示す図である。It is a figure which shows the main structures of the earthquake warning system 300 which concerns on the 1st Embodiment of this invention. 領域分割の概念を説明する図である。It is a figure explaining the concept of area division. 隣接領域データのデータ構造を示す図である。It is a figure which shows the data structure of adjacent area data. 地震警報処理装置200の主処理のフローチャートを示す図である。It is a figure which shows the flowchart of the main process of the earthquake warning processing apparatus. 地震警報処理装置200の警報切り替え処理のフローチャートを示す図である。It is a figure which shows the flowchart of the alarm switching process of the earthquake alarm processing apparatus. 地震警報処理装置200の警報終了判定処理のフローチャートを示す図である。It is a figure which shows the flowchart of the alarm end determination process of the earthquake alarm processing apparatus. 本発明に係る地震警報システム300による警報の配信の領域の一例を示す図である。It is a figure which shows an example of the area | region of the alert delivery by the earthquake warning system 300 which concerns on this invention. 本発明の第2の実施形態に係る地震警報システム300における地震警報処理装置200の主処理のフローチャートを示す図である。It is a figure which shows the flowchart of the main process of the earthquake warning processing apparatus 200 in the earthquake warning system 300 which concerns on the 2nd Embodiment of this invention. 本発明の第5の実施形態に係る地震警報システム300の主要構成を示す図である。It is a figure which shows the main structures of the earthquake warning system 300 which concerns on the 5th Embodiment of this invention.

以下、本発明の第1の実施形態を図面を参照しつつ説明する。図1は本発明の第1の実施形態に係る地震警報システム300の主要構成を示す図である。本発明において地震動指標はSI値や最大加速度などどのようなものでもよいが、本実施形態では計測震度概算値を用いる。したがって地震動指標概算装置としては計測震度概算装置を用いる。なお、気象庁の定める震度(計測震度)はリアルタイムで演算できないものであるから、震度を対象とした地震警報システムを実現するには計測震度概算値を用いる他はない。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a main configuration of an earthquake warning system 300 according to the first embodiment of the present invention. In the present invention, the seismic motion index may be any value such as SI value or maximum acceleration, but in this embodiment, the estimated seismic intensity is used. Therefore, a measurement seismic intensity estimation device is used as the earthquake motion index estimation device. In addition, since the seismic intensity (measured seismic intensity) determined by the Japan Meteorological Agency cannot be calculated in real time, there is no other way to use the estimated seismic intensity approximate value to realize an earthquake warning system for seismic intensity.

まず、地震警報システム300における領域の分割について説明する。図2は領域分割の概念を説明する図である。地震警報システム300では、北海道を例に取ると、例えば、図2に示すような領域A1、A2、A3、A4、A5、A6、A7、・・・・というように最
低一つの観測点が配置されるような領域毎に分割している。ここで、このような領域を一般化すると、領域An(n=1〜N)とすることができる。すなわち、地震警報システム
300では、日本全国をN個の領域に分割している。
First, region division in the earthquake warning system 300 will be described. FIG. 2 is a diagram for explaining the concept of area division. In the earthquake warning system 300, taking Hokkaido as an example, for example, areas A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 ,... The area is divided so that at least one observation point is arranged. Here, when such a region is generalized, a region An (n = 1 to N) can be obtained. That is, the earthquake warning system 300 divides the whole of Japan into N areas.

領域An(n=1〜N)の中には最低一つの観測点が設けられ、それぞれの観測点には
、図1に示すように、計測震度概算装置1が設置される。計測震度概算装置1では、計測震度の概算値を演算し、これをリアルタイムでセンターに設置される地震警報処理装置200に、通信ネットワークを介して送信するようになっている。このようにして、各観測点における計測震度概算値を即時に監視できるようにする。
At least one observation point is provided in the area An (n = 1 to N), and a measurement seismic intensity estimation device 1 is installed at each observation point as shown in FIG. The measured seismic intensity estimation device 1 calculates an approximate value of the measured seismic intensity and transmits it to the earthquake alarm processing device 200 installed in the center in real time via a communication network. In this way, the estimated seismic intensity estimated value at each observation point can be monitored immediately.

ここで、計測震度概算装置1については、計測震度概算装置1は本発明者らによる開発された装置であり、強震計(不図示)で観測された加速度記録によって、計測震度の概算を行うものである。この計測震度概算装置1については、特許4229337号公報に記載のものを用いることができる。   Here, the measured seismic intensity estimation device 1 is an apparatus developed by the present inventors, and estimates the measured seismic intensity based on acceleration records observed by a strong seismometer (not shown). It is. As the measured seismic intensity estimation device 1, the one described in Japanese Patent No. 4229337 can be used.

なお、本明細書においては、計測震度概算装置1の関する具体的な構成などについては、特許4229337号公報に記載の全ての事項を参照して援用するものとする。   In addition, in this specification, about the specific structure regarding the measurement seismic intensity estimation apparatus 1, etc., it shall use with reference to all the matters as described in patent 4229337.

地震警報処理装置200は、センター(複数であっても一つであってもよい)に設置される情報処理装置であり、例えば、汎用のサーバーを用いることができる。地震警報処理装置200は、計測震度概算装置1によって概算された、それぞれの観測点の計測震度概算値(観測点震度)を受信する受信部201を有する。受信部は同一領域に属する観測点の観測点震度から領域を代表する計測震度概算値(領域震度)を計算する。これには、安全サイドに立って、同一領域中の観測点震度の最大値を領域震度として用いるが、同一領
域中の観測点数が十分に多い場合は平均値や中央値などの値を用いることもできる。
The earthquake alarm processing device 200 is an information processing device installed in a center (a plurality or one), and for example, a general-purpose server can be used. The earthquake alarm processing device 200 includes a receiving unit 201 that receives the estimated seismic intensity values (observation point seismic intensity) of each observation point, which are estimated by the measured seismic intensity estimation device 1. The receiving unit calculates an estimated value of the seismic intensity (regional seismic intensity) representing the area from the seismic intensity of the observation points belonging to the same area. For this, from the safety side, the maximum value of the observation point seismic intensity in the same area is used as the area seismic intensity, but if the number of observation points in the same area is sufficiently large, the average value or median value should be used. You can also.

また、地震警報システム300では、どの領域がどの領域と隣接しているかに係る隣接領域データを保持している。地震警報処理装置200の記憶部202には、このようなデータが記憶保持されている。図3は隣接領域データのデータ構造を示す図である。図2を参照すると、例えば、領域A1は、領域A2、領域A4と隣接しており、このことが、図3
のような形式でデータ化されている。
In addition, the earthquake warning system 300 holds adjacent area data relating to which area is adjacent to which area. Such data is stored and held in the storage unit 202 of the earthquake alarm processing device 200. FIG. 3 shows the data structure of adjacent area data. Referring to FIG. 2, for example, the area A 1 is adjacent to the area A 2 and the area A 4 , which is shown in FIG.
It is converted into data in the form

また、地震警報処理装置200におけるデータ処理部203は、記憶部202に記憶されたデータや、受信部201で計算した領域震度に基づきデータ処理を行い、必要に応じて、配信部204に対して警報を配信するように制御するものである。   In addition, the data processing unit 203 in the earthquake warning processing device 200 performs data processing based on the data stored in the storage unit 202 and the area seismic intensity calculated by the receiving unit 201, and if necessary, the distribution unit 204 It controls to deliver the alarm.

また、地震警報処理装置200における配信部204は情報端末(携帯電話、スマートフォン、パーソナルコンピュータ、テレビ、ラジオなど)やサーバーなどに地震警報を配信する。   In addition, the distribution unit 204 in the earthquake alarm processing device 200 distributes an earthquake alarm to an information terminal (such as a mobile phone, a smartphone, a personal computer, a television, or a radio) or a server.

次に、以上のように構成される地震警報処理装置200の処理について説明する。図4は地震警報処理装置200の主処理のフローチャートを示す図である。   Next, processing of the earthquake alarm processing device 200 configured as described above will be described. FIG. 4 is a diagram showing a flowchart of main processing of the earthquake warning processing apparatus 200.

なお、以下のフローチャートでは、
第1閾値を震度5弱(計測震度概算値4.5)、
第2閾値を震度4(計測震度概算値3.5)、
第3閾値を震度1(計測震度概算値0.5)とする。
なお、閾値はここに示した値に限らない。
In the following flowchart,
The first threshold is a seismic intensity of 5 (measured seismic intensity approximate value 4.5),
The second threshold is seismic intensity 4 (estimated seismic intensity 3.5),
The third threshold is seismic intensity 1 (approximate seismic intensity 0.5).
The threshold value is not limited to the value shown here.

また、1種警報は、警報レベルが最も高く、2種警報は1種警報の次に警報レベルが高く、3種警報は2種警報の次に警報レベルが高いものとする。   In addition, it is assumed that the type 1 alarm has the highest alarm level, the type 2 alarm has the highest alarm level after the type 1 alarm, and the type 3 alarm has the highest alarm level after the type 2 alarm.

地震警報システム300では、いずれかの領域で第1閾値を超えることが予想される地震が発生した場合に、第2閾値を超えることが予想される地域すべてに警報を発することが目的となる。   In the earthquake warning system 300, when an earthquake that is expected to exceed the first threshold value occurs in any region, an object is to issue a warning to all regions that are expected to exceed the second threshold value.

ステップS100で地震警報処理装置200の主処理が開始されると、続く、ステップS101では、変数nに1がセットされる。   When the main process of the earthquake warning processing apparatus 200 is started in step S100, 1 is set to the variable n in the subsequent step S101.

ステップS102では、領域Anに属する観測点に配備された計測震度概算装置1から
送信された計測震度概算値(観測点震度)の最大値から、領域Anを代表する計測震度概
算値(領域震度)を算出する。
In step S102, the maximum value of the measured seismic intensity estimates transmitted from the seismic intensity rounding unit 1 deployed to the observation point in a region A n (observation point seismic intensity), seismic intensity estimate value representing the area A n (area Seismic intensity).

ステップS103では、n=Nであるか否かが判定される。ステップS103の判定がNOであるときには、ステップS110でnを1インクリメントして、再び、ステップS102をループする。   In step S103, it is determined whether n = N. If the determination in step S103 is no, n is incremented by 1 in step S110, and step S102 is looped again.

一方、ステップS103の判定がYESとなると、ステップS104に進む。なお、上記のようなループ(n=1からn=Nまで)は1秒程度以内で完了することが好ましい。   On the other hand, if the determination in step S103 is YES, the process proceeds to step S104. In addition, it is preferable that the above loop (from n = 1 to n = N) is completed within about 1 second.

次に、ステップS104においては、 いずれかの領域に第1閾値(震度5弱)を超える領域があるか否かが判定される。ステップS104の判定ステップは、本発明に係る地震警報システム300にとり、警報を開始するかどうかを決定する警報トリガーの判定ステップである。   Next, in step S104, it is determined whether or not there is a region that exceeds the first threshold (seismic intensity of less than 5) in any region. The determination step of step S104 is an alarm trigger determination step for determining whether to start an alarm for the earthquake alarm system 300 according to the present invention.

ステップS104における判定がNOである場合には、再び、ステップS101に戻り、全ての領域Anの領域震度を取得するループを再開する。一方、ステップS104にお
ける判定がYESである場合には、ステップS105に進み警報を開始する。
If the determination in step S104 is NO, returns again to step S101, it resumed loop to get the area seismic intensity of all the regions A n. On the other hand, if the determination in step S104 is yes, the process proceeds to step S105 to start an alarm.

ステップS105では、第1閾値を超えた全ての領域に対して、1種警報を発する。   In step S105, one type of alarm is issued for all areas exceeding the first threshold.

続く、ステップS106では、いずれかの領域に第2閾値(震度4)を超える領域があるか否かが判定される。ステップS106の判定がNOであれば、ステップS108に進み、YESであればステップS107に進み、ステップS107において、第2閾値を超えた領域のうち、1種警報が出ていない領域に2種警報を発する。   Subsequently, in step S106, it is determined whether or not there is an area exceeding the second threshold (seismic intensity 4) in any area. If the determination in step S106 is NO, the process proceeds to step S108, and if YES, the process proceeds to step S107. In step S107, two types of alarms are displayed in the region where the first type alarm is not output in the region exceeding the second threshold. To emit.

一方、ステップS108では、隣接領域データを参照して、第1閾値(震度5弱)を超えた領域に隣接する全ての領域を取得し、ステップS109で、取得された領域のうち、警報が出ていない領域に3種警報を発する。   On the other hand, in step S108, by referring to the adjacent region data, all the regions adjacent to the region exceeding the first threshold value (seismic intensity of less than 5) are acquired, and in step S109, an alarm is output from the acquired regions. Three types of alarms are issued to areas that are not.

ステップS111では、警報切り替え処理へと進む。   In step S111, the process proceeds to an alarm switching process.

次に、警報切り替え処理について説明する。図5は地震警報処理装置200の警報切り替え処理のフローチャートを示す図である。   Next, the alarm switching process will be described. FIG. 5 is a flowchart of the alarm switching process of the earthquake alarm processing apparatus 200.

ステップS200で地震警報処理装置200の警報切り替え処理が開始されると、続く、ステップS201では、変数nに1がセットされる。   When the alarm switching process of the earthquake alarm processing device 200 is started in step S200, 1 is set to the variable n in the subsequent step S201.

ステップS202では、領域Anに属する観測点に配備された計測震度概算装置1から
送信された計測震度概算値(観測点震度)の最大値から、領域Anを代表する計測震度概
算値(領域震度)を算出する。
In step S202, the maximum value of the measured seismic intensity estimates transmitted from the seismic intensity rounding unit 1 deployed to the observation point in a region A n (observation point seismic intensity), seismic intensity estimate value representing the area A n (area Seismic intensity).

ステップS203では、n=Nであるか否かが判定される。ステップS203の判定がNOであるときには、ステップS210でnを1インクリメントして、再び、ステップS202をループする。   In step S203, it is determined whether n = N. If the determination in step S203 is no, n is incremented by 1 in step S210, and step S202 is looped again.

一方、ステップS203の判定がYESとなると、ステップS204に進む。なお、上記のようなループ(n=1からn=Nまで)は1秒程度以内で完了することが好ましい。ステップS204においては、1種警報が出ていない領域で、第1閾値(震度5弱)を超える領域があるか否かが判定され、この判定がYESであれば、ステップS205に進み、該当する領域の警報を1種警報に切り替えるか、新たに1種警報を発する。一方、ステップS204の判定がNOであれば、続いてステップS206に進む。   On the other hand, if the determination in step S203 is yes, the process proceeds to step S204. In addition, it is preferable that the above loop (from n = 1 to n = N) is completed within about 1 second. In step S204, it is determined whether or not there is a region exceeding the first threshold value (seismic intensity of less than 5) in the region where the type 1 alarm has not been issued. If this determination is YES, the process proceeds to step S205, where it corresponds. Switch the area alarm to a one-type alarm or issue a new one-type alarm. On the other hand, if the determination in step S204 is no, the process proceeds to step S206.

ステップS206においては、1種警報及び2種警報のいずれも出ていない領域で、第2閾値(震度4)を超える領域があるか否かが判定され、この判定がYESであれば、ステップS207に進み、該当する領域の警報を2種警報に切り替えるか、新たに2種警報を発する。一方、ステップS206の判定がNOであれば、続いてステップS208に進む。 ステップS208においては、隣接領域データを参照して、第1閾値(震度5弱)を超えた領域に隣接する全ての領域を取得し、ステップS209で、取得された領域のうち、警報が出ていない領域に3種警報を発する。
ステップS111では、警報終了判定処理へと進む。
In step S206, it is determined whether or not there is an area exceeding the second threshold value (seismic intensity 4) in the area where neither the type 1 alarm nor the type 2 alarm is issued. If this determination is YES, step S207 is performed. Proceed to, switch the alarm in the corresponding area to the two-type alarm, or issue a new two-type alarm. On the other hand, if the determination in step S206 is no, the process proceeds to step S208. In step S208, by referring to the adjacent area data, all areas adjacent to the area exceeding the first threshold (seismic intensity of less than 5) are acquired. In step S209, an alarm is issued among the acquired areas. Three types of alarms are issued in areas that do not exist.
In step S111, the process proceeds to an alarm end determination process.

次に、警報終了判定処理について説明する。図6は地震警報処理装置200の警報終了判定処理のフローチャートを示す図である。   Next, the alarm end determination process will be described. FIG. 6 is a diagram illustrating a flowchart of the alarm end determination process of the earthquake alarm processing device 200.

ステップS300で地震警報処理装置200の警報切り替え処理が開始されると、続く、ステップS301では、変数nに1がセットされる。   When the alarm switching process of the earthquake alarm processing apparatus 200 is started in step S300, 1 is set to the variable n in the subsequent step S301.

ステップS302では、領域Anに属する観測点に配備された計測震度概算装置1から
送信された計測震度概算値(観測点震度)の最大値から、領域Anを代表する計測震度概
算値(領域震度)を算出する。
In step S302, the maximum value of the measured seismic intensity estimates transmitted from the seismic intensity rounding unit 1 deployed to the observation point in a region A n (observation point seismic intensity), seismic intensity estimate value representing the area A n (area Seismic intensity).

ステップS303では、n=Nであるか否かが判定される。ステップS303の判定がNOであるときには、ステップS306でnを1インクリメントして、再び、ステップS302をループする。   In step S303, it is determined whether n = N. If the determination in step S303 is no, n is incremented by 1 in step S306, and step S302 is looped again.

一方、ステップS303の判定がYESとなると、ステップS304に進む。なお、上記のようなループ(n=1からn=Nまで)は1秒程度以内で完了することが好ましい。   On the other hand, if the determination in step S303 is yes, the process proceeds to step S304. In addition, it is preferable that the above loop (from n = 1 to n = N) is completed within about 1 second.

ステップS304では、全ての領域で第3閾値(震度1)を下回ったか否かが判定される。この判定がNOである場合には、ステップS307に進み、再び、図5に示した警報切り替え処理へと進む。   In step S304, it is determined whether or not all regions have fallen below the third threshold value (seismic intensity 1). If this determination is NO, the process proceeds to step S307, and again proceeds to the alarm switching process shown in FIG.

一方、ステップS304の判定がYESであれば、ステップS305に進み、全ての警報を解除した上で、ステップS308に進み、再び、図4に示した地震警報処理装置の主処理へと進む。   On the other hand, if the determination in step S304 is YES, the process proceeds to step S305, cancels all alarms, proceeds to step S308, and again proceeds to the main process of the earthquake alarm processing apparatus shown in FIG.

図7は、平成20年岩手・宮城内陸地震時に独立行政法人防災科学技術研究所が観測した計測震度概算値データを基に、本発明に係る地震警報システム300をシミュレーションした結果を図示したもので、8時43分53秒までの計測震度概算値データを用いた場合の警報発表状況である。この時間にはまだ気象庁から緊急地震速報(警報)は発表されておらず、本発明に係る地震警報システム300によればいち早く警報を配信することがわかる。なお、本発明に係わる地震警報システム300による警報が発せられた領域では実際に震度4以上が記録されている。このように、本発明に係る地震警報システム300では、震源決定を全く行う事無く、現行の方法より速く警報を出すことができることがわかる。   FIG. 7 illustrates the result of simulating the earthquake warning system 300 according to the present invention based on the measured seismic intensity estimated value data observed by the National Institute for Disaster Prevention Science and Technology during the 2008 Iwate-Miyagi Inland Earthquake. This is the alarm announcement situation when using the measured seismic intensity estimated value data up to 8:43:53. At this time, the earthquake early warning (alarm) has not been announced yet by the Japan Meteorological Agency, and it can be seen that the alarm is quickly delivered according to the earthquake alarm system 300 according to the present invention. In the area where the alarm is issued by the earthquake alarm system 300 according to the present invention, the seismic intensity of 4 or more is actually recorded. Thus, it can be seen that the earthquake warning system 300 according to the present invention can issue a warning faster than the current method without performing any hypocenter determination.

以上、本発明に係る地震警報システム300によれば、より安全サイドにたった観点で地震警報を配信することが可能となる。また、本発明に係る地震警報システム300は、震源決定によらないため、二つ以上の地震の発生や広域な震源域をもつ地震に対しても対応可能である。   As described above, according to the earthquake warning system 300 according to the present invention, it is possible to distribute the earthquake warning from the viewpoint of being on the safer side. Moreover, since the earthquake warning system 300 according to the present invention does not depend on the determination of the epicenter, it can cope with the occurrence of two or more earthquakes or an earthquake having a wide seismic area.

次に、本発明の第2の実施形態に係る地震警報システム300について説明する。この実施形態では、一つの領域に、複数の観測点があり、これら複数の観測点に計測震度概算装置1が設けられていることを前提としている。   Next, an earthquake warning system 300 according to the second embodiment of the present invention will be described. In this embodiment, it is assumed that there are a plurality of observation points in one area, and the measured seismic intensity estimation device 1 is provided at the plurality of observation points.

このような場合、より確実性が高い警報を配信することができる。図8は第2の実施形態に係る地震警報システム300における地震警報処理装置200の主処理のフローチャートを示す図である。   In such a case, an alarm with higher certainty can be distributed. FIG. 8 is a diagram showing a flowchart of main processing of the earthquake warning processing device 200 in the earthquake warning system 300 according to the second embodiment.

図8の処理が、図4の処理と異なる点は、ステップS104がYESである場合に進むステップとして、ステップS112が設けられている点である。そして、第2の実施形態においては、ステップS104とステップS112とで、警報を開始するかどうかを決定する警報トリガーの判定ステップを構成している。   The process of FIG. 8 differs from the process of FIG. 4 in that step S112 is provided as a step that proceeds when step S104 is YES. In the second embodiment, step S104 and step S112 constitute an alarm trigger determination step for determining whether to start an alarm.

ステップS112では、第1閾値(震度5弱)を超える領域があると判断された場合に、第1閾値より低い第4閾値(例えば、震度3(計測震度概算値2.5))を超える観測点が他にあるか否かが判定され、ステップS112での判定がYESとなり警報を配信するステップに進むが、NOであれば警報の配信は行わない。   In step S112, when it is determined that there is an area exceeding the first threshold (seismic intensity of 5), the observation exceeds a fourth threshold (for example, seismic intensity 3 (estimated seismic intensity 2.5)) that is lower than the first threshold. It is determined whether or not there are other points, and the determination in step S112 is YES, and the process proceeds to the step of distributing an alarm. If NO, the alarm is not distributed.

このような実施形態によれば警報が発せられる時間は遅れるものの、ノイズ等による誤警報を避けることが可能になる。   According to such an embodiment, it is possible to avoid a false alarm due to noise or the like, although the time for issuing the alarm is delayed.

次に、本発明の第3の実施形態について説明する。本実施形態では、領域震度が第1閾値を超えて、第5閾値(例えば、震度7(計測震度概算値6.5))に達した場合は、極めて強い地震が発生したものと判定して、あらかじめ定義された第5閾値を超えた領域の広域隣接領域(例えば、隣接領域および隣接領域の隣接領域等で構成される。記憶部202に記憶されているものとする。)に4種警報を発するようにする。このような実施形態によっても、これまで説明した実施形態と同様の効果を享受することができる。なお、4種警報は、1種警報と同レベルの警報レベルまたは、1種警報以上の警戒レベルとすることが好ましい。   Next, a third embodiment of the present invention will be described. In this embodiment, when the area seismic intensity exceeds the first threshold and reaches the fifth threshold (for example, seismic intensity 7 (estimated seismic intensity 6.5)), it is determined that an extremely strong earthquake has occurred. , Four types of alarms in a wide area adjacent area (for example, an adjacent area and an adjacent area of the adjacent area, etc., which are stored in the storage unit 202) exceeding the fifth threshold defined in advance. To emit. Also by such embodiment, the effect similar to embodiment described so far can be enjoyed. The four types of alarms are preferably set to the same alarm level as the one type alarms or the alarm level equal to or higher than the one type alarms.

次に、本発明の第4の実施形態について説明する。本実施形態では、1種警報が発せられた場合に、第6閾値(例えば震度4(計測震度概算値3.5))を超えた領域の数が一定数以上になった場合は、広域に地震動をもたらす巨大地震が発生したものとして、あらかじめ定義された1種警報が発せられた領域の広域隣接領域(例えば、隣接領域および隣接領域の隣接領域等で構成される。記憶部202に記憶されているものとする。)に5種警報を発するようにする。このような実施形態によっても、これまで説明した実施形態と同様の効果を享受することができる。なお、5種警報は、1種警報と同レベルの警報レベルまたは、1種警報以上の警戒レベルとすることが好ましい。   Next, a fourth embodiment of the present invention will be described. In the present embodiment, when the type 1 alarm is issued, if the number of areas exceeding the sixth threshold (for example, seismic intensity 4 (measured seismic intensity approximate value 3.5)) becomes a certain number or more, the wide area It is composed of a wide-area adjacent area (for example, an adjacent area and an adjacent area of the adjacent area, etc.) in which a predefined one-type alarm has been issued as a large earthquake that causes earthquake motion. 5 types of alarms are issued. Also by such embodiment, the effect similar to embodiment described so far can be enjoyed. The five types of alarms are preferably set to the same alarm level as the one type alarm or the alarm level equal to or higher than the one type alarm.

次に、本発明の第5の実施形態について説明する。図9は本発明の第5の実施形態に係る地震警報システム300の主要構成を示す図である。   Next, a fifth embodiment of the present invention will be described. FIG. 9 is a diagram showing a main configuration of an earthquake warning system 300 according to the fifth embodiment of the present invention.

これまでの実施形態においては、複数の観測点に計測震度概算装置1が設けられ、計測震度概算装置1が計測震度概算値を地震警報処理装置200に送信するようにしていたが、本実施形態では、複数の観測点には加速度計150を設置しておき、加速度計150が加速度データを地震警報処理装置200に送信し、地震警報処理装置200における計測震度概算部205で、加速度データから各観測点における計測震度概算値(観測点震度)を算出するようにしている。このような実施形態によれば、これまで説明した実施形態と同様の効果に加え、複数の観測点に設けるものは加速度計150のみでよく、より安価にシステムを構成できるメリットがある。   In the embodiment so far, the measurement seismic intensity estimation device 1 is provided at a plurality of observation points, and the measurement seismic intensity estimation device 1 transmits the measured seismic intensity estimation value to the earthquake alarm processing device 200. Then, an accelerometer 150 is installed at a plurality of observation points, the accelerometer 150 transmits acceleration data to the earthquake alarm processing device 200, and the measured seismic intensity estimation unit 205 in the earthquake alarm processing device 200 determines each of the acceleration data. The estimated seismic intensity at the observation point (observation point seismic intensity) is calculated. According to such an embodiment, in addition to the effects similar to those of the embodiments described so far, only the accelerometer 150 may be provided at a plurality of observation points, and there is an advantage that the system can be configured at a lower cost.

なお、以上の全ての実施形態において、観測点が周辺と異なる地盤増幅度をもち、観測された計測震度概算値が、常に過大もしくは過小な場合は、観測された計測震度概算値に対し補正値を加え、地盤増幅度の影響の低減を行うこともできる。   In all the embodiments described above, if the observed point has a ground amplification level different from that of the surrounding area, and the observed estimated seismic intensity is always too large or too small, a correction value for the observed measured seismic intensity estimated value is used. In addition, the influence of ground amplification can be reduced.

以上、本発明に係る地震警報システムによれば、より安全サイドにたった観点で地震警報を配信することが可能となる。また、本発明に係る地震警報システムは、震源決定によらないため、二つ以上の地震の発生や広域な震源域をもつ地震に対しても対応可能である。   As described above, according to the earthquake warning system according to the present invention, it is possible to distribute the earthquake warning from the viewpoint of more safety. Further, since the earthquake warning system according to the present invention does not depend on the determination of the epicenter, it can cope with the occurrence of two or more earthquakes or an earthquake having a wide seismic area.

1・・・計測震度概算装置
150・・・加速度計
200・・・地震警報処理装置
201・・・受信部
202・・・記憶部
203・・・データ処理部
204・・・配信部
205・・・計測震度概算部
300・・・地震警報システム
DESCRIPTION OF SYMBOLS 1 ... Measurement seismic intensity estimation apparatus 150 ... Accelerometer 200 ... Earthquake warning processing apparatus 201 ... Reception part 202 ... Storage part 203 ... Data processing part 204 ... Distribution part 205 ...・ Measurement seismic intensity estimation unit 300 ... Earthquake warning system

Claims (7)

警報の対象とする領域を複数の領域に分割し、各領域に1つ以上の観測点を配置し、各観測点に地震動指標を即時に概算する装置(地震動指標概算装置)を備え、また、前記地震動指標概算装置から各観測点における地震動指標(観測点地震動指標)を受信し各領域を代表する地震動指標(領域地震動指標)を計算する受信部を有し、さらに、それぞれの領域に隣接する領域を記憶する隣接領域データを記憶する記憶部と、前記記憶部に記憶されたデータと、受信部が計算した領域地震動指標に基づきデータ処理を行うデータ処理部と、前記データ処理部の処理結果に応じて警報を発する配信部を有する地震警報処理装置からなる地震警報システムにおいて、
前記地震警報処理装置は、第1閾値を超える地震動指標の領域があると判断すると、第1閾値を超える地震動指標の領域に1種警報を発し、第1閾値より低い第2閾値を超える地震動指標の領域があると判断すると、第2閾値を超える地震動指標の領域に2種警報を発し、前記記憶部に記憶される隣接領域データに基づいて、第1閾値を超える地震動指標の領域に隣接する領域に3種警報を発することを特徴とする地震警報システム。
The area to be alerted is divided into multiple areas, one or more observation points are arranged in each area, and each observation point is equipped with a device that immediately estimates the earthquake motion index (earthquake motion index estimation device), A receiving unit that receives a ground motion index (observation point ground motion index) at each observation point from the ground motion index estimation device and calculates a ground motion index (regional ground motion index) that represents each region, and is adjacent to each region A storage unit that stores adjacent region data that stores a region; data stored in the storage unit; a data processing unit that performs data processing based on a region earthquake motion index calculated by the reception unit; and a processing result of the data processing unit In an earthquake warning system consisting of an earthquake warning processing device having a distribution unit that issues an alarm according to
When the earthquake warning processing device determines that there is a region of the ground motion index exceeding the first threshold, the earthquake warning processing device issues a type 1 warning to the region of the ground motion index exceeding the first threshold, and the ground motion index exceeding the second threshold lower than the first threshold. If it is determined that there is a region, two types of alarms are issued to the region of the earthquake motion index exceeding the second threshold value, and the region of the earthquake motion index exceeding the first threshold value is adjacent based on the adjacent region data stored in the storage unit. An earthquake warning system characterized by issuing three types of warnings to the area.
警報の対象とする領域を複数の領域に分割し、各領域に1つ以上の観測点を配置し、各観測点に加速度を検出する加速度計を備え、また、前記加速度計から各観測点における加速度を受信する受信部と、前記受信部で受信された加速度に基づいて各観測点における地震動指標(観測点地震動指標)を概算し、観測点地震動指標から各領域を代表する地震動指標(領域地震動指標)を計算する地震動指標概算部を有し、さらに、それぞれの領域に隣接する領域を記憶する隣接領域データを記憶する記憶部と、前記記憶部に記憶されたデータと、地震動指標概算部が計算した領域地震動指標に基づきデータ処理を行うデータ処理部と、前記データ処理部の処理結果に応じて警報を発する配信部を有する地震警報処理装置からなる地震警報システムにおいて、
前記地震警報処理装置は、第1閾値を超える地震動指標の領域があると判断すると、第1閾値を超える地震動指標の領域に1種警報を発し、第1閾値より低い第2閾値を超える地震動指標の領域があると判断すると、第2閾値を超える地震動指標の領域に2種警報を発し、前記記憶部に記憶される隣接領域データに基づいて、第1閾値を超える地震動指標の領域に隣接する領域に3種警報を発することを特徴とする地震警報システム。
The area to be alarmed is divided into a plurality of areas, one or more observation points are arranged in each area, and an accelerometer that detects acceleration is provided at each observation point. Based on the acceleration received at the receiving unit that receives the acceleration and the earthquake motion index (observation point seismic motion index) at each observation point based on the acceleration received at the receiving unit, the seismic motion index that represents each region from the observation point seismic motion index (regional ground motion) An earthquake motion index estimation unit that calculates an index), a storage unit that stores adjacent area data that stores areas adjacent to each area, data stored in the storage unit, and an earthquake motion index estimation unit An earthquake warning system comprising a data processing unit that performs data processing based on the calculated area earthquake motion index and a distribution unit that issues a warning according to the processing result of the data processing unit Oite,
When the earthquake warning processing device determines that there is a region of the ground motion index exceeding the first threshold, the earthquake warning processing device issues a type 1 warning to the region of the ground motion index exceeding the first threshold, and the ground motion index exceeding the second threshold lower than the first threshold. If it is determined that there is a region, two types of alarms are issued to the region of the earthquake motion index exceeding the second threshold value, and the region of the earthquake motion index exceeding the first threshold value is adjacent based on the adjacent region data stored in the storage unit. An earthquake warning system characterized by issuing three types of warnings to the area.
前記地震警報処理装置は、第2閾値より低い第3閾値を全ての領域で下回ると、警報を解除することを特徴とする請求項1又は請求項2に記載の地震警報システム。 3. The earthquake warning system according to claim 1, wherein the earthquake warning processing device cancels the warning when the third threshold value lower than the second threshold value falls below all of the regions. 前記地震警報処理装置は、第1閾値を超える地震動指標の領域があると判断すると、第1閾値より低い第4閾値を超える観測点が他にあるか否かが判定され、ない場合は警報を発しないことを特徴とする請求項1乃至請求項3のいずれか1項に記載の地震警報システム。 When the earthquake warning processing device determines that there is a region of the ground motion index exceeding the first threshold, it is determined whether there is another observation point exceeding the fourth threshold lower than the first threshold, and if not, an alarm is issued. The earthquake warning system according to any one of claims 1 to 3, wherein the earthquake warning system is not emitted. 前記地震警報処理装置は、それぞれの領域に必ずしも隣接しない領域(広域隣接領域)を記憶する広域隣接領域データを記憶する記憶部を有し、第1閾値よりも高い第5閾値を超える地震動指標の領域があると判断すると、極めて強い地震が発生したと判断して、前記記憶部に記憶される第5閾値を超えた領域の広域隣接領域に4種警報を発することを特徴とする請求項1乃至請求項4のいずれか1項に記載の地震警報システム。 The earthquake warning processing device has a storage unit that stores wide adjacent region data that stores regions that are not necessarily adjacent to each region (wide adjacent region), and has an earthquake motion index that exceeds a fifth threshold that is higher than the first threshold. When it is determined that there is an area, it is determined that an extremely strong earthquake has occurred, and a four-type alarm is issued in a wide area adjacent to the area exceeding the fifth threshold stored in the storage unit. The earthquake warning system according to any one of claims 4 to 4. 前記地震警報処理装置は、それぞれの領域に必ずしも隣接しない領域(広域隣接領域)を記憶する広域隣接領域データを記憶する記憶部を有し、第6閾値を超える領域が一定数以上になったと判断すると、巨大地震が発生したと判断して、前記記憶部に記憶される第1閾値を超えた領域の広域隣接領域に5種警報を発することを特徴とする請求項1乃至請求項4のいずれか1項に記載の地震警報システム。 The earthquake warning processing device has a storage unit that stores wide adjacent area data that stores areas that are not necessarily adjacent to each area (wide adjacent areas), and determines that the number of areas exceeding the sixth threshold has reached a certain number or more. Then, it is determined that a huge earthquake has occurred, and a five-type alarm is issued in a wide area adjacent to the area exceeding the first threshold stored in the storage unit. The earthquake warning system according to claim 1. 地震動指標として計測震度概算値を用いることを特徴とする請求項1乃至請求項6のいずれか1項に記載の地震警報システム。 The earthquake alarm system according to any one of claims 1 to 6, wherein an approximate value of measured seismic intensity is used as an earthquake motion index.
JP2014218866A 2014-10-28 2014-10-28 Earthquake warning system Active JP6358923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218866A JP6358923B2 (en) 2014-10-28 2014-10-28 Earthquake warning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218866A JP6358923B2 (en) 2014-10-28 2014-10-28 Earthquake warning system

Publications (2)

Publication Number Publication Date
JP2016085146A true JP2016085146A (en) 2016-05-19
JP6358923B2 JP6358923B2 (en) 2018-07-18

Family

ID=55973325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218866A Active JP6358923B2 (en) 2014-10-28 2014-10-28 Earthquake warning system

Country Status (1)

Country Link
JP (1) JP6358923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096963A (en) * 2016-12-07 2018-06-21 旭化成ホームズ株式会社 Building
JP2019211853A (en) * 2018-05-31 2019-12-12 株式会社東芝 River information distribution device and river information distribution method

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302687A (en) * 1989-05-17 1990-12-14 Oki Electric Ind Co Ltd Seismometer and apparatus using the same
JPH11337655A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Control processing device for earthquake alarm monitoring
JP2000331267A (en) * 1999-05-20 2000-11-30 Haneda Hume Pipe Co Ltd Earthquake information processing system
JP2002156062A (en) * 2000-11-17 2002-05-31 Matsushita Electric Ind Co Ltd Gas-blast circuit-breaker
JP2003167063A (en) * 2001-12-04 2003-06-13 Hitachi Ltd Earthquake observation system
JP2005309582A (en) * 2004-04-19 2005-11-04 Nec Fielding Ltd System and method for preventing disaster
JP2006292589A (en) * 2005-04-12 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> System and method for earthquake information management
JP2007017149A (en) * 2006-09-07 2007-01-25 Miura Co Ltd Safety control system for boiler
JP2007164255A (en) * 2005-12-09 2007-06-28 Yazaki Corp Alarm
JP2007178202A (en) * 2005-12-27 2007-07-12 Mitsutoyo Corp Seismic disaster prevention system
JP2009068899A (en) * 2007-09-11 2009-04-02 Central Japan Railway Co Device for calculation of expected seismic intensity for alarm, and earthquake alarm system
JP2009139262A (en) * 2007-12-07 2009-06-25 Toshiba Corp Equipment control device and method
JP2010025865A (en) * 2008-07-23 2010-02-04 Panasonic Electric Works Co Ltd Earthquake alarm system
JP2010086133A (en) * 2008-09-30 2010-04-15 Hitachi Software Eng Co Ltd Disaster information collection system using mobile terminal
JP2010193679A (en) * 2009-02-20 2010-09-02 Chugoku Electric Power Co Inc:The Power breaker
US20120056711A1 (en) * 2009-04-29 2012-03-08 QMI Manufacturing Inc. Network-enabled valve management system
JP2014095586A (en) * 2012-11-08 2014-05-22 National Research Institute For Earth Science & Disaster Provention Earthquake identification apparatus, and earthquake identification system and earthquake identification method using the same
JP2014170409A (en) * 2013-03-04 2014-09-18 Toshiba Tec Corp Commodity information processor and program
JP2014178226A (en) * 2013-03-15 2014-09-25 National Research Institute For Earth Science & Disaster Provention System and method for calculating instrumental seismic intensity

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302687A (en) * 1989-05-17 1990-12-14 Oki Electric Ind Co Ltd Seismometer and apparatus using the same
JPH11337655A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Control processing device for earthquake alarm monitoring
JP2000331267A (en) * 1999-05-20 2000-11-30 Haneda Hume Pipe Co Ltd Earthquake information processing system
JP2002156062A (en) * 2000-11-17 2002-05-31 Matsushita Electric Ind Co Ltd Gas-blast circuit-breaker
JP2003167063A (en) * 2001-12-04 2003-06-13 Hitachi Ltd Earthquake observation system
JP2005309582A (en) * 2004-04-19 2005-11-04 Nec Fielding Ltd System and method for preventing disaster
JP2006292589A (en) * 2005-04-12 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> System and method for earthquake information management
JP2007164255A (en) * 2005-12-09 2007-06-28 Yazaki Corp Alarm
JP2007178202A (en) * 2005-12-27 2007-07-12 Mitsutoyo Corp Seismic disaster prevention system
JP2007017149A (en) * 2006-09-07 2007-01-25 Miura Co Ltd Safety control system for boiler
JP2009068899A (en) * 2007-09-11 2009-04-02 Central Japan Railway Co Device for calculation of expected seismic intensity for alarm, and earthquake alarm system
JP2009139262A (en) * 2007-12-07 2009-06-25 Toshiba Corp Equipment control device and method
JP2010025865A (en) * 2008-07-23 2010-02-04 Panasonic Electric Works Co Ltd Earthquake alarm system
JP2010086133A (en) * 2008-09-30 2010-04-15 Hitachi Software Eng Co Ltd Disaster information collection system using mobile terminal
JP2010193679A (en) * 2009-02-20 2010-09-02 Chugoku Electric Power Co Inc:The Power breaker
US20120056711A1 (en) * 2009-04-29 2012-03-08 QMI Manufacturing Inc. Network-enabled valve management system
JP2014095586A (en) * 2012-11-08 2014-05-22 National Research Institute For Earth Science & Disaster Provention Earthquake identification apparatus, and earthquake identification system and earthquake identification method using the same
JP2014170409A (en) * 2013-03-04 2014-09-18 Toshiba Tec Corp Commodity information processor and program
JP2014178226A (en) * 2013-03-15 2014-09-25 National Research Institute For Earth Science & Disaster Provention System and method for calculating instrumental seismic intensity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096963A (en) * 2016-12-07 2018-06-21 旭化成ホームズ株式会社 Building
JP2021167839A (en) * 2016-12-07 2021-10-21 旭化成ホームズ株式会社 Device and system for managing earthquake information
JP7186264B2 (en) 2016-12-07 2022-12-08 旭化成ホームズ株式会社 Earthquake information management device and system
JP2019211853A (en) * 2018-05-31 2019-12-12 株式会社東芝 River information distribution device and river information distribution method
JP7048421B2 (en) 2018-05-31 2022-04-05 株式会社東芝 River information distribution device and river information distribution method

Also Published As

Publication number Publication date
JP6358923B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
TWI541770B (en) Earthquake alarm broadcast equipment and method thereof
KR101734059B1 (en) Tsunami warning system and method for providing tsunami warnings
CN103353981A (en) RFID/wireless network-based fire escape cloud command system and method
JP2008011038A (en) System and method for information notification, information apparatus, and program
JP5737683B1 (en) Resident evacuation simulation method, system, portable terminal and program for natural flood
KR20140042087A (en) System for detection and notification of earthquake
JP6358923B2 (en) Earthquake warning system
Bindi et al. On-site early-warning system for Bishkek (Kyrgyzstan)
JP2013109484A (en) Evacuation notification system, portable terminal, server, evacuation notification method, and program
JP2022123016A (en) Information processor, terminal
WO2018116493A1 (en) Assignment server, security system, security guard assignment method, and program
US20110223930A1 (en) System and method for monitoring signal quality
JP5923050B2 (en) Evacuation support device, evacuation support system, evacuation support method and program
JP2019053483A (en) Intruder tracking device and intruder tracking method
JP2018197679A (en) Earthquake alarm system
TWI622964B (en) Earthquake warning method and earthquake warning broadcast system thereof
JP2007228478A (en) Earthquake information providing system and base station device
KR101697762B1 (en) System for managing The structure of the Disaster Information
JP2011070492A (en) Disaster prevention system and control method thereof
KR20160140706A (en) Apparatus and method for voice alarm in vessel
US20130194093A1 (en) Personnel Warnings for Hazards
JP5085352B2 (en) Earthquake disaster prevention system
JP2004094641A (en) Evacuation form determination system
JP2010276383A (en) Emergency earthquake warning receiving apparatus
JP2010025865A (en) Earthquake alarm system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250