JPH0263194B2 - - Google Patents

Info

Publication number
JPH0263194B2
JPH0263194B2 JP60154131A JP15413185A JPH0263194B2 JP H0263194 B2 JPH0263194 B2 JP H0263194B2 JP 60154131 A JP60154131 A JP 60154131A JP 15413185 A JP15413185 A JP 15413185A JP H0263194 B2 JPH0263194 B2 JP H0263194B2
Authority
JP
Japan
Prior art keywords
sensor
output
epicenter
observation
seismometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60154131A
Other languages
Japanese (ja)
Other versions
JPS6215482A (en
Inventor
Yutaka Nakamura
Kenji Tomita
Tamio Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Oki Electric Industry Co Ltd
Original Assignee
Railway Technical Research Institute
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Oki Electric Industry Co Ltd filed Critical Railway Technical Research Institute
Priority to JP60154131A priority Critical patent/JPS6215482A/en
Publication of JPS6215482A publication Critical patent/JPS6215482A/en
Publication of JPH0263194B2 publication Critical patent/JPH0263194B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、地震波の観測点から震源までの距離
(震源距離)をリアルタイムで時々刻々と計算す
る震源距離算出装置である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention is an epicenter distance calculation device that continuously calculates the distance from an observation point of seismic waves to the epicenter (epicenter distance) in real time.

(従来技術) 従来、震源距離を算出する方法として、3点以
上の複数の観測点で地震波の到来時刻を検出し
て、震源を求めてから震源距離を算出する方法、
1観測点でP波とS波の到来時刻の差(P〜S時
間)を検出し、P〜S時間が震源距離に比例する
ことを利用して、震源距離を算出する方法があ
る。いずれも、地震波の到来から数10秒ないし数
分経過しないと、震源距離を知ることができな
い。
(Prior art) Conventional methods for calculating the epicenter distance include detecting the arrival time of earthquake waves at three or more observation points, determining the epicenter, and then calculating the epicenter distance;
There is a method of detecting the difference between the arrival times of P waves and S waves (P to S time) at one observation point, and calculating the epicenter distance by utilizing the fact that the P to S time is proportional to the epicenter distance. In either case, the epicenter distance cannot be determined until several tens of seconds to several minutes have passed after the arrival of the seismic waves.

(発明の目的) 本発明の目的は、固有周期が異なるようにして
得た観測出力から、地震の震源距離を算出する装
置を提供することである。
(Object of the Invention) An object of the present invention is to provide a device that calculates the epicenter distance of an earthquake from observation outputs obtained with different natural periods.

(発明の構成) 本発明は、固有周期の異なる2種の地震計によ
る地震観測出力を1組とし、固有周期が最も長い
地震計が含まれる組と固有周期が最も短い地震計
が含まれる組の2組の観測出力を入力し、各組の
観測出力の指数平滑値を算出する手段と、各組の
地震計の観測波形の前記指数平滑値と各組の地震
計の固有周期とにより、高低2つの周波数帯域に
おける卓越周波数とその成分振幅をそれぞれ算出
する卓越周波数算出手段と、前記2組の卓越周波
数算出手段より得た2つの成分振幅の比の対数と
前記2組の卓越周波数算出手段より得た2つの卓
越周波数の差との比を算出する手段とを有して観
測地点の震源距離を得ることを特徴とする震源距
離算出装置である。
(Structure of the Invention) The present invention sets earthquake observation outputs from two types of seismometers with different natural periods into one set, and a set includes the seismometer with the longest natural period and a set includes the seismometer with the shortest natural period. means for inputting two sets of observation outputs and calculating an exponentially smoothed value of each set of observation outputs, and the exponentially smoothed value of the observed waveform of each set of seismometers and the natural period of each set of seismometers, Predominant frequency calculation means for calculating the predominant frequency and its component amplitude in two high and low frequency bands, and the logarithm of the ratio of the two component amplitudes obtained by the two sets of predominant frequency calculation means, and the predominant frequency calculation means for the two sets. This apparatus is characterized in that it obtains the epicenter distance of an observation point by calculating the ratio of the difference between the two dominant frequencies obtained from the method.

(第1の実施例) 震源付近からはあらゆる周波数成分の波動が均
一に周辺に放射していると考えることができる。
しかし、地震波動が伝播するとき、一般に高い周
波数の振動ほど減衰しやすいため、地震波動中の
高い周波数成分の振幅と低い周波数成分の振幅と
の比は波動の伝播距離が大きくなるほど小さくな
る。したがつて、ある地点で観測される地震波動
中の二つの卓越振動数の振動の振動数と成分振幅
値の組合せにより、その地点が震源からどのくら
い離れているか推定することができる。また、ひ
とつの地震を固有周期の異なるいくつかの地震計
で同時に観測すると、それぞれの地震計はそれぞ
れの固有周期に近い振動に強く感応するため、そ
れらの出力波形は第1図のように異なつたものと
なるが、地震計の固有周期があらかじめわかつて
いれば、地震動の卓越周期や振幅をこれらの地震
計の出力振幅から推定することができる。本発明
は、固有周期の異なる2種の地震計による地震波
観測出力を1組として、2つの振動数帯域に属す
る2組の地震波観測出力に基づいて、それぞれの
帯域での卓越振動数と振幅を算出し、これらを用
いて震源距離を推定しようとするものである。
(First Example) It can be considered that waves of all frequency components are uniformly radiated to the surrounding area from the vicinity of the epicenter.
However, when seismic waves propagate, generally higher frequency vibrations are more easily attenuated, so the ratio of the amplitude of high frequency components to the amplitude of low frequency components in seismic waves becomes smaller as the distance of wave propagation increases. Therefore, it is possible to estimate how far that point is from the epicenter by combining the frequencies and component amplitude values of the two dominant frequencies in seismic waves observed at a certain point. Furthermore, when one earthquake is observed simultaneously by several seismometers with different natural periods, each seismometer is strongly sensitive to vibrations close to its own natural period, so their output waveforms will be different, as shown in Figure 1. However, if the natural period of a seismometer is known in advance, the dominant period and amplitude of earthquake motion can be estimated from the output amplitude of these seismometers. The present invention uses one set of seismic wave observation outputs from two types of seismometers with different natural periods, and calculates the dominant frequency and amplitude in each frequency band based on two sets of seismic wave observation outputs belonging to two frequency bands. The idea is to use these calculations to estimate the epicenter distance.

第2図は第1の実施例を示すブロツク図であ
る。1,2,3,4は同一地点の地動を検出する
センサでそれぞれの固有周波数は、たとえば第1
のセンサ1は0.1Hz、第2のセンサ2は0.5Hz、第
3のセンサ3は1Hz、第4のセンサ4は5Hzのよ
うに異なる。51,52,53,54は前記セン
サ1,2,3,4よりの検出信号を増幅するアン
プ、61,62,63,64はバツフアアンプ、
8はセンサ1,2,3,4からの検出信号より地
動のデータを処理して、震源距離を算出する処理
装置である。処理装置8は標本化手段111,1
12,113,114、指数平滑化手段121,
122,123,124、卓越周期算出手段13
1,132、震源距離算出手段14、震源距離出
力手段15により構成される。第3図は実施例の
フローチヤートである。
FIG. 2 is a block diagram showing the first embodiment. 1, 2, 3, and 4 are sensors that detect ground motion at the same point, and their respective natural frequencies are, for example, the first
Sensor 1 is 0.1 Hz, second sensor 2 is 0.5 Hz, third sensor 3 is 1 Hz, and fourth sensor 4 is 5 Hz. 51, 52, 53, 54 are amplifiers that amplify the detection signals from the sensors 1, 2, 3, 4; 61, 62, 63, 64 are buffer amplifiers;
8 is a processing device that processes ground motion data from detection signals from sensors 1, 2, 3, and 4 to calculate the epicenter distance. The processing device 8 includes sampling means 111,1
12, 113, 114, exponential smoothing means 121,
122, 123, 124, dominant period calculation means 13
1,132, an epicenter distance calculation means 14, and an epicenter distance output means 15. FIG. 3 is a flowchart of the embodiment.

センサ1〜4は設置されている地点の地動を常
時検出し、これを電気的信号に変換して処理装置
8に送出している。処理装置8は、センサ1,
2,3,4で検出されてアンプ51,52,5
3,54、バツフアアンプ61,62,63,6
4を介して絶えず送られてくる地動の情報を取り
こんでいる。
The sensors 1 to 4 constantly detect ground motion at the location where they are installed, convert this into an electrical signal, and send it to the processing device 8. The processing device 8 includes the sensor 1,
2, 3, 4 detected and amplifiers 51, 52, 5
3, 54, buffer amplifier 61, 62, 63, 6
It takes in ground motion information that is constantly sent through 4.

標本化手段11は、前記各センサ1,2,3,
4の情報を所定の時間間隔(たとえば1/50〜1/15
0)で標本化し、その過去何回分かのサンプリン
グ情報の平均値より入力データの直流分であるオ
フセツトレベルの算出を行う。このオフセツトレ
ベルは時々刻々得られるサンプリング情報によつ
て絶えず更新されている。また、センサ1,2,
3,4によつて検出されて時々刻々送られてくる
4つの地動情報のサンプリング値からオフセツト
レベルを除去した値x1(t)、x2(t)、x3(t)、x4
(t)を算出する。サンプリング値をxsi(t)、オ
フセツトレベルをxpiとすると、xi(t)=xsi(t)
−xpi(i=1、2、3、4)である。
The sampling means 11 includes each of the sensors 1, 2, 3,
4 information at predetermined time intervals (for example, 1/50 to 1/15
0), and the offset level, which is the direct current component of the input data, is calculated from the average value of the past sampling information. This offset level is constantly updated based on sampling information obtained from time to time. In addition, sensors 1, 2,
The values obtained by removing the offset level from the four sampling values of ground motion information detected by 3 and 4 and sent from time to time x 1 (t), x 2 (t), x 3 (t), x 4
(t) is calculated. If the sampling value is x si (t) and the offset level is x pi , then x i (t) = x si (t)
−x pi (i=1, 2, 3, 4).

指数平滑化手段121,122,123,12
4は前記のxi(t)の平滑化を行う。すなわち、
指数平滑値xai(t)は次式で算出する。
Exponential smoothing means 121, 122, 123, 12
4 performs the smoothing of x i (t) described above. That is,
The exponential smoothing value x ai (t) is calculated using the following formula.

xai(t)=xai(t−1)×αi+xi 2(t) ……(1) αiは0.9程度の定数である。またxai(t−1)は
時刻tに対し1サンプル前の指数平滑値である。
x ai (t)=x ai (t-1)×α i +x i 2 (t) ……(1) α i is a constant of about 0.9. Moreover, x ai (t-1) is an exponentially smoothed value one sample before time t.

本平滑法により、信号に重畳したノイズ成分の
影響を低く抑えて、振動波形の包絡線の変動をリ
アルタイムに把握することができる。
With this smoothing method, it is possible to suppress the influence of noise components superimposed on the signal, and to grasp fluctuations in the envelope of the vibration waveform in real time.

因みにこの(1)式の意味は、以下のことを示すこ
とは自明である。
Incidentally, it is obvious that the meaning of this equation (1) indicates the following.

xai(t)=xai(t−1)×αi+xi 2(t)=(xai
t−2)×αi+xi 2(t−1))×αi+x1 2(t) =xai(t−2)×αi 2+xi 2(t−1)×αi+x1
t)=(xai(t−3)×αi+xi 2(t−2))×αi 2
+xi 2(t−1)×
αi+xi 2(t) =xai(t−3)×αi 3+xi 2(t−2)×αi 2+xi 2
(t−1)×αi+xi 2(t) =…+xi 2(t−n)×αi n+…+xi 2(t−3) ×αi 3+xi 2(t−2)×αi 2+xi 2(t−1)×α
i+xi 2(t) すなわち、(1)式は、現在の瞬時自乗振幅の影響
はそのままで、1ステツプ過去に遡る毎にその時
の瞬時自乗振幅の影響度がαi倍になるような瞬時
自乗振幅の累積を表わしている。もし、xi 2(t)
が一定であれば、(1)式はこの一定値に初期値1公
比αiの等比級の和を乗じたものになる。もし、αi
が1未満であればこの等比級数の和は有限とな
り、1/(1−αi)、となる。したがつて、(1)式
に(1−αi)を乗じたものは自乗振幅値を平滑化
した包絡振幅をあらわす。このような平滑は過去
の瞬時振幅の影響が指数関数的に減少するため、
指数平滑と呼んでいる。このような平滑法は電気
の平滑回路をデイジタル的に模したものであり、
電気では平滑回路は一般的に用いられている。
x ai (t)=x ai (t-1)×α i +x i 2 (t)=(x ai (
t-2)×α i +x i 2 (t-1))×α i +x 1 2 (t) =x ai (t-2)×α i 2 +x i 2 (t-1)×α i +x 1 (
t)=(x ai (t-3)×α i +x i 2 (t-2))×α i 2
+x i 2 (t-1)×
α i +x i 2 (t) =x ai (t-3)×α i 3 +x i 2 (t-2)×α i 2 +x i 2
(t-1)×α i +x i 2 (t) =…+x i 2 (t-n)×α i n +…+x i 2 (t-3) ×α i 3 +x i 2 (t-2) ×α i 2 +x i 2 (t−1)×α
i + x i 2 (t) In other words, Equation (1) expresses the effect of the current instantaneous squared amplitude as it is, but each time you go back one step to the past, the influence of the instantaneous squared amplitude at that time increases by α i times. It represents the accumulation of squared amplitudes. If x i 2 (t)
If is constant, then Equation (1) will be obtained by multiplying this constant value by the sum of the geometric series of the initial value 1 common ratio α i . If α i
If is less than 1, the sum of this geometric series is finite and becomes 1/(1-α i ). Therefore, equation (1) multiplied by (1-α i ) represents the envelope amplitude obtained by smoothing the squared amplitude value. Such smoothing reduces the influence of past instantaneous amplitudes exponentially, so
It's called exponential smoothing. This smoothing method digitally imitates an electrical smoothing circuit,
Smoothing circuits are commonly used in electricity.

本平滑法により、信号に重畳したノイズ成分の
影響を低く抑えて、振動波形の包絡線の変動をリ
アルタイムに把握することができる。なお、(2)式
などにみられるxiなどの振幅値は、式の展開から
も明らかなように瞬時瞬間の振幅値ではなく振動
波形の包絡線の変動で表わされる振幅値である。
また、それらの比を算出するものであるから包絡
振幅値が定数倍されていても問題はない。そこ
で、計算を簡単にするためにも包絡振幅値を算出
する平滑法を定義するにあたつて、(1−αi)を
乗じなかつた。
With this smoothing method, it is possible to suppress the influence of noise components superimposed on the signal, and to grasp fluctuations in the envelope of the vibration waveform in real time. Note that, as is clear from the expansion of the equation, the amplitude values such as x i in equation (2) are not instantaneous amplitude values but amplitude values expressed by fluctuations in the envelope of the vibration waveform.
Further, since the ratio thereof is calculated, there is no problem even if the envelope amplitude value is multiplied by a constant. Therefore, in order to simplify the calculation, when defining the smoothing method for calculating the envelope amplitude value, (1-α i ) was not multiplied.

1台のセンサの固有周期1Hz、出力信号をx1
(t)、他の1台の固有周波数2Hz、出力信号をx2
(t)とすると、卓越周波数(t)は、次式で計
算する。
Natural period of one sensor 1 Hz, output signal x 1
(t), the natural frequency of the other one is 2 Hz, the output signal is x 2
(t), the dominant frequency (t) is calculated using the following formula.

(t)2 ={(2 2×x2(t)−1 2×x1(t)/2 2×x1 2
(t)−1 2×x2 2(t)}1/21 2 センサ1,2の固有周波数をω1、ω2、減衰定
数をh1、h2とし、地表振動の真の加速度波形をy
とすると(2)、(3)式で示す運動方式に従つて出力波
形が電気信号として出力される。
(t) 2 = {( 2 2 ×x 2 (t) − 1 2 ×x 1 (t) / 2 2 ×x 1 2
(t) − 1 2 ×x 2 2 (t)} 1/21 2 Let the natural frequencies of sensors 1 and 2 be ω 1 , ω 2 , the damping constants be h 1 , h 2 , and the true acceleration of ground vibration waveform y
Then, the output waveform is output as an electrical signal according to the motion system shown in equations (2) and (3).

1+2h1ω1x〓1+ω1 2x1=2h1ω1y¨ (2) x¨2+2h2ω2x〓2+ω2 2x2=2h2ω2y¨ (3) この場合、センサ1,2は振子の振動がそのま
ま電気信号に変えられて出力するものであつて、
x1、x2が相対変位に、x〓1、x〓2が相対速度に、x¨1
2が相対加速度に対応した出力波形である。
1 +2h 1 ω 1 x〓 11 2 x 1 =2h 1 ω 1 y¨ (2) x¨ 2 +2h 2 ω 2 x〓 22 2 x 2 =2h 2 ω 2 y¨ (3) In this case, the sensors 1 and 2 convert the vibration of the pendulum directly into an electrical signal and output it.
x 1 , x 2 are relative displacements, x〓 1 , x〓 2 are relative velocities, x ¨ 1 ,
x¨2 is the output waveform corresponding to relative acceleration.

センサ1,2の出力値は種々のものをとること
が可能であるが、本実施例では変位対応のx1、x2
を出力するものを例示している。
The output values of sensors 1 and 2 can take various values, but in this example, x 1 and x 2 corresponding to displacement
This example shows what outputs .

y=aejt(a>0) (4) x1=x1ej(t+1)(x1>0) (5) x2=x2ej(t+2)(x2>0) (6) とおくと、(2)式より (ω1 2−ω2+j2h1ω1ω)x1ej(t+1) =−2h1ω12ejt ∴x1=−2h1ω12/ω1−ω2+j2h1ω1ω・e-j1(7) x1は速度に比例する出力であり、実数(正)で
あるから、 同様にして、 入力速度振幅はa〓、これを未知数Xとおく、
また入力振動数はω、これも未知数と考え、X、
ωをx1、x2から導く。
y=ae jt (a>0) (4) x 1 =x 1 e j(t+1) (x 1 >0) (5) x 2 =x 2 e j(t+2) ( x 2 > 0) (6) Then, from equation (2), (ω 1 2 −ω 2 +j2h 1 ω 1 ω) x 1 e j(t+1) = −2h 1 ω 12 e jt ∴x 1 = −2h 1 ω 121 −ω 2 +j2h 1 ω 1 ω・e -j1 (7) x 1 is an output proportional to speed and is a real number (positive) from, Similarly, The input speed amplitude is a〓, and this is set as the unknown number X.
Also, the input frequency is ω, which is also considered an unknown quantity, and X,
Derive ω from x 1 and x 2 .

(8)式、(9)式より、 x1 2{(ω1 2−ω22+(2h1ω1ω)2}=4h1 2ω1 2
ω2X2(10) x2 2{(ω2 2−ω22+(2h1ω1ω)2}=4h2 2ω2 2
ω2X2(11) さらに(10)、〓式より 4h2 2ω2 2x1 2{(ω1 2−ω22+(2h1ω1ω)2}−4h1 2
ω1 2x2 2{(ω2 2−ω22+(2h2ω2ω)2}=0 (h2 2ω2 2x1 2−h1 2ω1 2x2 2)ω4+(−2h2 2x1 2+4h1 2h2
2x1 2 +2h1 2x2 2−4h2 2h1 2x2 2)ω1 2ω2 2ω2+h2 2ω2 2x1 2ω
1 4−h1 2ω1 2x2 2ω2 4=0 (h2 2ω2 2x1 2−h1 2ω1 2x2 2)ω4+{−2h2 2x1(1−2h1
2)+2h1 2x2 2(1 −2h2 2)}ω1 2ω2 2ω2+h2 2ω2 2x1 2−h1 2ωx2 2ω2 4
=0(12) ここで、 A=h2 2ω2 2x1 2−h1 2ω1 2x2 2 (13) B={−h2 2x1 2(1−2h1 2)+h1 2x2 2(1−2h2 2
}ω1 2ω2 2(14) C=h2 2ω2 2x1 2ω1 4−h1 2ω1 2x2 2ω2 4 (15) とおけば、(12)式は Aω4+2Bω2+C=0 (16) となる。(16)式をω2についてω2>0を考慮して
解けば となる。ω2>0であるためには B2−AC>0かつAC<0。
From equations (8) and (9), x 1 2 {(ω 1 2 −ω 2 ) 2 + (2h 1 ω 1 ω) 2 }=4h 1 2 ω 1 2
ω 2 _ _ _ _ _ _ _ _ _ _ _ _ _
ω 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ω 1 2 x 2 2 {(ω 2 2 −ω 2 ) 2 + (2h 2 ω 2 ω) 2 }=0 (h 2 2 ω 2 2 x 1 2 −h 1 2 ω 1 2 x 2 24 + (-2h 2 2 x 1 2 +4h 1 2 h 2
2 x 1 2 +2h 1 2 x 2 2 −4h 2 2 h 1 2 x 2 21 2 ω 2 2 ω 2 +h 2 2 ω 2 2 x 1 2 ω
1 4 −h 1 2 ω 1 2 x 2 2 ω 2 4 = 0 (h 2 2 ω 2 2 x 1 2 −h 1 2 ω 1 2 x 2 2 ) ω 4 + {−2h 2 2 x 1 (1 −2h 1
2 ) +2h 1 2 x 2 2 (1 −2h 2 2 )}ω 1 2 ω 2 2 ω 2 +h 2 2 ω 2 2 x 1 2 −h 1 2 ωx 2 2 ω 2 4
=0(12) Here, A=h 2 2 ω 2 2 x 1 2 −h 1 2 ω 1 2 x 2 2 (13) B={−h 2 2 x 1 2 (1−2h 1 2 )+h 1 2 x 2 2 (1-2h 2 2 )
1 2 ω 2 2 (14) C=h 2 2 ω 2 2 x 1 2 ω 1 4 −h 1 2 ω 1 2 x 2 2 ω 2 4 (15) Then, equation (12) becomes Aω 4 +2Bω 2 +C=0 (16). If we solve equation (16) for ω 2 considering ω 2 >0, then becomes. In order for ω 2 >0, B 2 −AC>0 and AC<0.

(10)、(11)式より x1 2=(2h1ω1ωX)2/(ω1 2−ω22+(2h1ω1ω
2(18) x2 2=(2h2ω2ωX)2/(ω2 2−ω22+(2h2ω2ω
2(19) (18)、(19)式を(13)式に代入して A=4h1 2h2 2ω1 2ω2 2ω2X2/(ω1 2−ω22+(2h1ω1
ω)2−4h1 2h2 2ω1 2ω2 2ω2X2/(ω2 2−ω22+(2h2
ω2ω)2 =4h1 2h2 2ω1 2ω2 2ωX2/{(ω1 2−ω22+(2h1ω
1ω)2}{(ω2 2−ω)2}+(2h2ω2ω)2} ・{(ω2 2+ω1 2)(ω2 2−ω1 2)−2(ω2 2−ω1 2
)ω2+4(h2 2ω2 2−h1 2ω1 2)ω2}(20) (18)、(19)式を(15)式に代入して C=h2 2ω2 2・(2h1ω1ωX)2/(ω1 2−ω22+(2h1
ω1ω)2・ω1 4−h1 2ω1 2・(2h2ω2ωX)2/(ω2 2
ω22+(2h2ω2ω)2・ω2 4 =4h1h2 2ω1 2ω2 2ω2X2/{(ω1 2−ω22+(2h1ω
1ω)2}{(ω2 2−ω22+(2h2ω2ω)2} ・〔ω1 4{(ω2 2−ω22+(2h2ω2ω)2−ω2 4
(ω1 2−ω22+(2h1ω1ω)2}〕(21) (ω1 2−ω22+(2h1ω1ω)2>0、 (ω2 2−ω22+2(h2ω2ω)2>0 ω2 2>ω1 2であるので、(20)式×(21)式=AC
<0であるためには、 {(ω2 2+ω1 2)(ω2 2−ω1 2) −2(ω2 2−ω1 2)ω2 +4(h2 2ω2 2−h1 2ω1 2)ω2} ・〔ω1 4{(ω2 2−ω22+(2h2ω2ω)2} −ω2 4{(ω1 2−ω22+(2h1ω1ω)2}〕<0 であればよい。上式左辺を整理すると、 ω2〔(ω2 2+ω1 2)(ω2 2−ω1 2)+2ω2{(1−2h1
2)ω1 2−(1−2h2 2)ω2 2)}〕・〔ω2(ω1 2 +ω2 2)(ω1 2−ω2 2)−2ω1 2ω2 2{(1−2h2 2
ω1 2−(1−2h1 2)ω2 2}〕<0(22) したがつて (1−2h1 2)ω1 2−(1−2h2 2)ω2 20 (1−2h2 2)ω1 2−(1−21 2)ω2 20 であれば、(22)式を満足する。
From equations (10) and (11), x 1 2 = (2h 1 ω 1 ωX) 2 / (ω 1 2 −ω 2 ) 2 + (2h 1 ω 1 ω
) 2 (18) x 2 2 = (2h 2 ω 2 ωX) 2 / (ω 2 2 −ω 2 ) 2 + (2h 2 ω 2 ω
) 2 (19) Substituting equations (18) and (19) into equation (13), A=4h 1 2 h 2 2 ω 1 2 ω 2 2 ω 2 X 2 / (ω 1 2 −ω 2 ) 2 +(2h 1 ω 1
ω) 2 −4h 1 2 h 2 2 ω 1 2 ω 2 2 ω 2 X 2 / (ω 2 2 −ω 2 ) 2 + (2h 2
ω 2 ω) 2 =4h 1 2 h 2 2 ω 1 2 ω 2 2 ωX 2 / {(ω 1 2 −ω 2 ) 2 + (2h 1 ω
1 ω) 2 }{(ω 2 2 −ω) 2 }+(2h 2 ω 2 ω) 2 } ・{(ω 2 21 2 )(ω 2 2 −ω 1 2 )−2(ω 2 2 −ω 1 2
2 +4(h 2 2 ω 2 2 −h 1 2 ω 1 22 }(20) Substituting equations (18) and (19) into equation (15), C=h 2 2 ω 2 2・(2h 1 ω 1 ωX) 2 / (ω 1 2 −ω 2 ) 2 + (2h 1
ω 1 ω) 2・ω 1 4 −h 1 2 ω 1 2・(2h 2 ω 2 ωX) 2 / (ω 2 2
ω 2 ) 2 + (2h 2 ω 2 ω) 2・ω 2 4 = 4h 1 h 2 2 ω 1 2 ω 2 2 ω 2 X 2 / {(ω 1 2 −ω 2 ) 2 + (2h 1 ω
1 ω) 2 } {(ω 2 2 −ω 2 ) 2 + (2h 2 ω 2 ω) 2 } ・[ω 1 4 {(ω 2 2 −ω 2 ) 2 + (2h 2 ω 2 ω) 2 − ω 2 4 {
1 2 −ω 2 ) 2 + (2h 1 ω 1 ω) 2 }] (21) (ω 1 2 −ω 2 ) 2 + (2h 1 ω 1 ω) 2 >0, (ω 2 2 −ω 2 ) 2 + 2 (h 2 ω 2 ω) 2 > 0 ω 2 2 > ω 1 2 , so equation (20) x equation (21) = AC
<0, {(ω 2 21 2 )(ω 2 2 −ω 1 2 ) −2(ω 2 2 −ω 1 22 +4(h 2 2 ω 2 2 −h 1 2 ω 1 22 } ・[ω 1 4 {(ω 2 2 −ω 2 ) 2 + (2h 2 ω 2 ω) 2 } −ω 2 4 {(ω 1 2 −ω 2 ) 2 + (2h 1 ω 1 ω) 2 }〕<0. Rearranging the left side of the above equation, ω 2 [(ω 2 2 + ω 1 2 ) (ω 2 2 −ω 1 2 ) + 2ω 2 {(1−2h 1
21 2 −(1−2h 2 22 2 )}]・[ω 21 22 2 )(ω 1 2 −ω 2 2 )−2ω 1 2 ω 2 2 {(1 −2h 2 2 )
ω 1 2 −(1−2h 1 22 2 }〕<0(22) Therefore, (1−2h 1 21 2 −(1−2h 2 22 2 0 (1−2h 2 2 ) ω 1 2 −(1−2 1 22 2 0, then formula (22) is satisfied.

h1=h2=1/√2に選べば A=1/2(ω2 2x1 2−ω1 2x2 2) B=0 C=1/2ω1 2ω2 2(x1 2ω1 2−x2 2ω2 2) よつて(14)式は となり、この(23)式が卓越周期を与える。すな
わち ω={(x2 2ω2 2−x1 2ω1 2)/(x1 2ω2 2−x2 2ω1 2
1/4(ω1ω21/2(24) ={(x2 2 2 2−x1 2 1 2)/(x1 2 2 2−x2 2 1 2
1/41 21/2 一方、Xについては、(10)式より X2=x1 2{(ω1 2−ω22+(2h1ω1ω)2}/(4h1 2
ω1 2ω2)(25) この式にh1=1/√2を代入して X2=x1(ω1 4+ω4)/2ω1 2ω2 (26) さらに、(17)式のω2を代入すると 従つて 第1の卓越周期算出手段131は第1、第2の
指数平滑手段121,122の出力信号xa1(t)
とxa2(t)より低周波の卓越周期L(t)と振幅
aL(t)を算出する。第2の卓越周期算出手段1
32は第3、第4の指数平滑手段123,124
の出力信号xa3(t)とxa4(t)より高周波の卓越
周期H(t)と振幅aH(t)を算出する。ここで、
低周波側の卓越周期算出手段131には、第1の
センサ1からの信号を入力しており、高周波側の
卓越周期算出手段132には第4のセンサ4から
の信号に入力している。第1のセンサ1の固有周
期は0.1Hz、第4のセンサ4の固有周期は5Hzで
あり、第1から第4のセンサのうちれぞれ最小、
最大値を有しており、このため第1の卓越周期算
出手段131は低周波側となり、第2の卓越周期
算出手段132は高周波側となる。
If you choose h 1 = h 2 = 1/√2, then A=1/2 (ω 2 2 x 1 2 −ω 1 2 x 2 2 ) B=0 C=1/2ω 1 2 ω 2 2 (x 1 2 ω 1 2 −x 2 2 ω 2 2 ) Therefore, equation (14) is This equation (23) gives the dominant period. That is, ω={(x 2 2 ω 2 2 −x 1 2 ω 1 2 )/(x 1 2 ω 2 2 −x 2 2 ω 1 2 )
} 1/41 ω 2 ) 1/2 (24) = {(x 2 2 2 2 −x 1 2 1 2 )/(x 1 2 2 2 −x 2 2 1 2 )
} 1/4 ( 1 2 ) 1/2 On the other hand, regarding X , from equation ( 10 ) , 4h 1 2
ω 1 2 ω 2 ) (25) Substituting h 1 = 1/√2 into this equation, X 2 = x 11 4 + ω 4 )/2ω 1 2 ω 2 (26) Furthermore, equation (17) Substituting ω 2 of accordingly The first dominant period calculation means 131 calculates the output signal x a1 (t) of the first and second exponential smoothing means 121 and 122.
and the dominant period L (t) and amplitude of the lower frequency than x a2 (t)
Calculate a L (t). Second dominant period calculation means 1
32 is the third and fourth exponential smoothing means 123, 124
The dominant period H (t) and amplitude a H (t) of the high frequency are calculated from the output signals x a3 (t) and x a4 (t). here,
The signal from the first sensor 1 is input to the predominant period calculation means 131 on the low frequency side, and the signal from the fourth sensor 4 is input to the predominant period calculation means 132 on the high frequency side. The natural period of the first sensor 1 is 0.1 Hz, and the natural period of the fourth sensor 4 is 5 Hz.
Therefore, the first dominant period calculating means 131 is on the low frequency side, and the second dominant period calculating means 132 is on the high frequency side.

電源距離算出手段14は、第1及び第2の卓越
周期算出手段131,132からの卓越周波数L
(t)、H(t)と振幅aL(t)、aH(t)より、震

距離R(t)を次式で算出する。
The power source distance calculation means 14 calculates the dominant frequency L from the first and second dominant period calculation means 131 and 132.
(t), H (t) and the amplitudes a L (t), a H (t), the epicenter distance R(t) is calculated using the following formula.

R(t)=Q・Vp・log(aL(t)/aH(t))/π(l
oge)(HL)(29) ここで、Qは波動の減衰を示す定数で、たとえ
ば150を採用する。Vpは伝播経路上のP波の平均
速度を示し、たとえば6.5Km/秒を採用する。π
は円周率である。
R(t)=Q・V p・log(a L (t)/a H (t))/π(l
oge) ( HL ) (29) Here, Q is a constant indicating wave attenuation, and for example, 150 is adopted. V p indicates the average velocity of P waves on the propagation path, and is set to 6.5 Km/sec, for example. π
is pi.

(29)式で示す震源距離の推定式は次のように
して求められる。
The estimation formula for the epicenter distance shown in equation (29) can be obtained as follows.

震源からRKmのときの振幅をa、ROKmのとき
の振幅をaOとすると、aは次の式で示される。
If the amplitude when R Km from the epicenter is a, and the amplitude when R O Km is a O , then a is expressed by the following formula.

a=(aO/√O)e-R (30) αは定数で、α=2πh/λ=ωh/Vp=2πh/Vp λ=Vp (30)式の対数をとると log a=log aO−αRlog e−0.5logRO =log aO−2πhR/Vplog e−1/2logRO ここで、2台のセンサで観測した振幅をaL、aH
とすると log aL=log aO −2πh(log e)R/VpL−1/2logRO (31) log aH=log aO −2πh(loge)R/VpH−1/2logRO (32) (31)、(32)式よりaOを消去すると、 log aL−log aH=2πh(log e)R/VpHL) (33) ∴R=Vplog(aL/aH)/2πh(log e)・(HL
) =QVplog(aL/aH)/π(log e)(HL)(34
) 但し、HL、aL>aHである。
a=(a O /√ O )e -R (30) α is a constant, α=2πh/λ=ωh/V p =2πh/V p λ=V p If we take the logarithm of equation (30), we get log a=log a O −αRlog e−0.5logR O =log a O −2πhR/V p log e−1/2logR OHere , the amplitudes observed by the two sensors are a L , a H
Then, log a L = log a O −2πh (log e) R/V pL −1/2log R O (31) log a H = log a O −2πh (loge) R/V pH −1/ 2logR O (32) Eliminating a O from equations (31) and (32), log a L − log a H = 2πh (log e) R/V p ( HL ) (33) ∴R=V p log(a L /a H )/2πh(log e)・( HL
) = QV p log (a L / a H ) / π (log e) ( HL ) (34
) However, H > L and a L > a H.

震源距離出力手段15は、震源距離算出手段1
4で算出したその時刻の震源距離R(t)を外部
に出力する。
The epicenter distance output means 15 is the epicenter distance calculation means 1
The epicenter distance R(t) at that time calculated in step 4 is output to the outside.

地震は断層が破壊するときの振動であり、断層
が大きければ破壊に時間を要する。また、震源は
現在破壊が進行しているところであり、これは常
に移動している。したがつて、正確には震源距離
は断層運動が継続している間変動するものである
が、観測点と震央の離れが断層の大きさより十分
大きいと、推定される震源距離はあまり変動しな
いが、断層の大きさに比べて近いところに観測点
があると、震源距離は大きく変動することが考え
られる。したがつて、むしろ本発明は従来見逃し
ていたこのような変化をも促えることができ、本
発明の目的は十二分に達成される。
Earthquakes are vibrations caused when a fault breaks, and if the fault is large, it takes time for the fault to break. Additionally, the epicenter is where the destruction is currently occurring and is constantly moving. Therefore, to be precise, the epicenter distance changes while the fault movement continues, but if the distance between the observation point and the epicenter is sufficiently larger than the size of the fault, the estimated epicenter distance will not change much. , if the observation point is located close to the fault compared to its size, the epicenter distance may vary greatly. Therefore, rather, the present invention can encourage such changes that have been overlooked in the past, and the object of the present invention is more than achieved.

(第2の実施例) 第2の実施例は、センサを3台用意しておき、
固有周期の低いセンサの出力を第1の標本化手段
121に、固有周期の高いセンサの出力を第4の
標本化手段124に、また前記2つの固有周期に
対し中間の固有周期を有するセンサの出力を第2
及び第3の標本化手段122及び123に、各々
入力する。このようにして、第1の実施例よりセ
ンサを1台少なくして構成することができる。
(Second Example) In the second example, three sensors are prepared,
The output of the sensor with a low natural period is sent to the first sampling means 121, the output of the sensor with a high natural period is sent to the fourth sampling means 124, and the output of the sensor with a natural period intermediate between the two natural periods is sent to the first sampling means 121. 2nd output
and third sampling means 122 and 123, respectively. In this way, the configuration can be configured with one less sensor than the first embodiment.

(第3の実施例) 第4図に、第3の実施例のブロツク図を示す。
第4図において、5はアンプ、6はバツフアアン
プ、71,72,73は特性変換装置であり、他
は第2図のものと同様のものである。
(Third Embodiment) FIG. 4 shows a block diagram of a third embodiment.
In FIG. 4, 5 is an amplifier, 6 is a buffer amplifier, 71, 72, and 73 are characteristic conversion devices, and the others are the same as those in FIG. 2.

第3の実施例においては、センサを1台設置し
ており、当該センサ1の信号の特性を変換する特
性変換装置71,72,73を、バツフアアンプ
6と第2、第3、第4の標本化手段112,11
3,114との間に設置している。特性変換装置
71,72,73はその出力を、センサ1の固有
周期とは異なつた固有周期を持つたセンサから出
力されたかのように、標本化手段112,11
3,114に与えるものであり、例えば第1の実
施例と同様にセンサ1の固有周期を0.1Hzとし、
固有周期に関し第1の特性変換装置71を0.5Hz、
第2の特性変換装装置72を1Hz、第3の特性変
換装置73を5Hzであるように標本化手段11
1,112,113及び114の各々に入力す
る。この特性変換装置71,72,73は、特開
昭56−46479(特願昭54−122559)として公開され
ているものである。すなわち、第5図に示すよう
に、振動波形が電気信号で入力され、任意に設定
可能な周波数特性と制動特性を有し、これらに基
づいてセンサをシユミレートする仮想地震計機能
と、センサと仮想地震計機能の形式、特性によつ
て決定される定数を前記センサの出力に掛けあわ
せて、これを仮想地震計機能へ入力する機能と、
仮想地震計機能のシユミレート結果によつて出力
される各種の出力信号にセンサの周波数特性と制
動特性から導かれる定数を掛け、これらを加え合
わせる機能とを備えた装置とによつて構成される
ものである。第5図において、501はセンサ、
502はn倍器、503は仮想地震計、504は
加算器である。このような構成によつて得られた
特性変換装装置71,72,73の出力とバツフ
アアンプ6の出力とを各々標本化手段111,1
12,113,114に送出することにより、以
下第1の実施例と同様にして、震源距離を得るこ
とができる。
In the third embodiment, one sensor is installed, and the characteristic conversion devices 71, 72, 73 for converting the characteristics of the signal of the sensor 1 are connected to the buffer amplifier 6 and the second, third, and fourth samples. converting means 112, 11
3,114. The characteristic conversion devices 71, 72, 73 convert the outputs into the sampling means 112, 11 as if they were output from a sensor having a natural period different from that of the sensor 1.
3,114, for example, the natural period of sensor 1 is 0.1Hz as in the first embodiment,
Regarding the natural period, the first characteristic conversion device 71 is set to 0.5Hz,
The sampling means 11 sets the second characteristic converting device 72 to 1 Hz and the third characteristic converting device 73 to 5 Hz.
1, 112, 113 and 114, respectively. These characteristic conversion devices 71, 72, and 73 are disclosed in Japanese Patent Application Laid-Open No. 56-46479 (Japanese Patent Application No. 122559-1982). In other words, as shown in Fig. 5, the vibration waveform is input as an electrical signal, has arbitrarily settable frequency characteristics and damping characteristics, and there is a virtual seismometer function that simulates the sensor based on these, and a virtual seismometer function that simulates the sensor and the virtual seismometer function. a function of multiplying the output of the sensor by a constant determined by the format and characteristics of the seismograph function and inputting this to the virtual seismograph function;
A device that has the function of multiplying various output signals output from the simulation results of the virtual seismograph function by a constant derived from the frequency characteristics and braking characteristics of the sensor, and adding these together. It is. In FIG. 5, 501 is a sensor;
502 is an n multiplier, 503 is a virtual seismograph, and 504 is an adder. The outputs of the characteristic conversion devices 71, 72, 73 and the output of the buffer amplifier 6 obtained by such a configuration are sampled by sampling means 111, 1, respectively.
12, 113, and 114, the epicenter distance can be obtained in the same manner as in the first embodiment.

また、第1又は第2の特性変換装置71又は7
2のいずれか一方、例えば第2の特性変換装置7
2を省略して、第1の特性変換装置71の出力を
第2及び第3の標本化手段112,113の共通
の入力とすることにより、第2の実施例と同様に
震源距離を得ることができる。
In addition, the first or second characteristic conversion device 71 or 7
2, for example, the second characteristic conversion device 7
2 is omitted and the output of the first characteristic conversion device 71 is used as a common input for the second and third sampling means 112, 113, thereby obtaining the epicenter distance in the same manner as in the second embodiment. Can be done.

(発明の効果) 本発明によれば、地震波の震源距離を、1地点
の観測によつて地震波の到来直後に算出すること
ができ、従来のように多数の地震計を広範囲に配
置することが不要になるという利点がある。ま
た、リアルタイムで震源距離を知ることができる
ので、地震の警報システムの判定材料として利用
することができる。
(Effects of the Invention) According to the present invention, the epicenter distance of a seismic wave can be calculated immediately after the arrival of the seismic wave by observation at one point, and it is no longer necessary to arrange a large number of seismometers over a wide area as in the past. This has the advantage of being unnecessary. Additionally, since the distance to the epicenter can be determined in real time, it can be used as a basis for determining earthquake warning systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一の地震を異なる固有周期を持つ地
震計で同時に観測したときの観測例を示す波形
図、第2図は第1の実施例を示すブロツク図、第
3図は実施例の処理の概略フローチヤート、第4
図は第3の実施例を示すブロツク図、第5図は特
性変換装置を説明するブロツク図である。 1,2,3,4……センサ、51,52,5
3,54……アンプ、61,62,63,64…
…バツフアアンプ、71,72,73……特性変
換装置、8……処理装置、111,112,11
3,114……標本化手段、121,122,1
23,124……指数平滑化手段、131,13
2……卓越周期算出手段、14……震源距離算出
手段、15……震源距離出力手段。
Fig. 1 is a waveform diagram showing an example of observation when one earthquake is observed simultaneously by seismometers with different natural periods, Fig. 2 is a block diagram showing the first embodiment, and Fig. 3 is a diagram of the embodiment. Outline processing flowchart, No. 4
The figure is a block diagram showing the third embodiment, and FIG. 5 is a block diagram explaining the characteristic conversion device. 1, 2, 3, 4...sensor, 51, 52, 5
3, 54...Amplifier, 61, 62, 63, 64...
... Buffer amplifier, 71, 72, 73 ... Characteristic conversion device, 8 ... Processing device, 111, 112, 11
3,114...Sampling means, 121,122,1
23, 124...exponential smoothing means, 131, 13
2... Predominant period calculation means, 14... Epicenter distance calculation means, 15... Epicenter distance output means.

Claims (1)

【特許請求の範囲】[Claims] 1 固有周期の異なる2種の地震計による地震観
測出力を1組とし、固有周期が最も長い地震計が
含まれる組と固有周期が最も短い地震計が含まれ
る組の2組の観測出力を入力し、各組の観測出力
の指数平滑値を算出する手段と、各組の地震計の
観測波形の前記指数平滑値と各組の地震計の固有
周期とにより、高低2つの周波数帯域における卓
越周波数とその成分振幅をそれぞれ算出する卓越
周波数算出手段と、前記2組の卓越周波数算出手
段より得た2つの成分振幅の比の対数と前記2組
の卓越周波数算出手段より得た2つの卓越周波数
の差との比を算出する手段とを有して観測地点の
震源距離を得ることを特徴とする震源距離算出装
置。
1 Set the seismic observation outputs from two types of seismometers with different natural periods as one set, and input the two sets of observation outputs: the set containing the seismometer with the longest natural period and the set containing the seismometer with the shortest natural period. Then, by means of calculating an exponentially smoothed value of the observation output of each set, and the exponentially smoothed value of the observed waveform of each set of seismometers and the natural period of each set of seismometers, the dominant frequency in two high and low frequency bands is calculated. and a dominant frequency calculation means for calculating the component amplitudes thereof, the logarithm of the ratio of the two component amplitudes obtained from the two sets of predominant frequency calculation means, and the two dominant frequencies obtained from the two sets of predominant frequency calculation means. What is claimed is: 1. An epicenter distance calculation device, comprising means for calculating a ratio between the difference and the difference, to obtain an epicenter distance of an observation point.
JP60154131A 1985-07-15 1985-07-15 Hypocentral distance calculating device Granted JPS6215482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154131A JPS6215482A (en) 1985-07-15 1985-07-15 Hypocentral distance calculating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154131A JPS6215482A (en) 1985-07-15 1985-07-15 Hypocentral distance calculating device

Publications (2)

Publication Number Publication Date
JPS6215482A JPS6215482A (en) 1987-01-23
JPH0263194B2 true JPH0263194B2 (en) 1990-12-27

Family

ID=15577574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154131A Granted JPS6215482A (en) 1985-07-15 1985-07-15 Hypocentral distance calculating device

Country Status (1)

Country Link
JP (1) JPS6215482A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139170A (en) * 2006-12-01 2008-06-19 Fuji Heavy Ind Ltd System for detecting impact
KR101104995B1 (en) * 2009-11-17 2012-01-16 현대위아 주식회사 Device for reversing work for machine tool
JP2013200284A (en) * 2012-03-26 2013-10-03 Shimizu Corp Earthquake detection device
JP6401003B2 (en) * 2014-10-02 2018-10-03 公益財団法人鉄道総合技術研究所 Early warning method for short-distance earthquakes using seismic waves at a single observation point
JP6559579B2 (en) * 2016-01-06 2019-08-14 中部電力株式会社 Method for estimating distance parameter of observed earthquake, distance parameter estimation program, and computer-readable recording medium recording distance parameter estimation program

Also Published As

Publication number Publication date
JPS6215482A (en) 1987-01-23

Similar Documents

Publication Publication Date Title
KR20150035633A (en) Apparatus for measuring earthquake intensity and method for the same
JP2849297B2 (en) Seismic intensity prediction system
EP0671610B1 (en) Apparatus for diagnosing sound source and vibration source
Santos et al. Understanding the fundamentals of earthquake signal sensing networks
US6324290B1 (en) Method and apparatus for diagnosing sound source and sound vibration source
JPH0263194B2 (en)
EP0355994B1 (en) Cross-correlation apparatus and methods
EP1769267B1 (en) Movement detection system and method
JPH0236911B2 (en)
Dergach et al. Electrodynamic geophones beyond the limit of capacity
JPS6319583A (en) Device for detecting characteristics of surface layer ground
JP3199148B2 (en) Seismic intensity measurement method for control
Azzara et al. Measurement of the vibration response of the medieval Maddalena Bridge (Italy)
JP3106183B2 (en) Ground exploration method and device
RU2795783C1 (en) Seismic receiver
JPS592357B2 (en) seismograph system
US20240027639A1 (en) Seismometer with high sensitivity, broadband and all-dip
JP3220205B2 (en) Noise suppression device
JPH02302687A (en) Seismometer and apparatus using the same
RU2284543C2 (en) Noise direction finder
JP2024057455A (en) Epicenter distance estimation device, epicenter distance estimation program, and epicenter distance estimation method
Hakimitoroghi A study on vibration sensors with application in structural health monitoring (shm)
JP3136450B2 (en) Underground structure exploration method
Neumayer et al. Noise and Uncertainty Analysis for Time and Frequency Domain Vibration Measurements using Acceleration Sensors
Miki Application of the synchronized correlation method to the measurement of sound propagation over a ground surface