JP2002188955A - Strength deterioration detection method of structure by using ambiguous external force - Google Patents

Strength deterioration detection method of structure by using ambiguous external force

Info

Publication number
JP2002188955A
JP2002188955A JP2000404407A JP2000404407A JP2002188955A JP 2002188955 A JP2002188955 A JP 2002188955A JP 2000404407 A JP2000404407 A JP 2000404407A JP 2000404407 A JP2000404407 A JP 2000404407A JP 2002188955 A JP2002188955 A JP 2002188955A
Authority
JP
Japan
Prior art keywords
frequency
waveform
frequency distribution
strength deterioration
external force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404407A
Other languages
Japanese (ja)
Inventor
Takayoshi Hirata
能睦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000404407A priority Critical patent/JP2002188955A/en
Publication of JP2002188955A publication Critical patent/JP2002188955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate highly accurately the characteristic frequency of a structure by using an observed vibration waveform, and detect strength deterioration of the structure from irreversible fluctuation of the estimated characteristic frequency. SOLUTION: This method has a constitution by computer signal processing for determining the frequency at which a frequency distribution becomes maximum by using a means for dividing the observed vibration waveform with a short time to acquire partial waveforms, a means for approximating the partial waveforms with periodical waveforms, and a means for collecting the frequencies of the periodical waveforms to acquire the frequency distribution, and detecting the strength deterioration caused by elapse of time from the irreversible fluctuation of the frequency having the maximum distribution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】土木、建築、船舶、航空機、パワ
ープラントなどの産業分野における非破壊検査に利用。
[Industrial applications] Used for nondestructive inspection in industrial fields such as civil engineering, architecture, ships, aircraft, and power plants.

【0002】[0002]

【従来の技術】構造物の老朽化や地震による強度劣化お
よび損傷の状況、あるいはそうした劣化の進行状態を調
べる方法として目視は従来から知られ、広く行われてい
る方法である。研究レベルでは構造物を周期信号で加振
してその応答を過去の応答と比較する周波数応答法、あ
るいは金属の微小破壊に際して放出される超音波を観測
するAE法(アコースティック・エミッション法)があ
る。
2. Description of the Related Art Visual observation is a conventionally known and widely practiced method for examining the state of strength deterioration and damage due to aging and earthquakes of structures and the progress of such deterioration. At the research level, there is a frequency response method that vibrates a structure with a periodic signal and compares the response with the past response, or an AE method (acoustic emission method) that observes ultrasonic waves emitted at the time of minute destruction of metal. .

【0003】[0003]

【発明が解決しようとする課題】従来技術の一つである
周波数応答法は構造物を加振するために通常巨大な設備
が必要とされ、任意の時点で構造物を検査することがで
きないという問題がある。また、AE法は主に金属を対
象としたもので、放出音波と劣化(金属疲労)の関係を
知るためには専門的な知識が必要とされるという問題が
ある。更に問題となるのは、稼働中あるいは利用状態で
の検査が難しいことである。
The frequency response method, which is one of the prior arts, usually requires a huge facility for exciting a structure, and the structure cannot be inspected at any time. There's a problem. In addition, the AE method mainly deals with a metal, and there is a problem that specialized knowledge is required in order to know the relationship between emitted sound waves and deterioration (metal fatigue). A further problem is that it is difficult to check during operation or use.

【0004】本発明が解決しようとする課題は、構造物
を加振するための特別な設備を用いることなく、通常の
利用状態で振動する構造物の観測振動波形だけから強度
劣化に関する情報を検出する方法を提供することであ
る。
[0004] The problem to be solved by the present invention is to detect information relating to strength deterioration only from an observed vibration waveform of a structure vibrating in a normal use state without using special equipment for exciting the structure. Is to provide a way to

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、不確定外力により振動する構造物の観測
振動波形を短時間ごとに区切り部分波形を得る手段と、
前記部分波形を単一の周期波形で近似する手段と、前記
観測振動波形から得られる一連の前記部分波形を近似す
る前記周期波形の周期の頻度分布を求める手段を用い
て、前記頻度分布が最大となる周期から前記構造物の固
有振動数を求め、前記固有振動数の非可逆的変動から前
記構造物の強度劣化を検出することを特徴とする不確定
外力を利用した構造物の強度劣化検出法をその手段とす
る。
In order to solve the above-mentioned problems, the present invention provides a means for obtaining a partial waveform by dividing an observed vibration waveform of a structure vibrating due to an uncertain external force at short intervals,
Means for approximating the partial waveform with a single periodic waveform, and means for determining the frequency distribution of the cycle of the periodic waveform approximating a series of the partial waveforms obtained from the observed vibration waveform, wherein the frequency distribution is maximized. Calculating the natural frequency of the structure from the cycle, and detecting the strength deterioration of the structure using an uncertain external force, wherein the strength deterioration of the structure is detected from the irreversible fluctuation of the natural frequency. The law is the means.

【0006】[0006]

【作用】本発明の作用を、数式および図を用いて以下説
明する。周波数fからfまでの帯域において、周波
数成分(パワースペクトル)がおよそ一様とみなせるよ
うな不確定外力(例えば風、地震、常時微動、車走行振
動)により駆動され振動する構造物に関して、その観測
振動波形を時系列W(t)で表わすものとする。ただ
し、t=1,2,…であり、標本化周波数をFヘルツと
すれば、W(t)は1/F秒間隔で離散化されたデータ
で表わされる。
The operation of the present invention will be described below with reference to equations and figures. In the band from the frequency f L to f H, uncertain external forces, such as the frequency components (power spectrum) can be regarded as approximately uniform with respect to (eg wind, earthquake, microtremor, vehicle traveling vibration) is driven by a structure that vibrates, The observed vibration waveform is represented by a time series W (t). However, if t = 1, 2,... And the sampling frequency is F hertz, W (t) is represented by data discretized at 1 / F second intervals.

【0007】ここで、W(t)を第1から第K番目まで
の、データ数Mでなる部分波形W(m)(k=1,
2,…,K;m=1,2,…,M)に分割する。W
(m)を周期Tなる1つの周期波形S(m,T)で近
似したとして、
Here, W (t) is changed from the first to the K-th partial waveform W k (m) (k = 1,
2,..., K; m = 1, 2,..., M). W
Assuming that k (m) is approximated by one periodic waveform S (m, T) having a period T,

【数1】 と表わした場合に、(Equation 1) Where

【数2】 であれば、S(m,T)はW(m)に対してよい近似
を与えるものとなる。
(Equation 2) Then, S (m, T) gives a good approximation to W k (m).

【0008】W(t)の周波数成分がfからfまで
の帯域に制限されているとし、
Assume that the frequency component of W (t) is limited to the band from f P to f Q ,

【数3】 であるなら、S(m,T)をW(m)のよい近似とす
るような周期T
(Equation 3) , A period T k that makes S (m, T) a good approximation of W k (m) is

【数4】 の範囲に見い出だすことができる。(Equation 4) Can be found in the range.

【0009】上記のTは、以下に示す一般調和解析に
よって高い精度で求めることができる。係数A(T)お
よびB(T)を
The above T k can be determined with high accuracy by the following general harmonic analysis. Coefficients A (T) and B (T)

【数5】 で与えるものとし、S(m,T)を(Equation 5) And S (m, T) is given by

【数6】 とする。(Equation 6) And

【0010】残差波形R(m)は(数1)によって与え
られるものとして、そのパワーV(T)を
Assuming that the residual waveform R (m) is given by (Equation 1), its power V (T) is

【数7】 とする。そこでTを変化させてV(T)が最小となるT
を求め、その値をTとする。
(Equation 7) And Then, by changing T, T (T) at which V (T) is minimized
And its value is set to T k .

【0011】上記の方法により、総ての部分波形W
(m)からTを求めれば、Tは1/fから1/
の間に集中する。W(t)のスペクトルが図1
(a)に示されるようなものとすれば、Tの頻度分布
P(T)は、Kが十分大きいものとして、図1(b)の
ようになる。
According to the above method, all the partial waveforms W
by obtaining a T k from k (m), from T k is 1 / f Q 1 /
to concentrate on during the f P. FIG. 1 shows the spectrum of W (t).
1A, the frequency distribution P (T) of T k is as shown in FIG. 1B assuming that K is sufficiently large.

【0012】W(t)の周波数成分がf(>f)か
らf(<f)の帯域に制限されていても、
[0012] Even if the frequency component of W (t) is restricted to the band from f P (> f L ) to f Q (<f H ),

【数8】 の場合は、(数5)〜(数7)の一般調和解析で求めら
れるTを周期とする1つの正弦派S(m,T)だけ
ではW(m)のよい近似を与えることはできない。
(Equation 8) In the case of, a good approximation of W k (m) is given by only one sinusoid S (m, T k ) whose period is T k obtained by the general harmonic analysis of (Equation 5) to (Equation 7). Can not.

【0013】W(t)の周波数帯域が(数8)で示され
る場合のTは、一般調和解析でW(m)のスペクト
ルを逐次検出する段階で得られる第1番目の正弦波成分
の周期であり、W(t)のスペクトルが図2(a)で示
されるとすれば、Tの頻度分布P(t)は、Kが十分
大きいものとして、図2(b)のようになる。
[0013] In the case where the frequency band of W (t) is represented by (Equation 8), T k is the first sine wave component obtained at the stage of sequentially detecting the spectrum of W k (m) in the general harmonic analysis. Assuming that the spectrum of W (t) is shown in FIG. 2A, the frequency distribution P (t) of T k assumes that K is sufficiently large as shown in FIG. Become.

【0014】W(t)のスペクトルが図1(a)と図2
(a)の和でなる図3(a)に示されるものであれば、
の頻度分布P(T)は、Kが十分大きいものとし
て、図3(b)のようになり、W(t)の帯域幅(f
−f)がF/Mよりも小さい場合、P(T)が最大に
なる周期Tはfとfの中央に位置する周波数の逆
数1/fになる。
The spectrum of W (t) is shown in FIGS.
As shown in FIG. 3A, which is the sum of (a),
The frequency distribution P (T) of T k is as shown in FIG. 3B assuming that K is sufficiently large, and the bandwidth (f Q ) of W (t) is obtained.
If -f P) is smaller than F / M, the period P (T) is maximized T o is the reciprocal 1 / f o of the frequency located in the middle of f P and f Q.

【0015】構造物の固有振動数をf、共振鋭度を
Q、共振帯域幅をf/Qとすれば、上記本発明の作用
により、構造物の観測振動波形W(t)から頻度分布P
(T)を得、f/QがF/Mより小さければ、P
(T)の最大となる周期からT(=1/f)が求め
られることになる。
Assuming that the natural frequency of the structure is f o , the resonance sharpness is Q, and the resonance bandwidth is f o / Q, the frequency of the observed vibration waveform W (t) of the structure is calculated by the operation of the present invention. Distribution P
(T), and if f o / Q is smaller than F / M, P
T o (= 1 / f o ) is obtained from the maximum cycle of (T).

【0016】実際的な例として、建物の固有振動数f
を3ヘルツ、制動係数比h(1/2Q)を0.04、観
測振動波形の標本化周波数Fを100ヘルツ、部分波形
のデータ数Mを40とすると、f/Q=0.24、F
/M=2.5となり、2分間の観測振動波形から300
点の周期の頻度分布を得ることができ、0.01秒刻み
の精度でTを求めることができる。
As a practical example, the natural frequency f o of a building
3 Hz, the damping coefficient ratio h a (1 / 2Q) 0.04, 100 Hz the sampling frequency F of the observed vibration waveform, the data number M of partial waveforms When 40, f o /Q=0.24, F
/M=2.5, which is 300 from the observed vibration waveform for 2 minutes.
It is possible to obtain the frequency distribution of the periods of points, it is possible to determine the T o at the intervals of 0.01 seconds accuracy.

【0017】構造物の固有周期が昼夜の温度変化あるい
は四季の温度変化により変動する場合、その変動は周期
的で可逆的なものであるが、老朽化等による強度劣化で
変動する場合は非可逆的変動になる。従って、上記の方
法により構造物の固有周期を継続的に計測し、固有周期
の非可逆的変動を検知することによって構造物の強度劣
化を検出することが可能になる。
When the natural period of a structure fluctuates due to a temperature change during the day or night or a temperature change during the four seasons, the change is periodic and reversible. It becomes a fluctuation. Accordingly, the natural period of the structure is continuously measured by the above method, and the deterioration of the structure can be detected by detecting the irreversible fluctuation of the natural period.

【0018】観測振動波形W(t)に対する帯域制限が
なく、(数7)のV(T)の最小値を求める際にTの変
化範囲外の周波数成分が十分小さくなっていない場合
は、頻度分布P(T)の両端になるTの上限と下限のと
ころでP(T)は極大を示す。それで、頻度分布の両端
はTの検出において除くものとする。
If there is no band limitation on the observed vibration waveform W (t) and the frequency component outside the change range of T is not sufficiently small when finding the minimum value of V (T) in (Equation 7), P (T) shows a maximum at the upper and lower limits of T at both ends of the distribution P (T). So, both ends of the frequency distribution is assumed, except in the detection of T o.

【0019】部分波形W(m)に分割する前に、観測
振動波形W(t)を帯域制限して頻度分布P(T)の両
端に生じる極大値を抑圧することができる。このような
帯域制限は必要に応じて行なう。
Before dividing into the partial waveform W k (m), the maximum value generated at both ends of the frequency distribution P (T) can be suppressed by band-limiting the observed vibration waveform W (t). Such band limitation is performed as needed.

【0020】本発明の作用として特筆できるのは、固有
振動数(あるいは固有周期)の検出に及ぼす不確定外力
のスペクトルの影響がフーリエ・スペクトルを用いて検
出する場合よりもはるかに小さいことである。観測振動
波形のフーリエ・スペクトルではほとんど検出できない
状態であっても、精度よく固有周期を検出できることを
実施例において示す。
It should be noted that the effect of the present invention is that the influence of the spectrum of the uncertain external force on the detection of the natural frequency (or the natural period) is much smaller than the case where the detection is performed using the Fourier spectrum. . An example shows that the natural period can be detected with high accuracy even in a state where it can hardly be detected by the Fourier spectrum of the observed vibration waveform.

【0021】[0021]

【実施例】図4は、観測振動波形W(t)から構造物の
固有振動数Tを求めるためのコンピュータ・ソフトウ
ェアのフローチャートであり、本発明の不確定外力を利
用した構造物の強度劣化検出法の実施例を示したもので
ある。同図において、1は観測振動波形W(t)を短時
間ごとに区切り部分波形W(m)を得る、部分波形読
込みブロックであり、2はW(m)を単一の周期波形
で近似する、波形解析ブロックであり、3は波形解析ブ
ロックで求めた周期Tを用いて周期の頻度分布P
(T)を求める、頻度分布作成ブロックであり、K個の
周期Tで出来上がった頻度分布P(T)が最大となる
周期を構造物の固有周期Tとして出力する。
FIG. 4 is a flow chart of computer software for obtaining a natural frequency To of a structure from an observed vibration waveform W (t). 4 shows an example of a detection method. In the figure, reference numeral 1 denotes a partial waveform reading block which obtains a partial waveform W k (m) by dividing the observed vibration waveform W (t) at short intervals, and 2 denotes a single periodic waveform for W k (m). 3 is a waveform analysis block to be approximated, and 3 is a frequency distribution P of a cycle using the cycle Tk obtained in the waveform analysis block.
(T) seeking a frequency distribution creation block, frequency distribution P the finished in the K period T k (T) outputs the cycle becomes maximum as the natural period T o of the structure.

【0022】図4の実施例では、K個の部分波形から1
つの頻度分布P(T)を得て、これよりTを求めて出
力する演算のフローチャートが示されているが、観測振
動波形W(t)に対して継続的にこの演算を行なうこと
により、Tの時間変動を知ることができる。例えばT
をおよそ0.3秒として、Mを40、Kを300、F
を100ヘルツとすれば、2分ごとにTが出力され、
1日が720点のデータで表わされるTの変動波形が
得られる。
In the embodiment shown in FIG. 4, 1 is calculated from K partial waveforms.
One of the obtained frequency distribution P (T), although the flow chart of operation is illustrated which determines and outputs it from T o, continuously by performing this operation on the observed vibration waveform W (t), it is possible to know the time variation of T o. For example, T
When o is about 0.3 seconds, M is 40, K is 300, F
If the 100 Hz, T o is output every 2 minutes,
1 day to obtain the variation waveform represented by T o in data 720 points.

【0023】コンピュータ・シミュレーションにより、
一自由度系(単一共振系)に不確定外力を加え、系の応
答振動波形から固有周期を推定した結果について以下説
明する。図5は不確定外力の加速度振動波形(a)およ
びそのフーリエ・スペクトル(b)である。系の固有周
期を0.30秒、h(=1/2Q)を0.02、0.0
4、0.08として、上記図5の不確定外力を入力した
ときの系の応答波形(観測振動波形)を求め、この応答
波形から周期の頻度分布を求めた。
By computer simulation,
The result of estimating the natural period from the response vibration waveform of the system by applying an uncertain external force to the one-degree-of-freedom system (single resonance system) will be described below. FIG. 5 shows an acceleration vibration waveform (a) of an uncertain external force and its Fourier spectrum (b). The natural period of the system is 0.30 seconds, h (= 1 / 2Q) is 0.02, 0.0
4 and 0.08, the response waveform (observed vibration waveform) of the system when the uncertain external force shown in FIG. 5 was input was obtained, and the frequency distribution of the period was obtained from this response waveform.

【0024】図6はhを0.02とした場合の応答波形
(a)と周期の頻度分布(b)と比較のために示した応
答波形のフーリエ・スペクトル(c)である。図7はh
を0.04とした場合の応答波形(a)と周期の頻度分
布(b)とフーリエ・スペクトル(c)である。図8は
hを0.08とした場合の応答波形(a)と周期の頻度
分布(b)とフーリエ・スペクトル(c)である。
FIG. 6 shows the Fourier spectrum (c) of the response waveform shown for comparison with the response waveform (a) and the frequency distribution of the period (b) when h is set to 0.02. FIG. 7 shows h
Is a response waveform (a), a frequency distribution of a cycle (b), and a Fourier spectrum (c) in the case where is set to 0.04. FIG. 8 shows the response waveform (a), the frequency distribution of the period (b), and the Fourier spectrum (c) when h is set to 0.08.

【0025】上記の頻度分布は(数5)において、n=
1、M=40、F=100、周期Tを0.20秒から
0.40秒まで0.01秒刻みで変化させて求めたもの
であり、各頻度分布のデータ数Kは300、頻度分布の
両端(T=0.20と0.40)は除かれている。これ
らの結果から、フーリエ・スペクトルでは検出困難な場
合(図7の(c)と図8の(c))でも、周期の頻度分
布によれば高い精度で固有周期を検出できることがわか
る。
The above frequency distribution is expressed by (Equation 5) where n =
1, M = 40, F = 100, the cycle T was changed from 0.20 seconds to 0.40 seconds in increments of 0.01 second, and the number K of data of each frequency distribution was 300; (T = 0.20 and 0.40) are excluded. From these results, it can be seen that even in the case where it is difficult to detect with the Fourier spectrum (FIG. 7C and FIG. 8C), the natural period can be detected with high accuracy according to the frequency distribution of the period.

【0026】[0026]

【発明の効果】風、地震、常時微動あるいは車輛走行振
動などで駆動された構造物の観測振動波形から、構造物
の固有振動数を高い精度で検出できる本発明による技術
は、構造物の強度劣化に伴う固有振動数の変化を捕らえ
るのに適しており、構造物の固有振動数を継続的に計測
することによって強度劣化の非破壊検査を可能にすると
いう効果がある。
According to the present invention, the natural frequency of a structure can be detected with high accuracy from the observed vibration waveform of the structure driven by wind, earthquake, microtremor or vehicle running vibration. It is suitable for capturing changes in natural frequency due to deterioration, and has the effect of enabling nondestructive inspection of strength deterioration by continuously measuring the natural frequency of a structure.

【0027】また、本発明は稼働中のパワープラントや
運航中の船舶、航空機に生じる構造上の変化や異常を固
有振動数の継続的計測によって監視できるという効果も
ある。
Further, the present invention has an effect that structural changes or abnormalities occurring in an operating power plant, an operating ship or an aircraft can be monitored by continuous measurement of a natural frequency.

【0028】[0028]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作用を説明するための図である。FIG. 1 is a diagram for explaining the operation of the present invention.

【図2】本発明の作用を説明するための図である。FIG. 2 is a diagram for explaining the operation of the present invention.

【図3】本発明の作用を説明するための図である。FIG. 3 is a diagram for explaining the operation of the present invention.

【図4】本発明をコンピュータで実施するためのソフト
ウェアのフローチャートを示す図である。
FIG. 4 is a diagram showing a flowchart of software for implementing the present invention on a computer.

【図5】不確定外力の加速度振動波形(a)およびその
フーリエ・スペクトル(b)を示す図である。
FIG. 5 is a diagram showing an acceleration vibration waveform of an uncertain external force (a) and its Fourier spectrum (b).

【図6】h=0.02の場合の応答波形(a)と周期の
頻度分布(b)およびフーリエ・スペクトル(c)を示
す図である。
FIG. 6 is a diagram showing a response waveform (a), a frequency distribution of periods (b), and a Fourier spectrum (c) when h = 0.02.

【図7】h=0.04の場合の応答波形(a)と周期の
頻度分布(b)およびフーリエ・スペクトル(c)を示
す図である。
FIG. 7 is a diagram showing a response waveform (a), a frequency distribution of periods (b), and a Fourier spectrum (c) when h = 0.04.

【図8】h=0.08の場合の応答波形(a)と周期の
頻度分布(b)およびフーリエ・スペクトル(c)を示
す図である。
FIG. 8 is a diagram showing a response waveform (a), a frequency distribution of periods (b), and a Fourier spectrum (c) when h = 0.08.

【符号の説明】[Explanation of symbols]

1 部分波形読込みブロック 2 波形解析ブロック 3 頻度分布作成ブロック 1 partial waveform reading block 2 waveform analysis block 3 frequency distribution creation block

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不確定外力により振動する構造物の観測振
動波形を短時間ごとに区切り部分波形を得る手段と、前
記部分波形を単一の周期波形で近似する手段と、前記観
測振動波形から得られる一連の前記部分波形を近似する
前記周期波形の周期の頻度分布を求める手段を用いて、
前記頻度分布が最大となる周期から前記構造物の固有振
動数を求め、前記固有振動数の非可逆的変動から前記構
造物の強度劣化を検出することを特徴とする不確定外力
を利用した構造物の強度劣化検出法。
1. A means for dividing an observed vibration waveform of a structure vibrating due to an uncertain external force at short intervals to obtain a partial waveform; a means for approximating the partial waveform with a single periodic waveform; Using means for determining the frequency distribution of the cycle of the periodic waveform that approximates the series of partial waveforms obtained,
A structure using an uncertain external force, wherein a natural frequency of the structure is obtained from a cycle at which the frequency distribution is maximum, and strength deterioration of the structure is detected from irreversible fluctuation of the natural frequency. A method for detecting the strength deterioration of an object.
JP2000404407A 2000-12-21 2000-12-21 Strength deterioration detection method of structure by using ambiguous external force Pending JP2002188955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404407A JP2002188955A (en) 2000-12-21 2000-12-21 Strength deterioration detection method of structure by using ambiguous external force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404407A JP2002188955A (en) 2000-12-21 2000-12-21 Strength deterioration detection method of structure by using ambiguous external force

Publications (1)

Publication Number Publication Date
JP2002188955A true JP2002188955A (en) 2002-07-05

Family

ID=18868367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404407A Pending JP2002188955A (en) 2000-12-21 2000-12-21 Strength deterioration detection method of structure by using ambiguous external force

Country Status (1)

Country Link
JP (1) JP2002188955A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170861A (en) * 2004-12-16 2006-06-29 Public Works Research Institute System for determining damaged degree of bridge in earthquake, and damaged degree diagnostic unit
JP2008008810A (en) * 2006-06-30 2008-01-17 Central Res Inst Of Electric Power Ind Method for determining soundness of concrete building
JP2010261754A (en) * 2009-04-30 2010-11-18 Central Res Inst Of Electric Power Ind Soundness diagnosis method of building based on microtremor measurement, diagnosis apparatus, and diagnosis program
JP2012225814A (en) * 2011-04-21 2012-11-15 Takayoshi Hirata Method for detecting strength change of structure
JP2015175787A (en) * 2014-03-17 2015-10-05 サクサ株式会社 Oscillation detection device
KR20220106305A (en) * 2021-01-22 2022-07-29 박영권 Early Detection System of Building Collapse

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170861A (en) * 2004-12-16 2006-06-29 Public Works Research Institute System for determining damaged degree of bridge in earthquake, and damaged degree diagnostic unit
JP4657699B2 (en) * 2004-12-16 2011-03-23 独立行政法人土木研究所 Earthquake damage assessment system and damage assessment unit
JP2008008810A (en) * 2006-06-30 2008-01-17 Central Res Inst Of Electric Power Ind Method for determining soundness of concrete building
JP2010261754A (en) * 2009-04-30 2010-11-18 Central Res Inst Of Electric Power Ind Soundness diagnosis method of building based on microtremor measurement, diagnosis apparatus, and diagnosis program
JP2012225814A (en) * 2011-04-21 2012-11-15 Takayoshi Hirata Method for detecting strength change of structure
JP2015175787A (en) * 2014-03-17 2015-10-05 サクサ株式会社 Oscillation detection device
KR20220106305A (en) * 2021-01-22 2022-07-29 박영권 Early Detection System of Building Collapse
KR102523833B1 (en) * 2021-01-22 2023-04-19 박영권 Early Detection System of Building Collapse

Similar Documents

Publication Publication Date Title
Owen et al. The application of auto–regressive time series modelling for the time–frequency analysis of civil engineering structures
Qi et al. Identifying mode shapes of girder bridges using dynamic responses extracted from a moving vehicle under impact excitation
Chen et al. A method to distinguish harmonic frequencies and remove the harmonic effect in operational modal analysis of rotating structures
Richardson et al. Modal parameter estimation from operating data
Amaravadi et al. Structural health monitoring using wavelet transforms
CN106918389A (en) It is a kind of based on the vibration modal analysis method of doppler optical displacement method and its application
CN114595719A (en) Mine aftershock monitoring method based on VMD and IRCNN
CN111487318A (en) Time-varying structure instantaneous frequency extraction method
JP2002188955A (en) Strength deterioration detection method of structure by using ambiguous external force
JPS63186122A (en) Abnormality diagnosing system for structure
JP2008203224A (en) Diagnostic system and diagnostic technique of concrete structure
Zhang et al. Ambient vibration testing & modal identification of an office building
Perez-Macias et al. Wavelet transform-fractal dimension-based methodology for damage assessment in truss type structures
Haldar et al. Data analysis challenges in structural health assessment using measured dynamic responses
JP2000065945A (en) Device and method for estimating structure using underground speed
Bogomolov et al. Entropy-based technique for denoising of acoustic emission signals
Quqa et al. On the Use of Singular Vectors for the Flexibility‐Based Damage Detection under the Assumption of Unknown Structural Masses
Hernández-Maqueda et al. Incipient Damage Detection in a Truss-Type Bridge using vibration responses and MUSIC Technique
Searle et al. Crack detection in lap-joints using acoustic emission
Fasel et al. Piezoelectric active sensing using chaotic excitations and state space reconstruction
Mendrok et al. An application of operational deflection shapes and spatial filtration for damage detection
Xu et al. Operational modal analysis of a rectangular plate using noncontact acoustic excitation
CN110146276A (en) A kind of Suo Liyu bending stiffness monitoring method and system based on wireless sensor
JP2002348949A (en) Dynamic seismic resistance assessment system for building
JP5569976B2 (en) Method for detecting strength change of structure