JPH02302349A - Cement additive and cement composition using the same - Google Patents

Cement additive and cement composition using the same

Info

Publication number
JPH02302349A
JPH02302349A JP12117289A JP12117289A JPH02302349A JP H02302349 A JPH02302349 A JP H02302349A JP 12117289 A JP12117289 A JP 12117289A JP 12117289 A JP12117289 A JP 12117289A JP H02302349 A JPH02302349 A JP H02302349A
Authority
JP
Japan
Prior art keywords
cement
blast furnace
furnace slag
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12117289A
Other languages
Japanese (ja)
Other versions
JP2622287B2 (en
Inventor
Hitoshi Moriyama
等 森山
Yoshiharu Watanabe
芳春 渡辺
Hisayuki Shimizu
清水 久行
Mineo Ito
伊藤 峯雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1121172A priority Critical patent/JP2622287B2/en
Publication of JPH02302349A publication Critical patent/JPH02302349A/en
Application granted granted Critical
Publication of JP2622287B2 publication Critical patent/JP2622287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

PURPOSE:To provide the subject cement additive capable of improving the mechanical strength and durability of concrete forms, comprising anhydrous gypsum (II), active silica and blast furnace-slag powder of specific particle distribution at specified proportion. CONSTITUTION:The objective cement additive comprising (A) 100 pts.wt. of anhydrous gypsum (type II), (B) 20 to 500 pts.wt. of active silica and (C) 20 to 500 pts.wt. of blast furnace slag powder containing >=60wt.% of particles <=12mu in size. The other objective cement composition comprises (1) 100 pts.wt. of cement and (2) 6 to 30 pts.wt. of the present cement additive. The use of the present cement composition as raw material will obtain concrete forms of both high mechanical strength and durability.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はセメント混和材及びそれを含有したセメント組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a cement admixture and a cement composition containing the same.

〈従来技術とその課題〉 従来、蒸気養生条件下で高強度を得る方法として、■型
態水セッコウと、例えば、シリカヒユー。
<Prior art and its problems> Conventionally, as a method of obtaining high strength under steam curing conditions, type water gypsum and, for example, silica powder have been used.

ム、ケイ酸白土及びフライアッシュ等のシリカ質物質と
を配合したセメント混和材を使用する方法が知られてい
る(特公昭57−49504号公報)。
A method is known in which a cement admixture is used which is a mixture of siliceous substances such as clay, silicate clay, and fly ash (Japanese Patent Publication No. 49504/1983).

しかしながら、この方法では、高強度化の効果は得られ
るが、耐久性、特に、塩素イオンの浸透抵抗性(耐塩性
)については充分な効果が得られない等の課題があった
However, with this method, although the effect of increasing the strength can be obtained, there are problems such as not being able to obtain a sufficient effect with respect to durability, especially resistance to chlorine ion penetration (salt resistance).

また、コンクリート成形体の強度及び耐久性を同時に改
善する方法として、セメントと、セメントに対して30
〜85重量%とかなり多い量の微粉末の高炉スラグ、高
炉スラグの細骨材及び減水剤を配合することが知られて
いる(特開昭61−281057号公報)。
In addition, as a method for simultaneously improving the strength and durability of concrete molded bodies, we have developed
It is known to mix a considerably large amount of finely powdered blast furnace slag, blast furnace slag fine aggregate, and a water reducing agent in an amount of ~85% by weight (Japanese Patent Laid-Open No. 61-281057).

しかしながら、この方法では、コンクリート成形体を常
圧蒸気養生した後、気乾養生すると、乾燥収縮によると
思われる、半径200Å以上の大きな空隙が生じ、長期
の凍結融解耐久性の低下、中性化の促進、鉄筋の発錆及
び強度低下が予想され、圧縮強度に対する引張り強度の
比率も小さい等の課題があった。
However, with this method, when the concrete molded body is cured with atmospheric steam and then air-dry, large voids with a radius of 200 Å or more are generated, which is thought to be due to drying shrinkage, resulting in a decrease in long-term freeze-thaw durability and carbonation. It is expected that this will lead to the promotion of corrosion, rusting of the reinforcing bars, and a decrease in strength, and the ratio of tensile strength to compressive strength is also small.

一方、従来より、高炉スラグは、高炉スラグセメントと
してセメントに多用され、高炉スラグの配合量によって
A種、B種及び0種に分類されている。即ち、高炉スラ
グ混合量が30%以下はA種、30%を越え60%以下
はB種及び60%を超え70%以下は0種である。そし
て、アルカリ−骨材反応防止の面から高炉スラグの混合
量は40%以上とすることが推奨されている。
On the other hand, conventionally, blast furnace slag has been widely used in cement as blast furnace slag cement, and is classified into type A, type B, and type 0 depending on the amount of blast furnace slag blended. That is, if the mixed amount of blast furnace slag is 30% or less, it is type A, if it exceeds 30% and not more than 60%, it is type B, and if it exceeds 60% and not more than 70%, it is type 0. In order to prevent alkali-aggregate reaction, it is recommended that the amount of blast furnace slag mixed is 40% or more.

しかしながら、通常、高炉セメント用に使用される高炉
スラグの粒度は、ブレーン値で4.000cm2/g前
後、12μ以下の粒子の量が50%にも満たないもので
あり、このような粗い高炉スラグは、■型無水セッコウ
や活性シリカと併用しても、強度発現や耐久性を向上さ
せる効果は小さく、■型無水セッコウの有する高強度発
現能力をむしろ損う傾向を示すものであった。
However, the particle size of blast furnace slag used for blast furnace cement is usually around 4.000 cm2/g in Blaine value, and the amount of particles of 12μ or less is less than 50%. Even when used in combination with ■-type anhydrous gypsum and activated silica, the effect of improving strength development and durability was small, and the ability of ■-type anhydrous gypsum to develop high strength was rather impaired.

本発明者らは、上記課題を解決し、さらに、各種耐久性
を高めるべく鋭意検討した結果、特定の高炉スラグ粉と
活性シリカを、■型無水セッコウと併用することにより
、上記課題が解決できる知見を得て、本発明を完成する
に至った。
The inventors of the present invention have solved the above problems, and as a result of intensive studies to improve various durability, the above problems can be solved by using specific blast furnace slag powder and activated silica in combination with type anhydrous gypsum. Based on this knowledge, we have completed the present invention.

く課題を解決するための手段〉 即ち、本発明は、■型無水セッコウ100重量部と、活
性シリカ20〜500重量部と、12μ以下の粒子が6
0%以上の高炉スラグ粉20〜500重量部とを主成分
とするセメント混和材であり、セメント100重量部と
、該セメント混和材6〜30重量部とを主成分とするセ
メント組成物である。
Means for Solving the Problems> That is, the present invention comprises 100 parts by weight of type anhydrous gypsum, 20 to 500 parts by weight of activated silica, and 6 parts by weight of particles of 12μ or less.
A cement admixture whose main components are 20 to 500 parts by weight of blast furnace slag powder of 0% or more, and a cement composition whose main components are 100 parts by weight of cement and 6 to 30 parts by weight of the cement admixture. .

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における■型無水セッコウとはX線回折パターン
がII  CaSO4の形態を示すものであり、二本、
半水及び■型無水セッコウなどを焼成して得られるもの
の他、弗酸製造工程より副生ずるものや、天然無水セラ
コラも使用可能である。また、■型無水セッコウは、天
然に又は工業的に含まれる不純物には制限されないもの
である。
The ■ type anhydrous gypsum in the present invention is one whose X-ray diffraction pattern shows the form of II CaSO4, and has two
In addition to those obtained by firing half-water and type anhydrous gypsum, those produced by-product from the hydrofluoric acid production process and natural anhydrous ceracola can also be used. In addition, type 2 anhydrous gypsum is not limited to impurities that are naturally or industrially contained.

■型無水セッコウの粉末度は、ブレーン値で3、000
cm”/g以以上好ましく、4.000〜7.500c
m”/gがより好ましい。ブレーン値が3,000cm
”/、8未満で−は、蒸気養生を行なっても未反応で残
り易く、これが長期に渡って反応し、セメント成形体の
安定性を欠く傾向にあるので好ましくない。
■The powder degree of molded anhydrous gypsum is 3,000 in Blaine value.
cm”/g or more, preferably 4.000 to 7.500c
m”/g is more preferable. Blaine value is 3,000 cm
If it is less than ``/, 8, it is undesirable because it tends to remain unreacted even after steam curing, and this tends to react over a long period of time, resulting in a lack of stability of the cement molded body.

本発明における活性シリカとは、シリカヒユームやアエ
ロジル等である。
Activated silica in the present invention includes silica hume, Aerosil, and the like.

シリカヒユームとは、例えば、フェロシリコンや金属シ
リコン等の製造時に副生ずる200人〜0.5μ程度の
非晶質Singを主成分とする超微粉である。
Silica fume is, for example, an ultrafine powder whose main component is amorphous Sing of about 200 to 0.5 microns, which is produced as a by-product during the production of ferrosilicon, metal silicon, and the like.

本発明における高炉スラグ粉とは、12μ以下の粒子が
60%以上の高炉スラグである。
The blast furnace slag powder in the present invention is blast furnace slag containing 60% or more of particles with a size of 12 μ or less.

高炉スラグ粉は、高炉より副生ずる溶融スラグを急冷し
ガラス化したものを粉砕又は粉砕・分級して得られる微
粉末であり、通常、高炉セメント用に使用されるものも
使用可能である。
Blast furnace slag powder is a fine powder obtained by pulverizing or crushing and classifying molten slag, which is a by-product of a blast furnace, which is rapidly cooled and vitrified, and the powder normally used for blast furnace cement can also be used.

スラグ粉末の潜在水硬性の度合いを表わすものとして示
される塩基度(CaO+^1203 +Mg0)/St
owは、本発明では、1.4以上が好ましく、1.7以
上がより好ましい。
Basicity (CaO+^1203 +Mg0)/St, which is shown as an expression of the degree of latent hydraulicity of slag powder
In the present invention, ow is preferably 1.4 or more, more preferably 1.7 or more.

また、高炉スラグ粉のガラス化率は50%以上が好まし
く、90%以上がより好ましい。
Moreover, the vitrification rate of blast furnace slag powder is preferably 50% or more, more preferably 90% or more.

高炉スラグ粉の粒度は、12μ以下の粒子が60%以上
が好ましり、80%以上がより好ましい。12μ以下の
粒子が60未満では■型無水セッコウや活性シリカと併
用した場合、強度発現効果が充分得られないか、場合に
よっては■型無水セッコウの強度発現能力を損なう場合
もあるもので好ましくない。
The particle size of the blast furnace slag powder is preferably 60% or more, more preferably 80% or more of particles having a size of 12 μm or less. If the number of particles of 12 μ or less is less than 60, when used in combination with ■-type anhydrous gypsum or activated silica, sufficient strength development effect may not be obtained, or in some cases, the strength development ability of ■-type anhydrous gypsum may be impaired, which is not preferable. .

高炉スラグ粉は、粒度が細かければ細かい程良・ く、
工業的に、かつ、経済的に粉砕又は粉砕・分級されて得
られる最小の高炉スラグ粉の粒度は、通常、10μ以下
でD50の値が3μ程度であり、このような超微粉の高
炉スラグの使用はより好ましい。
The finer the particle size of blast furnace slag powder, the better.
The minimum particle size of blast furnace slag powder that can be industrially and economically obtained by crushing or crushing/classifying is usually 10 μ or less, and the D50 value is about 3 μ. Use is more preferred.

゛このような微粉の高炉スラグ粉は■型無水セッコウや
活性シリカと併用した場合、高炉スラグ粉単独、■型無
水セッコウ単独さらには活性シリカ単独使用の場合より
著しく高い強度が得られ、かつ、耐久性の高いセメント
成形体が得られる。
゛When such fine blast furnace slag powder is used in combination with ■-type anhydrous gypsum or activated silica, significantly higher strength can be obtained than when using blast furnace slag powder alone, ■-type anhydrous gypsum alone, or activated silica alone, and A highly durable cement molded body can be obtained.

このような相乗的効果を発現する理由は不明であるが、
次のように推察される。、 即ち、高強度は、セメン]中のアルミネート相と■型無
水セッコウとの反応によって生成する工トリンガイト(
3CaO・A1z03・3CaSO4・32)1zO)
が空隙を充填し、密実化を促すことと、活性シリカがポ
ルトランダイト(Ca (OH) z)と反応し、トバ
モライトを生成させ、密実化を助長することにより、得
られるものであるが、高炉スラグ粉の使用によって、A
I酸成分絶対量が多くなり、かつ、高炉スラグが微粉化
することにより、高炉スラグ中に多量にあるAI酸成分
溶解速度が速くなり、■型無水セッコウの溶解速度とバ
ランスして、液相中により効率的にエトリンガイトを生
成し、空隙を充填し密実化すると同時に、■型無水セッ
コウが高炉スラグ中の^l成分の溶出量を高かめ、高炉
スラグ粒子をポーラスにして高炉スラグ全体の水和反応
量を高めることによるものと推察される。
The reason for such a synergistic effect is unknown, but
It is inferred as follows. In other words, the high strength is due to the thringite produced by the reaction between the aluminate phase in the cement and the type anhydrous gypsum.
3CaO・A1z03・3CaSO4・32)1zO)
is obtained by filling the voids and promoting compaction, and activated silica reacts with portlandite (Ca (OH) z) to generate tobermorite and promoting compaction. However, by using blast furnace slag powder, A
As the absolute amount of the I acid component increases and the blast furnace slag is pulverized, the dissolution rate of the AI acid component, which is present in large amounts in the blast furnace slag, becomes faster, and in balance with the dissolution rate of the type II anhydrous gypsum, the liquid phase At the same time, the type anhydrous gypsum increases the elution amount of the ^l component in the blast furnace slag, makes the blast furnace slag particles porous, and increases the overall density of the blast furnace slag. This is presumed to be due to increasing the amount of hydration reaction.

また、耐塩性は塩素イオンのイオン半径が小さいので、
密実性だけでは不充分で、長期間の間では、徐々に深部
へ浸透してくる塩素イオンの固定は、アルミネート水和
物や未水和物によって、フリーデル塩(3CaO・Al
zO+・CaC1g408zO)の形で行われるが、エ
トリンガイトは塩素に対し安定であり、■型無水セッコ
ウを多量に添加し、アルミネート相をエトリンガイトに
変えることは、塩素の固定能力を失わせるものである。
In addition, salt resistance is due to the small ionic radius of chlorine ions.
Denseness alone is not enough; over a long period of time, the fixation of chlorine ions that gradually penetrate deep can be achieved using Friedel's salt (3CaO.Al
zO+・CaC1g408zO), but ettringite is stable against chlorine, and adding a large amount of type anhydrous gypsum to change the aluminate phase to ettringite will lose its ability to fix chlorine. .

活性シリカ及び高炉スラグ粉の使用量は、■型無水セッ
コウ100重量部に対し、各々20〜500重量部であ
る。
The amount of activated silica and blast furnace slag powder to be used is 20 to 500 parts by weight each based on 100 parts by weight of type 1 anhydrous gypsum.

■型無水セッコウ、活性シリカ及び高炉スラグ粉を主成
分とする本発明のセメント混和材の使用量は、セメント
100重量部に対し、6〜30重量部が好ましい。特に
、セメント100重量部に対し、各々の成分が2〜10
重量部となるように使用することはより好ましい。
The amount of the cement admixture of the present invention, which is mainly composed of type (1) anhydrous gypsum, activated silica, and blast furnace slag powder, is preferably 6 to 30 parts by weight per 100 parts by weight of cement. In particular, 2 to 10 parts of each component per 100 parts by weight of cement.
It is more preferable to use parts by weight.

■型無水セッコウ、活性シリカ及び高炉スラグ粉が各々
2重量部未満では、強度発現性や耐久性を改善する効果
は小さく、また、各々が10重量部を越えると、コンク
リート硬化体中のポルトランダイトが全(なくなり、鉄
筋の発錆(特にプレストレスト製品は鋼棒の緊張による
応力腐食も加わるので、硬化体のアルカリ度の低下は危
険である)が懸念されるものである。
■ If molded anhydrous gypsum, activated silica, and blast furnace slag powder are each less than 2 parts by weight, the effect of improving strength development and durability is small, and if each exceeds 10 parts by weight, portolan in the hardened concrete There is a concern that all of the dyte will disappear and rusting of the reinforcing bars (particularly in prestressed products, stress corrosion due to the tension of the steel rod is also added, so a decrease in the alkalinity of the hardened product is dangerous).

活性シリカに基づ(単位水量の増加によって、強度や耐
塩性の改善効果が大きくならず、低下気味となるので、
不経済となるばかりでなく、スランプドロップが大きく
なり、作業性が困難となるものである。また、活性シリ
カと高炉スラグ粉が合計量で20重量部を越えるようう
になると、コンクリート硬化体中のポルトランダイトが
な(なり、アルカリ度が低下するので、中性化だけでな
く、特に、プレストレスト成形体のPCfi棒の発錆が
懸念されるようになり、好ましくない。
Based on activated silica (as the unit water amount increases, the improvement effect on strength and salt resistance does not increase and tends to decrease).
This is not only uneconomical, but also increases slump drop, making workability difficult. In addition, when the total amount of activated silica and blast furnace slag powder exceeds 20 parts by weight, the portlandite in the hardened concrete becomes depleted and the alkalinity decreases. There is a concern that the PCfi rod of the prestressed molded body will rust, which is not preferable.

好ましくは、■型無水セッコウ、活性シリカ及び高炉ス
ラグ粉が各々セメント100重量部に対し、3〜9重量
部であり、より好ましくは、4〜8重量部である。
Preferably, the amount of each of type 1 anhydrous gypsum, activated silica, and blast furnace slag powder is 3 to 9 parts by weight, more preferably 4 to 8 parts by weight, based on 100 parts by weight of cement.

ここでいうセメントとは、普通・早強・超早強・中庸熱
・白色等の各種ポルトランドセメントなどである。また
、高炉セメントは中性化、酸化及び変色等の問題がある
ので使用できないが、シリカセメントやフライアッシュ
セメントは使用できる。セメントは水硬性係数が大きい
ものほど、また、粉末度が大きいほど高い強度が得られ
、耐久性も向上する。
The cement mentioned here includes various Portland cements such as normal, early strength, super early strength, moderate heat, and white. Further, blast furnace cement cannot be used because it has problems such as neutralization, oxidation, and discoloration, but silica cement and fly ash cement can be used. The greater the cement's hydraulic coefficient and the greater its fineness, the higher its strength and improved durability.

本発明のセメント混和材を用いてセメント成形体を製造
するに当り、必要に応じ、減水剤、AE減水剤、促進剤
及び遅延剤等の化学混和剤を併用することができる。特
に、減水剤の併用は好ましく、その減水剤の中でも高性
能減水剤の併用はより好ましいものである。
When producing a cement molded body using the cement admixture of the present invention, chemical admixtures such as a water reducing agent, an AE water reducing agent, an accelerator, and a retarder may be used in combination, if necessary. In particular, it is preferable to use a water reducing agent in combination, and among these water reducing agents, it is more preferable to use a high performance water reducing agent in combination.

高性能減水剤とは、多量に添加しても凝結の過遅延や過
度の空気連行を伴わない、分散能力の大きな界面活性剤
であって、ナフタレンスルホン酸ホルムアルデヒド縮合
物の塩、メラミンスルホン酸ホルムアルデヒド縮金物の
塩、高分子量リグニンスルホン酸塩及びポリカルボン酸
塩などを主成分とするものなどであり、具体的には、例
えば、花王■製商品名「マイティ150」、電気化学工
業■調高品名rFT−5001、ホゾリス物産■調高品
名rNL−4000J等が挙げられる。
A high-performance water reducing agent is a surfactant with a large dispersion ability that does not cause excessive delay in condensation or excessive air entrainment even when added in large amounts, and is a surfactant that does not cause excessive condensation delay or excessive air entrainment even when added in large amounts. These include salts of reduced metals, high molecular weight lignin sulfonates, and polycarboxylate salts as their main ingredients.Specifically, examples include "Mighty 150," a product manufactured by Kao Corporation, and "Mighty 150," manufactured by Denki Kagaku Kogyo Corporation. Examples include product name rFT-5001 and Hozorisu Bussan Choko product name rNL-4000J.

高性能減水剤の使用量は特に限定されるものではないが
、固形分換算でセメント100重量部に対し0.2〜2
重量部程度が好ましい。
The amount of high-performance water reducing agent used is not particularly limited, but it is 0.2 to 2 parts by weight per 100 parts by weight of cement in terms of solid content.
Parts by weight are preferred.

本発明のセメント混和材とセメント、砂、砂利、適量の
水及び減水剤を配合して、モルタル・コンクリートを混
練し、成形し、常圧蒸気養生してセメント成形体を製造
するにあたり、本発明のセメント混和材は、予じめセメ
ントに混合してセメント組成物としても良いし、混練時
直接ミキサーへ混和材又は各々の成分を別々に混合して
も良く、さらに、水に分散させスラリー状で混合しても
良い。
In manufacturing a cement molded body by mixing the cement admixture of the present invention with cement, sand, gravel, an appropriate amount of water, and a water reducing agent, kneading mortar/concrete, molding, and curing with atmospheric pressure steam, the present invention The cement admixture may be mixed in advance with cement to form a cement composition, or the admixture or each component may be mixed separately into a mixer directly during kneading, or it may be dispersed in water to form a slurry. You can also mix it with

混練方法としては、特に制限されるものではなく、モル
タル・コンクリートで通常実施される方法が利用できる
The kneading method is not particularly limited, and methods commonly used for mortar and concrete can be used.

セメント成形体の成形方法は遠心力成形、プレス成形、
押し出し成形、抄造、振動成形及び振動成形して遠心力
成形等の常法が利用できる。
Forming methods for cement compacts include centrifugal force forming, press forming,
Conventional methods such as extrusion molding, paper forming, vibration molding, and centrifugal force molding after vibration molding can be used.

また、本発明のセメント混和材を用いたセメント成形体
の常圧蒸気養生は40〜100’Cの範囲で行なわれ、
50〜80°Cの範囲がより好ましい。
Further, atmospheric pressure steam curing of the cement molded body using the cement admixture of the present invention is carried out in the range of 40 to 100'C,
The range of 50 to 80°C is more preferable.

以上のように成形されるセメント成形体とじては、例え
ば、コンクリートパイル、ボール、ヒユーム管、鋼管複
合パイル及び鋼管ライニング等の遠心力成形体、ボック
スカルバート、セグメント、コンクリート枕木、矢板、
橋脚及び橋桁等のプレキャスト成形体などが挙げられる
The cement molded bodies formed as described above include, for example, concrete piles, balls, humid pipes, steel pipe composite piles, centrifugal force molded bodies such as steel pipe linings, box culverts, segments, concrete sleepers, sheet piles, etc.
Examples include precast molded bodies such as bridge piers and bridge girders.

〈実施例〉 以下、実施例にて本発明を説明する。<Example> The present invention will be explained below with reference to Examples.

実施例1 表−1に示すコンクリート配合を用い、表−2に示すよ
うに、■型態水セラコラ、活性シリカ及び高炉スラグ粉
を変化させ、常法によりコンクリートを混練した。その
後、その混練物を用いφ10X 20cmの供試体を成
形した。
Example 1 Using the concrete formulation shown in Table 1, concrete was kneaded in a conventional manner by changing the type 1 water Ceracola, activated silica, and blast furnace slag powder as shown in Table 2. Thereafter, the kneaded product was molded into a specimen measuring 10 cm in diameter and 20 cm in diameter.

表   −1 供試体は前置き養生を4時間行った後、15°C/hで
、65°Cまで昇温し、常圧蒸気養生し、そのまま4時
間保持した後、自然放冷し、翌朝蒸気養生槽より出し各
種試験を行なった。試験結果を表−2に示す。
Table 1: After pre-curing for 4 hours, the specimens were heated to 65°C at a rate of 15°C/h, steam-cured at normal pressure, kept for 4 hours, allowed to cool naturally, and then steamed the next morning. It was taken out of the curing tank and various tests were conducted. The test results are shown in Table-2.

なお、水・セメント比は単に水量とセメント量゛ あ重
量%、本発明のセメント混和材は砂と容積で置きかえ、
本発明のセメント混和材の量によって目標スランプ外と
なるものは、多少、水量を加減してスランプを調節した
In addition, the water/cement ratio is simply the amount of water and the amount of cement (wt%), and the cement admixture of the present invention is replaced by sand and volume.
If the slump was outside the target slump depending on the amount of the cement admixture of the present invention, the slump was adjusted by slightly adjusting the amount of water.

く試験方法〉 (1)スラグ粒度の測定 シーラス社製レーザー回折式粉体粒度分析計グラニュロ
メーター、Model 715 (測定範囲0〜192
 u )を用いエタノールに分散させ行った。
Test method> (1) Measurement of slag particle size Laser diffraction powder particle size analyzer Granulometer manufactured by Cirrus Co., Ltd., Model 715 (Measurement range 0 to 192
u) was used and dispersed in ethanol.

(2)強度試験の測定 圧縮強度は、材令1日の脱型時、φ1010X20の振
動詰めの円柱供試体を用いて求めた。
(2) Measurement of strength test The compressive strength was determined using a vibration-packed cylindrical specimen of φ1010×20 when demolded on the 1st day of age.

(3)耐塩性試験の測定 φ1010X20の円柱供試体を材令1日で脱型し、そ
の後20°C±3、R1(60%±5にコントロールし
た養生箱で28日間養生してから、3%NaC1水溶液
に浸漬し、材令1.3及び12か月で取り出し、供試体
中央部をφ10 X 1cmの寸法で切り出し、300
°Cで24時間乾燥したものを全量粉砕して、蛍光X線
分析によって塩素の浸透量を測定した。
(3) Measurement of salt resistance test A cylindrical specimen of φ1010×20 was demolded after 1 day of age, and then cured for 28 days in a curing box controlled at 20°C ± 3 and R1 (60% ± 5). % NaCl aqueous solution, removed at 1.3 and 12 months of age, and cut out the center part of the specimen with dimensions of φ10 x 1 cm.
After drying at °C for 24 hours, the entire amount was pulverized, and the amount of chlorine permeation was measured by fluorescent X-ray analysis.

(4)ポルトランダイトの測定 φ1010X20の円柱供試体を材令1日で脱型し、供
試体中央部をφ10 X 1cmの寸法で切り出し、3
00°Cで24時間乾燥したものを全量粉砕して、化学
分析をおこなった。なお、ポルトランダイトはf−Ca
Oに換算して示した。
(4) Measurement of portlandite A cylindrical specimen of φ1010×20 was demolded after 1 day of age, and the center part of the specimen was cut out with dimensions of φ10×1cm.
After drying at 00°C for 24 hours, the entire amount was pulverized and chemically analyzed. Furthermore, portlandite is f-Ca
It is shown in terms of O.

〈使用材料〉 セメント:電気化学工業株製、普通ポルトランドセメン
ト、比重3.16 ■型態水セッコウ:新秋田化成■製、弗酸発生副生セラ
コラ、プレーン値6.000cm”/g(ポロシティ0
.5)、比重2.93 活性シリカ−Aニジリカヒユーム、日本重化学工業■製
、比重2.20 〃  −B:商品名「アエロジル50」、日本アエロジ
ル■製、比重2.20 本スラグ:用鉄すバーメント社製高炉スラグセメント用
スラグ(三水セッコウなし、12μ以下の粒子48%)
を振動ミル又は振動ミルと分級装置を組み合わせ再調整
したもの、比重2.95 α :12μ以下53%、D50が約12μ弱β : 
〃  60     9μ T  :  /l   80      6μδ :〃
100〃3μ 水   :地下水 砂   :新潟県姫用産川砂(比重2.65)砂利  
:      砕石(比重2.68)減水剤 二高性能
減水剤、電気化学工業■製部品名rFT−500J (
比重1.20)表−2において、実験Nα1−1〜9と
実験No、1−28は比較例である。
<Materials used> Cement: Manufactured by Denki Kagaku Kogyo Co., Ltd., ordinary Portland cement, specific gravity 3.16 ■Type water gypsum: Manufactured by Shin-Akita Kasei ■, hydrofluoric acid generation by-product Ceracola, plain value 6.000 cm"/g (porosity 0
.. 5), specific gravity 2.93 Activated silica-A rainbow hydroxide, manufactured by Nippon Heavy Chemical Industry ■, specific gravity 2.20 〃 -B: Product name "Aerosil 50", manufactured by Nippon Aerosil ■, specific gravity 2.20 Slag: Steel barment Blast furnace slag Cement slag made by Sanshui Gypsum (no Sansui gypsum, 48% particles of 12μ or less)
A vibrating mill or a readjusted combination of a vibrating mill and a classifier, specific gravity 2.95 α: 12 μ or less 53%, D50 approximately 12 μ or less β:
〃 60 9μ T: /l 80 6μδ:〃
100〃3μ Water: Groundwater Sand: Niigata prefecture Himeyo river sand (specific gravity 2.65) gravel
: Crushed stone (specific gravity 2.68) Water reducing agent 2 High performance water reducing agent, manufactured by Denki Kagaku Kogyo Part name rFT-500J (
Specific gravity: 1.20) In Table 2, Experiments Nα1-1 to Nα1-9 and Experiment No. 1-28 are comparative examples.

表−2に示されるように、■型態水セッコウ、活性シリ
カ及び高炉スラグ粉の各々単独添加(実験No、1−2
〜4)及び■型態水セッコウとシリカヒユームのみの併
用(実験Nα1−7)と各々同量づつ配合した本発明例
(実験Nα1−14.1−30及び1−33)と比較す
ると、強度的にも、塩素に対する浸透抵抗性も顕著に改
善されていることがわかる。
As shown in Table 2, each of type 1 water gypsum, activated silica, and blast furnace slag powder was added separately (Experiment No. 1-2).
-4) and the combination of only Type gypsum and silica hume (Experiment Nα1-7) and the present invention examples (Experiments Nα1-14.1-30 and 1-33) in which the same amounts of each were mixed, the strength was It can be seen that the penetration resistance to chlorine is also significantly improved.

また、上記発明例と同配合で12μ以下の粒子の量が5
3%の高炉スラグ粉(α)を用いた比較例(実験Nα1
−28)と比較すると、実験Nα1−28では、強度及
び塩素に対する抵抗性の改善効果が小さく、本発明例の
ように12μ以下の粒子の量が60%以上で細かい程顕
著な効果を示すことが認められる。
In addition, with the same formulation as the above invention example, the amount of particles of 12μ or less was 5
Comparative example using 3% blast furnace slag powder (α) (experiment Nα1
-28), in Experiment Nα1-28, the effect of improving strength and resistance to chlorine was small, and as in the example of the present invention, when the amount of particles of 12μ or less is 60% or more, the finer the effect is, the more pronounced the effect is. is recognized.

実施例2 実施例1の実験Nα1−1.1−7及び1−14のコン
クリートを用いて、外径300mm X厚さ601×長
さむ(曲げモーメント用)と1m (圧縮用)のPC抗
を常法により成形し、前置き6時間行った後、3時間で
75°Cまで上げ、常圧蒸気養生し、そのまま4時間保
持してから、蒸気バルブを止め、自然放冷し、翌朝脱型
してプレストレスを導入し、そのまま室内で7日まで養
生して曲げ及び圧縮試験を行った。
Example 2 Using the concrete of Experiment Nα1-1.1-7 and 1-14 in Example 1, a PC resistor with an outer diameter of 300 mm x thickness of 601 x length (for bending moment) and 1 m (for compression) was constructed. It was molded using the usual method, preheated for 6 hours, raised to 75°C in 3 hours, cured with normal pressure steam, kept as it was for 4 hours, then the steam valve was turned off, allowed to cool naturally, and demolded the next morning. After applying prestress, the specimens were left to cure indoors for up to 7 days, and then subjected to bending and compression tests.

試験結果を表−3に示す。The test results are shown in Table-3.

なお、PC抗の配筋は、ストレート筋が高周波熱線■製
PC鋼棒φ13mmX4本とφ11皿×4本(ストレー
ト筋)、スパイラル筋はφ3mmの普通鉄線を10cm
間隔で入れ1.PC鋼棒の初期緊張応力は抗断面に対し
、160kgf/cm”となるようにした。
For the reinforcement of the PC shaft, the straight bars are made of high-frequency hot wire ■ PC steel rods φ13mm x 4 and φ11 plates x 4 (straight bars), and the spiral bars are φ3mm ordinary iron wire 10cm long.
Insert at intervals1. The initial tension stress of the PC steel bar was set to 160 kgf/cm'' with respect to the cross section.

表−3 実施例3 実施例2と同じコンクリートで、同様の養生条件を用い
、常法による遠心力成形を行って、内径1 、0OOn
v+ X厚さ82ffl111×長さ2.430mmの
A型ヒユーム管を成形し、材令7日で外圧強度試験を行
った。
Table 3 Example 3 Using the same concrete as in Example 2 and using the same curing conditions, centrifugal force forming was performed by a conventional method to obtain an inner diameter of 1, 0OOn.
An A-type humid pipe with v+

結果を表−4に示す。The results are shown in Table 4.

なお、配筋は、ストレート筋の鉄筋比0.26%、スパ
イラル筋はダブルで1.49%とした。
In addition, the reinforcement ratio of straight reinforcement was 0.26%, and the ratio of double spiral reinforcement was 1.49%.

表−4 〈発明の効果〉 実施例で示したように、本発明のセメント混和材を使用
することにより、高強度で、かつ、耐久性の高いコンク
リートを製造することができ、さらに、本発明のセメン
ト混和材を用いたセメント成形体は成形体としての性能
も顕著に向上する。
Table 4 <Effects of the invention> As shown in the examples, by using the cement admixture of the present invention, concrete with high strength and high durability can be manufactured. A cement molded body using this cement admixture also has significantly improved performance as a molded body.

Claims (2)

【特許請求の範囲】[Claims] (1)II型無水セッコウ100重量部と、活性シリカ2
0〜500重量部と、12μ以下の粒子が60%以上の
高炉スラグ粉20〜500重量部とを主成分とするセメ
ント混和材。
(1) Type II anhydrous gypsum 100 parts by weight and activated silica 2
A cement admixture whose main components are 0 to 500 parts by weight and 20 to 500 parts by weight of blast furnace slag powder containing 60% or more of particles of 12 microns or less.
(2)セメント100重量部と、請求項1記載のセメン
ト混和材6〜30重量部とを主成分とするセメント組成
物。
(2) A cement composition whose main components are 100 parts by weight of cement and 6 to 30 parts by weight of the cement admixture according to claim 1.
JP1121172A 1989-05-15 1989-05-15 Cement admixture and cement composition Expired - Fee Related JP2622287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121172A JP2622287B2 (en) 1989-05-15 1989-05-15 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121172A JP2622287B2 (en) 1989-05-15 1989-05-15 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JPH02302349A true JPH02302349A (en) 1990-12-14
JP2622287B2 JP2622287B2 (en) 1997-06-18

Family

ID=14804633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121172A Expired - Fee Related JP2622287B2 (en) 1989-05-15 1989-05-15 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP2622287B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350305A (en) * 2004-06-11 2005-12-22 Dc Co Ltd Cement admixture and cement composition
JP2012162413A (en) * 2011-02-04 2012-08-30 Taiheiyo Cement Corp High-strength porous concrete composition, and high-strength porous concrete hardened body
JP2015140272A (en) * 2014-01-28 2015-08-03 住友大阪セメント株式会社 Admixture, cement composition, and cement hardened body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716423B1 (en) * 2015-04-23 2017-03-14 국방과학연구소 Connection Structure of the thermal battery and the external connector with a flexible circuit board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749504A (en) * 1980-09-09 1982-03-23 Matsushita Electric Works Ltd Manufacture of artificial decorative veneer
JPS5767051A (en) * 1980-10-06 1982-04-23 Onoda Cement Co Ltd Hydraulic composition
JPS59156948A (en) * 1983-02-22 1984-09-06 電気化学工業株式会社 Manufacture of super high strength cement hardened body
JPS61141647A (en) * 1984-12-11 1986-06-28 日本鋼管株式会社 Hydraulic material and manufacture
JPS61281057A (en) * 1985-06-06 1986-12-11 日鐵セメント株式会社 Composition for high strength high endurance mortar concrete
JPH0283248A (en) * 1988-09-19 1990-03-23 Daiichi Cement Kk High-strength-low-exothermic cement composition
JPH0297441A (en) * 1988-10-05 1990-04-10 Onoda Cement Co Ltd Mixed cement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749504A (en) * 1980-09-09 1982-03-23 Matsushita Electric Works Ltd Manufacture of artificial decorative veneer
JPS5767051A (en) * 1980-10-06 1982-04-23 Onoda Cement Co Ltd Hydraulic composition
JPS59156948A (en) * 1983-02-22 1984-09-06 電気化学工業株式会社 Manufacture of super high strength cement hardened body
JPS61141647A (en) * 1984-12-11 1986-06-28 日本鋼管株式会社 Hydraulic material and manufacture
JPS61281057A (en) * 1985-06-06 1986-12-11 日鐵セメント株式会社 Composition for high strength high endurance mortar concrete
JPH0283248A (en) * 1988-09-19 1990-03-23 Daiichi Cement Kk High-strength-low-exothermic cement composition
JPH0297441A (en) * 1988-10-05 1990-04-10 Onoda Cement Co Ltd Mixed cement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350305A (en) * 2004-06-11 2005-12-22 Dc Co Ltd Cement admixture and cement composition
JP2012162413A (en) * 2011-02-04 2012-08-30 Taiheiyo Cement Corp High-strength porous concrete composition, and high-strength porous concrete hardened body
JP2015140272A (en) * 2014-01-28 2015-08-03 住友大阪セメント株式会社 Admixture, cement composition, and cement hardened body

Also Published As

Publication number Publication date
JP2622287B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
Nazari et al. RETRACTED: The effects of TiO2 nanoparticles on properties of binary blended concrete
Nazari et al. RETRACTED: Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete
WO2011135584A2 (en) Geopolymer concrete
Alonge et al. Properties of hybrid cementitious composite with metakaolin, nanosilica and epoxy
JP2581803B2 (en) Cement admixture and cement composition
JP2515397B2 (en) Cement admixture and cement composition
JPH02302349A (en) Cement additive and cement composition using the same
JP2853989B2 (en) Highly durable cement composition
JP2612071B2 (en) How to make salt-tolerant poles
Ravindrarajah Bleeding of fresh concrete containing cement supplementary materials
JP2501638B2 (en) Centrifugal molding single mouth reducing agent and method for producing centrifugal molding using the same
JPH0735272B2 (en) Cement admixture and cement composition
JP3222040B2 (en) Mixing method of concrete for centrifugal force forming
PAUL et al. WORKABILITY AND STRENGTH CHARACTERISTICS OF ALKALI-ACTIVATED FLY ASH/GGBS CONCRETE ACTIVATED WITH NEUTRAL GRADE Na
Paul et al. Workability and Strength Characteristics of Alkali-Activated Fly ASH/GGBS Concrete Activated with Neutral Grade NaSiO for Various Binder Contents and the Ratio of the Liquid/Binder
Benouadah et al. Effect of self-curing admixture and nature of the sand on the mechanical and microstructural properties of concrete in hot climate condition
JP3020962B2 (en) Highly durable cement composition
Goh et al. The influence of metakaolin/used engine oil as admixtures on the permeability of concrete
Nikam et al. Effect of different supplementary cementitious material on the microstructure and its resistance against chloride penetration of concrete
Usman et al. Effect of nano silica on the properties of slag concrete
Mondal et al. A study on sulfuric acid attack on cement mortar with rice husk ash
BABA PROPERTIES OF QUANTENARY BLENDED CEMENT MORTAR CONTAINING RICE HUSK ASH, CALCIUM CARBIDE WASTE AND METAKAOLIN
Ikotun The effect of a modified zeolite additive as a cement and concrete improver
JPH0365548A (en) Production of salt-resistant pole
Mitra et al. Workability & Strength Tests on Self-Compacting Concrete for M3O Grade with Silica Fume as Partial Replacement of Cement

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees