JPH02301593A - Production of thin amorphous alloy film - Google Patents

Production of thin amorphous alloy film

Info

Publication number
JPH02301593A
JPH02301593A JP11859189A JP11859189A JPH02301593A JP H02301593 A JPH02301593 A JP H02301593A JP 11859189 A JP11859189 A JP 11859189A JP 11859189 A JP11859189 A JP 11859189A JP H02301593 A JPH02301593 A JP H02301593A
Authority
JP
Japan
Prior art keywords
amorphous alloy
film
plating bath
divalent
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11859189A
Other languages
Japanese (ja)
Inventor
Hidehiko Ohashi
英彦 大橋
Kazue Taniguchi
谷口 和恵
Masaharu Oda
雅春 小田
Takemoto Kamata
健資 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11859189A priority Critical patent/JPH02301593A/en
Publication of JPH02301593A publication Critical patent/JPH02301593A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To improve the smoothness and soft magnetism of a thin amorphous alloy film by electrodepositing the thin film having a specified ratio of Fe/(Co+ Fe) and a specified P content with an acidic plating soln. contg. divalent Co ions, divalent Fe ions and phosphorous acid. CONSTITUTION:An acidic plating soln. contg. divalent Co ions, divalent Fe ions and phosphorous acid is prepd. at 30-90 deg.C. A reducing agent and a completing agent are added to the plating soln. as required. A thin amorphous alloy film based on Fe and Co in 0.1-20 atomic ratio of Fe/(Co+Fe) and having 3-30% P content is electrodeposited with the plating soln. The thickness of the film can freely be controlled. The film has satisfactory workability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性材料、特に軟磁性に優れ、かつ従来の非晶
質合金に比べ薄く加工性が良好な非晶質合金箔の製造方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a magnetic material, particularly an amorphous alloy foil that has excellent soft magnetism and is thinner and has better workability than conventional amorphous alloys. .

〔従来の技術〕[Conventional technology]

非晶質合金は金属原子の配列が不規則で長周期性が欠如
しておシ、また、結晶粒界や格子欠陥が存在しないなど
結晶質の合金と比較して構造的特異性を有している。こ
れらに起因して非晶質合金は磁気的特性に優れている。
Amorphous alloys have irregular arrangement of metal atoms, lack long periodicity, and have structural specificities compared to crystalline alloys, such as the absence of grain boundaries and lattice defects. ing. Due to these factors, amorphous alloys have excellent magnetic properties.

特に、低履歴損失材料や高透磁率材料としての応用が有
望視されている。例えばFel  基糸の非晶質合金は
飽′MJ磁束密度が大きく、低履歴損失の特性を生かし
てトランスの鉄心としての応用が考えられている。従来
の珪素鋼板金石としたトランスに比べて大幅にその損失
を小さくすることができ、良好な特性を備えたものとす
ることができると言われている。また、CO基糸の非晶
質合金は、広い周波数帯域で保磁力が小さいという特性
を備えておシ磁気増幅器用の磁気コア材として有用に用
いられている。
In particular, applications as low hysteretic loss materials and high magnetic permeability materials are seen as promising. For example, an amorphous alloy based on Fel has a high saturation MJ magnetic flux density, and its application as a transformer iron core is being considered by taking advantage of its low hysteresis loss characteristics. It is said that the loss can be significantly reduced compared to the conventional transformer made of silicon steel sheet metal and that it can have good characteristics. Furthermore, CO-based amorphous alloys have the characteristic of having a low coercive force over a wide frequency band, and are usefully used as magnetic core materials for magnetic amplifiers.

非晶質合金の製造方法として、最も一般的には溶融合金
を急冷する方法にて作られている。
The most common method for producing amorphous alloys is to rapidly cool a molten alloy.

この方法は、溶融金属を冷却した回転ロールに導き、1
0〜10deg/sで急冷することにより結晶化のため
の時間を与えずに固化させ、非晶質合金を形成させるも
のである。しかし、この急冷法によって作製される非晶
質合金は現在その製法上厚さが数10μm以上の物しか
できず、かつ平滑性良好なものとすることができない。
This method involves directing molten metal to cooled rotating rolls and
By rapidly cooling at 0 to 10 deg/s, the alloy is solidified without giving time for crystallization, and an amorphous alloy is formed. However, at present, the amorphous alloy produced by this rapid cooling method can only have a thickness of several tens of micrometers or more due to its manufacturing method, and cannot be made to have good smoothness.

非晶質合金の他の作製方法としては轄スパッタリング法
、真空蒸着法およびイオングレーティング法などが検討
されている。しかしこれらの方法では非晶質合金の生産
性が悪く、また製造装fが高価となり、非晶質合金を箔
状物、フィルム状物として単離することが難しい。
Other methods for producing amorphous alloys are being considered, such as a direct sputtering method, a vacuum evaporation method, and an ion grating method. However, these methods have poor productivity of amorphous alloys, expensive manufacturing equipment, and difficulty in isolating amorphous alloys in the form of foils or films.

他方、特公昭65−10235号公報には、2価のコバ
ルトイオンと次亜リン酸又は次亜リン酸塩を含む−1,
2へ2.2なるメッキ浴を用い浴温30〜60C,電流
密度5〜20 mA/dm21る電流密度で電気メッキ
を行ないコバルトとリンを主成分とする非晶質合金全製
造する発明が開示されている。
On the other hand, Japanese Patent Publication No. 65-10235 discloses -1, containing divalent cobalt ions and hypophosphorous acid or hypophosphite.
To 2.2.2 An invention is disclosed in which electroplating is performed using a plating bath at a bath temperature of 30 to 60 C and a current density of 5 to 20 mA/dm21 to produce an amorphous alloy whose main components are cobalt and phosphorus. has been done.

〔発明が解決しようとする課題〕 本発明省等が上記光8Aを検討したところ、単純な上記
組成のメッキ浴はその困値が6.5〜4の範囲となシ、
この−値のま〜電気メッキ全行っても良好な特性を備え
たコバルトとリンとを主体とし次非晶質合金を作ること
はできず、多量の酸を加えてメッキ浴の声値を前記範囲
に調整せしめる必要があるが、−値が1.0未満のメッ
キ浴では非晶質合金薄膜の形成性が悪く、また得られる
非晶質合金の透磁率も小さいものとなり、優れた磁性特
性を備えたものとすることはできない。またメッキ浴の
声値が165を越えて大きくなるとメッキ浴中の水酸化
物イオン濃度が増加し、メッキ浴中の鉄成分が水酸化物
として沈殿するため、このメッキ浴を周込ては目的とす
る非晶質合金を作シ得ない。そこでこの発明においては
メッキ浴の…値t−1,3〜1.5の範囲に正確に調節
する必要があり、多量の酸を加えなければならない。
[Problems to be Solved by the Invention] When the Ministry of the Invention and others studied the above-mentioned light 8A, it was found that a simple plating bath with the above composition has a difficult value in the range of 6.5 to 4.
Even if electroplating is carried out at this value, it is not possible to create an amorphous alloy mainly composed of cobalt and phosphorus with good properties, and by adding a large amount of acid, the value of the plating bath can be reduced to the above value. It is necessary to adjust the value within this range, but if the plating bath has a - value of less than 1.0, the formation of an amorphous alloy thin film will be poor, and the magnetic permeability of the resulting amorphous alloy will be low, resulting in poor magnetic properties. It cannot be assumed that the In addition, if the plating bath value exceeds 165, the hydroxide ion concentration in the plating bath will increase, and the iron components in the plating bath will precipitate as hydroxide. It is not possible to create an amorphous alloy with Therefore, in the present invention, it is necessary to accurately adjust the value of the plating bath within the range of t-1.3 to 1.5, and a large amount of acid must be added.

また、次亜リン酸又はその誘導体を含むメッキ浴ニジの
非晶質合金を析出させるためのメッキ浴中の次亜リン酸
濃度全0.2モル/に以上に高いm度のメッキ浴とする
と非晶質合金膜の析質特性が急激に低下する。ま九、次
亜リン酸濃度が0.2モル/−e以下のメッキ浴を用い
て作られたコバルト−鉄−リン系合金中のリン含有量は
10へ12at%と狭い範囲となシ得られる合金を非晶
質とするために作用するリンの含有量コントロール性が
不足し、優れた磁気特性を備え、かつ、薄膜化した非晶
質合金膜を作ることは極めて難しい。
Furthermore, if the plating bath contains hypophosphorous acid or its derivatives, the total concentration of hypophosphorous acid in the plating bath for precipitating an amorphous alloy is higher than 0.2 mol/m. The precipitation properties of the amorphous alloy film deteriorate rapidly. Ninth, the phosphorus content in a cobalt-iron-phosphorus alloy made using a plating bath with a hypophosphorous acid concentration of 0.2 mol/-e or less is within a narrow range of 10 to 12 at%. It is extremely difficult to control the content of phosphorus, which acts to make the alloy amorphous, and it is extremely difficult to create a thin amorphous alloy film that has excellent magnetic properties.

ま念次亜り/酸ンーダを含むメッキ浴全電気メッキする
と次亜リン酸ソーダは NaHpo  −+Na”+Hpo;   +1)HP
O″″  →H++ PO2”″  (22なる電解を
受けるが(2)の解離は進みにくく、電極近傍では逆反
応が進行し、電極近傍の水素イオン濃度が局所的に低下
するため均質な特性を備えた非晶質合金薄膜を作りにく
いのではないかと考えられる。
When performing full electroplating in a plating bath containing hypophosphorous/acid, sodium hypophosphite is NaHpo −+Na”+Hpo; +1) HP
O'''' → H++ PO2'''' (22) Although it undergoes electrolysis, the dissociation of (2) is slow to progress, and the reverse reaction progresses near the electrode, resulting in a local decrease in the hydrogen ion concentration near the electrode, resulting in homogeneous characteristics. It is thought that it may be difficult to make an amorphous alloy thin film with such characteristics.

ま九、非晶質合金薄膜を工業製品として利用するには、
目的の形状、大きさに容易に、かつ、精密に加工できる
こと、ま九、生産性が良好であることなどが要求される
。例えば、これらの非晶質合金を磁気ヘッドとして使用
することを考えると、磁気ヘッドの将来の技術指向は垂
直磁気記録方式であり、こ〜に使用される磁気ヘッドは
更に薄膜化することが要求される。また、スイッチング
レギュレーターなどに使用される磁気コアは高周波の励
磁領域における保磁力などの軟磁性等の磁気特性の高い
ものの開発要望があるが、この要望を達成し得たものは
未だ開発されるに至っていない。これは、一般に磁気コ
アに高周波の励磁電流が流れると磁性層中に流れる渦′
亀流が増加し、損失が大きくなるためである。渦電流は
磁性N厚みに比例するため、こ〜に用いる磁性材料はで
きるだけ薄膜化することが必要なのであるが、従来技術
では20μ以下の薄膜の軟磁性体を作ることはできなか
つ次。
Nine, in order to use amorphous alloy thin films as industrial products,
It is required to be able to be easily and precisely processed into the desired shape and size, and to have good productivity. For example, considering the use of these amorphous alloys in magnetic heads, the future technology direction for magnetic heads is perpendicular magnetic recording, and the magnetic heads used for this will require even thinner films. be done. In addition, there is a demand for the development of magnetic cores used in switching regulators, etc. that have high magnetic properties such as coercive force and soft magnetism in the high frequency excitation region, but nothing that can meet this demand has yet been developed. Not yet reached. Generally speaking, when a high-frequency excitation current flows through a magnetic core, a vortex flows in the magnetic layer.
This is because the tortoise current increases and the loss increases. Since the eddy current is proportional to the thickness of the magnetic N, it is necessary to make the magnetic material used for this as thin as possible, but with conventional technology, it is not possible to make a soft magnetic material with a thin film of less than 20 μm.

更に、非晶質合金テープをトロイグナルコア状に巻いた
シ、積層したシする際には実際に該非晶質合金テープの
占める体積率すなわち占積率が高いことが望まれるが、
従来開発されてきた非晶質合金膜はその表面平滑性が不
足するため、この占積率が80〜85%程度にしかなら
ず、この占積率を90%以上となし得る表面平滑性の良
好な非晶質合金薄膜の開発が望まれている。
Furthermore, when an amorphous alloy tape is wound or laminated into a troignal core shape, it is desired that the volume ratio, that is, the space factor occupied by the amorphous alloy tape is actually high.
The amorphous alloy films that have been developed so far lack surface smoothness, resulting in a space factor of only about 80 to 85%. Development of amorphous alloy thin films is desired.

〔課題を解決する次めの手段〕[Next means to solve the problem]

そこで本発明者等は表面平滑性に侵れ、軟磁性に優れた
20μ以下の薄膜状非晶質合金薄膜を作る方法を開発す
べく検討中のところ電気メツキ法を用い非晶質元素供給
源として従来は使用不可と考えられていた亜リン酸又は
その塩を用いることによシ、その目的とする非晶質合金
薄膜全作シ得ること全見出し本発明を完成し次。
Therefore, the present inventors are currently considering developing a method for producing a thin amorphous alloy thin film of 20 μm or less that is resistant to surface smoothness and has excellent soft magnetic properties. The present invention was completed by using phosphorous acid or its salt, which was previously thought to be unusable, to obtain the desired amorphous alloy thin film.

本発明の要旨とするところは、2価のコバルトイオン、
2価の鉄イオン及び亜すンrRヲ含む30〜?DCの酸
性メッキ浴を用いて電析しFe / (Co + Fe
)が0.1 ヘ20 at%、P含有量3〜30 at
%なる非晶質合金薄膜を電析せしめることを特徴とする
非晶質合金薄膜の製法にある。
The gist of the present invention is that divalent cobalt ions,
30~? Contains divalent iron ions and substinum rRwo? Fe/(Co + Fe) was electrodeposited using a DC acidic plating bath.
) is 0.1 20 at%, P content 3-30 at
% of the amorphous alloy thin film is electrodeposited.

本発明?実施するに際して用いる2価のコバルトイオン
を供給するための塩としては、例えばスルフアミノ酸コ
バルト、硫酸コバルト、塩化コバルト、ヒロリン酸コバ
ルト、酢酸コバルト、安息香酸コバルト等が挙げられる
。また、2価の鉄イオン全供給するための塩としては硫
酸鉄、塩化鉄、硝酸鉄 等が挙げられる。亜シん酸は鉄
−コバルト合金がを非晶質化する之めのシん供給源とし
てめっき浴中に添加される。
Invention? Examples of the salt for supplying divalent cobalt ions used in carrying out the method include cobalt sulfamino acid, cobalt sulfate, cobalt chloride, cobalt hyrophosphate, cobalt acetate, and cobalt benzoate. In addition, examples of salts for supplying all divalent iron ions include iron sulfate, iron chloride, iron nitrate, and the like. The phosphorous acid is added to the plating bath as a source of oxygen to amorphize the iron-cobalt alloy.

本発明において、2価の鉄イオンは電解めっき中に3価
の鉄イオンに酸化される。3価の鉄イオンは水酸化物と
してめっき浴中で沈澱を生成しやすい。これは3価の鉄
イオンを2価に還元する還元剤または/及び3価の鉄イ
オンと安定な錯化合物を形成する錯イオンを添加するこ
とによって防ぐことができる。還元剤としては例えば、
ヒドラジン、ジメチルアミンボラン、はう水素化ナトリ
ウム、ヒドロキノン、塩酸ヒドロキシルアミン等を挙げ
ることができる。
In the present invention, divalent iron ions are oxidized to trivalent iron ions during electrolytic plating. Trivalent iron ions tend to form precipitates in the plating bath as hydroxides. This can be prevented by adding a reducing agent that reduces trivalent iron ions to divalent iron ions and/or a complex ion that forms a stable complex compound with trivalent iron ions. Examples of reducing agents include:
Examples include hydrazine, dimethylamine borane, sodium hydride, hydroquinone, and hydroxylamine hydrochloride.

また、錯化剤としては例えばヒドロキシカルボン酸、ポ
リカルボン酸、クエン酸、グルコン酸、gDTAおよび
その金桐塩等が挙げられる。
Further, examples of the complexing agent include hydroxycarboxylic acid, polycarboxylic acid, citric acid, gluconic acid, gDTA and its kanetou salt.

めっき浴中で2価のコバルトイオンは0.1へ5 mo
l/i、 2価の鉄イオンは0.01 ” 1 mol
/見、亜力ん酸は0.001 ヘ1.0 mol/jに
おいて非晶質合金薄膜の形成が可能である。
In the plating bath, divalent cobalt ions are reduced to 0.1 to 5 mo
l/i, divalent iron ion is 0.01” 1 mol
However, it is possible to form an amorphous alloy thin film with 0.001 to 1.0 mol/j of aphrous acid.

特に製膜性良く電析する友めのメッキ浴の關値は1.5
前後とするのが最もよいことが確かめられている。この
關範囲にメッキ浴を調整する九めには従来技術では多量
の酸の添加を必要としたが本発明においては亜リン酸を
用いているため多量の酸を用いる必要はない。非晶質合
金膜の製膜性は非晶質合金を箔やテープに形成したシ、
導電体上に析出させる之めには重要な特性である。また
製膜性は磁気特性とも密接な関連性があシ、得られる非
晶質合金膜のピンホール、亀裂等がなく表面光沢を有す
る薄膜は軟磁性特性もよシ優れている傾向にある。本発
明法では亜pん酸を用いているため、このような特性を
備えたものとすることができメッキ浴の−調整も同時に
行うことができる。ま次、特公昭65−10255号公
報の方法ではめつき浴中の次亜りん酸濃度’!: 0.
3 mol/J!以上にすると非晶質合金膜の製膜性の
極度な低下を示す。めっき浴中の次亜pん酸濃度が0.
5 mol/Zの時、台率の限界である。これに対し本
発明の方法ではめつき浴中亜ジん酸濃度がり、3 mo
l/j以上でも得られる非晶質合金膜の1i!膜性の低
下は見られず、合金中のシんの含有量も20%以上と非
常に高いものも作ることができる。これにニジ得られる
非晶質合金の結晶化温度も高くすることができ、熱的安
定性においても優れ友非晶賀合金箔を提供することがで
きる。
In particular, the ratio value of a friend plating bath that deposits well is 1.5.
It has been found that it is best to do it before and after. In the prior art, it was necessary to add a large amount of acid to adjust the plating bath to this range, but in the present invention, since phosphorous acid is used, there is no need to use a large amount of acid. The film forming properties of amorphous alloy films are as follows:
This is an important property for depositing on conductors. Film formability is also closely related to magnetic properties, and thin films obtained from amorphous alloy films that are free of pinholes, cracks, etc. and have a glossy surface tend to have excellent soft magnetic properties. Since the method of the present invention uses phosphorous acid, it can be provided with such characteristics, and the plating bath can be adjusted at the same time. The method of Japanese Patent Publication No. 65-10255 was used to reduce the concentration of hypophosphorous acid in the plating bath! : 0.
3 mol/J! Above this value, the film formability of the amorphous alloy film is extremely degraded. The hypochlorous acid concentration in the plating bath is 0.
When it is 5 mol/Z, it is the limit of the production rate. On the other hand, in the method of the present invention, the concentration of zincite in the plating bath increases, and 3 mo
1i of amorphous alloy film obtained even when l/j or more! No deterioration in film properties is observed, and it is possible to produce alloys with a very high silver content of 20% or more. In addition, the crystallization temperature of the obtained amorphous alloy can be increased, and an amorphous alloy foil with excellent thermal stability can be provided.

本発明の方法に、おいては非晶質合金の膜厚は自由にコ
ントロールすることができる。すなわち膜厚はめつき時
間に依存する。めっき時間全短く取ることにより、液体
急冷法では作製不可能な10μm以下、逆に長く取るこ
とによって300μm以上の非晶質合金箔得ることも可
能である。
In the method of the present invention, the film thickness of the amorphous alloy can be freely controlled. That is, the film thickness depends on the plating time. By shortening the total plating time, it is possible to obtain an amorphous alloy foil with a thickness of 10 μm or less, which cannot be produced by the liquid quenching method, and by increasing the plating time, it is also possible to obtain an amorphous alloy foil with a thickness of 300 μm or more.

磁性材料の軟磁性特性、特に保磁力はその磁性体の磁歪
に大きく依存する。また、磁歪は一般に合金組成の関数
となっておシ、鉄−コバルト系においてはコバルト基の
合金が軟磁性特性に優れている。好ましくは合金中の鉄
およびコバルトの原子数比においてコバルトが8%以上
とくに90%以上の物がよい。さらに好ましくはコバル
ト94%のものがよい。本発明の方法によれば、鉄およ
びコパル)t−含有し、かつその原子数比においてコバ
ルトが90%以上の厚み10μm以下の非晶質合金箔を
容易に作製することができる。
The soft magnetic properties of a magnetic material, especially the coercive force, greatly depend on the magnetostriction of the magnetic material. Furthermore, magnetostriction is generally a function of alloy composition, and in iron-cobalt systems, cobalt-based alloys have excellent soft magnetic properties. Preferably, the atomic ratio of iron and cobalt in the alloy is 8% or more, particularly 90% or more of cobalt. More preferably, it contains 94% cobalt. According to the method of the present invention, it is possible to easily produce an amorphous alloy foil having a thickness of 10 μm or less, which contains iron and copal (t), and has cobalt in an atomic ratio of 90% or more.

本発明の非晶質合金膜は、目的の形状、大きさに切シ出
し、用途に応じてそのまtあるいは積層して用いること
ができる。例えば磁気ヘッドに用いる場合は10μm以
下の箔状の非晶質合金全馬蹄形に切シ出し、コイルを巻
いて作製できる。また、磁気増幅器用の磁気コアとして
用いる場合には、細長くスリットした非晶質合金箔をト
ロイダル状に巻回し、作製することができる。また本発
明の製造方法によれば、銅、銀といった導電体上に直接
めっき法に↓シ非晶質合金W3ヲ付着させることも容易
である。またその表面に導電層を形成させたグラスティ
ックフィルム上に電析することも可能である。このよう
な支持体を利用した場合、非晶質合金箔の淳みは、a1
0χまで薄くすることが原理的に可能である。急冷法の
非晶質合金に比べ格段に薄膜化したことに↓シ、高周波
領域での渦電流の発生を抑え、保磁力も低減することが
できる。
The amorphous alloy film of the present invention can be cut into a desired shape and size and used as is or in a layered manner depending on the application. For example, when used in a magnetic head, a foil-like amorphous alloy of 10 μm or less can be cut into a horseshoe shape and wound with a coil. Furthermore, when used as a magnetic core for a magnetic amplifier, it can be produced by winding an amorphous alloy foil with long slits into a toroidal shape. Furthermore, according to the manufacturing method of the present invention, it is also easy to deposit the amorphous alloy W3 directly onto a conductor such as copper or silver by plating. It is also possible to electrodeposit on a glass film with a conductive layer formed on its surface. When such a support is used, the thickness of the amorphous alloy foil is a1
In principle, it is possible to reduce the thickness to 0χ. The film is much thinner than the amorphous alloy produced by the rapid cooling method, and it is also possible to suppress the generation of eddy currents in the high frequency range and reduce the coercive force.

さらにはスイッチングレギュレータ本体を大幅に小さく
することが期待できる。
Furthermore, it is expected that the switching regulator body can be made significantly smaller.

以下、実施例によって説明する。Examples will be explained below.

(実施例1) 非晶質合金膜Aの製 塩化鉄(幻11.rp&/L、硫酸コバルト(1)26
4.31/ z、亜シん酸5.5 J / L sはう
酸6.217tt−含有する水溶液’j(pH1jに調
製し、電流密度o、o s A7t:nlにて電解析出
を行った。
(Example 1) Production of iron chloride of amorphous alloy film A (phantom 11.rp&/L, cobalt sulfate (1) 26
An aqueous solution containing 4.31/z, 5.5 J/L s of phosphorous acid and 6.217 tt of swinous acid (adjusted to pH 1j, electrolytically deposited at a current density o, o s A7t:nl) went.

なお、電源は北斗電工製HCP−301Hを使用した。The power source used was HCP-301H manufactured by Hokuto Denko.

   ゛ めっき浴の中に上記組成のめつき水浴成金いれ、白金か
らなる対極と作用電極の間に電圧を印加して金属などを
作用極上に析出させる。作用電極表面は中心線表面粗さ
全0,1μm以下に鏡面仕上げを施し、さらに硬質クロ
ムめっき仕上げしである。電析膜は直ちに剥離し、洗浄
後乾燥する。
゛A plating water bath with the above composition is placed in a plating bath, and a voltage is applied between a counter electrode made of platinum and a working electrode to deposit metal etc. on the working electrode. The surface of the working electrode has a mirror finish with a total centerline surface roughness of 0.1 μm or less, and is further plated with hard chrome. The deposited film is immediately peeled off, washed and dried.

電析膜の膜厚は作用電極のめつき液中の滞在時間に依存
し、7分の電析の後に得られた非晶質合金箔の厚みは7
μm であつ虎。また、ピンホールもなく柔軟性に優れ
た物であつ九。
The thickness of the electrodeposited film depends on the residence time of the working electrode in the plating solution, and the thickness of the amorphous alloy foil obtained after 7 minutes of electrodeposition is 7
μm Deatutora. Also, it has no pinholes and is highly flexible.

試料の非品性の観察 非晶質合金AのX線解析チャートヲ図2に示す。図2に
おいて、横軸は試料からのX@教乱角であシ、縦軸は散
乱強度である。このように金属特有の結晶に基づくピー
クはまったく見られず完全に非晶化している。
Observation of quality of sample An X-ray analysis chart of amorphous alloy A is shown in FIG. In FIG. 2, the horizontal axis is the X@disturbance angle from the sample, and the vertical axis is the scattering intensity. In this way, no peaks due to crystals peculiar to metals are observed, and the material is completely amorphous.

非晶質合金Af:硝酸5dに溶解し、蒸留水を加えて1
00ゴとした。この液1IcP発元分析装置(日本ジャ
ーレル・アッシュ製ICAP−575MK−1型)によ
って定量分析した。その結果重量比で Fa:Co:P −4,8: 812 : 12.0(
at%)の結果を得た。このときの鉄およびコバルトの
含有原子数比は6:94である。
Amorphous alloy Af: Dissolve in 5d of nitric acid and add distilled water to make 1
It was set as 00. This liquid was quantitatively analyzed using an IcP source analyzer (model ICAP-575MK-1 manufactured by Jarrell Ash Japan). As a result, the weight ratio was Fa:Co:P-4,8:812:12.0 (
at%) was obtained. The atomic ratio of iron and cobalt at this time was 6:94.

(実施例2) 非晶質合金膜Bの製膜 塩化鉄(1) 11.9.9 / z、硫酸コバルト(
1)264.3.9 /12、亜シん酸164.9/i
(2molA)はう酸6.2!//えおよびヒドロキノ
ン0.21/、t’に含有する水溶液h1.3に調製し
、電流密度0.05 A/(II2にて電解析出を行っ
た。
(Example 2) Film formation of amorphous alloy film B Iron chloride (1) 11.9.9/z, cobalt sulfate (
1) 264.3.9/12, cinous acid 164.9/i
(2 molA) 6.2 hydric acid! An aqueous solution h1.3 containing 0.21% and t' of hydroquinone was prepared, and electrolytic deposition was performed at a current density of 0.05 A/(II2).

X線回折の結果、非晶質化していることが示された。ま
九、製膜性も良好で、ピンホールもなく柔軟性に優れ次
層が得られ念。
The result of X-ray diffraction showed that it was amorphous. Also, the film forming properties are good, there are no pinholes, and the next layer is very flexible and can be obtained easily.

【図面の簡単な説明】[Brief explanation of the drawing]

図1=実施例1非晶質合金AOX線回折チャート Figure 1 = Example 1 amorphous alloy AOX-ray diffraction chart

Claims (2)

【特許請求の範囲】[Claims] (1)2価のコバルトイオン、2価の鉄イオン及び亜リ
ン酸を含む30〜90℃の酸性メッキ浴にて電析しFe
/(Co+Fe)が0.1〜20at%、P含有量3〜
30at%を主成分とする非晶質合金薄膜を電析するこ
とを特徴とする非晶質合金薄膜の製法。
(1) Electrodeposited Fe in an acidic plating bath at 30 to 90°C containing divalent cobalt ions, divalent iron ions, and phosphorous acid.
/(Co+Fe) is 0.1 to 20 at%, P content is 3 to 20 at%
A method for producing an amorphous alloy thin film, which comprises electrodepositing an amorphous alloy thin film containing 30 at% as a main component.
(2)メッキ浴として還元剤又は錯化剤の少なくとも1
種と2価の鉄イオン及び亜リン酸を含むメッキ浴を用い
ることを特徴とする請求項第1項記載の非晶質合金箔の
製法。
(2) at least one reducing agent or complexing agent as a plating bath;
2. The method for producing an amorphous alloy foil according to claim 1, wherein a plating bath containing seeds, divalent iron ions, and phosphorous acid is used.
JP11859189A 1989-05-15 1989-05-15 Production of thin amorphous alloy film Pending JPH02301593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11859189A JPH02301593A (en) 1989-05-15 1989-05-15 Production of thin amorphous alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11859189A JPH02301593A (en) 1989-05-15 1989-05-15 Production of thin amorphous alloy film

Publications (1)

Publication Number Publication Date
JPH02301593A true JPH02301593A (en) 1990-12-13

Family

ID=14740377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11859189A Pending JPH02301593A (en) 1989-05-15 1989-05-15 Production of thin amorphous alloy film

Country Status (1)

Country Link
JP (1) JPH02301593A (en)

Similar Documents

Publication Publication Date Title
US5484494A (en) Amorphous alloy and method for its production
US5435903A (en) Process for the electrodeposition of an amorphous cobalt-iron-phosphorus alloy
US8177926B2 (en) Amorphous Fe100-a-bPaMb alloy foil and method for its preparation
JP4732668B2 (en) Method for producing cobalt iron molybdenum alloy and cobalt iron molybdenum alloy plated magnetic thin film
CN100371989C (en) Soft magnetic thin film and magnetic recording head
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
US6855240B2 (en) CoFe alloy film and process of making same
JP2010518252A5 (en)
JPH065423A (en) Machining method for high magnetic efficiency material and thin film head
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
JP2005086012A (en) Magnetic thin film, manufacturing method thereof, and magnetic head using the magnetic thin film
JPH02301593A (en) Production of thin amorphous alloy film
JPH0766034A (en) Soft magnetic material film and manufacture thereof
JP3201763B2 (en) Soft magnetic thin film
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JPH03126889A (en) Production of amorphous alloy
US20070188916A1 (en) Soft magnetic thin film, method of producing the same, and magnetic head
JPH0696949A (en) Manufacture of magnetic thin film
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH06251978A (en) Soft magnetic thin film and manufacture thereof
JPH01247590A (en) Amorphous alloy
JPH03126847A (en) Soft-magnetic amorphous alloy foil
JP4645784B2 (en) Soft magnetic thin film, manufacturing method thereof, and thin film magnetic head using the thin film
JPH02125832A (en) Soft magnetic amorphous alloy foil
JPH0372611A (en) Electroless plated soft magnetic thin film