JPH0766034A - Soft magnetic material film and manufacture thereof - Google Patents
Soft magnetic material film and manufacture thereofInfo
- Publication number
- JPH0766034A JPH0766034A JP21181393A JP21181393A JPH0766034A JP H0766034 A JPH0766034 A JP H0766034A JP 21181393 A JP21181393 A JP 21181393A JP 21181393 A JP21181393 A JP 21181393A JP H0766034 A JPH0766034 A JP H0766034A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- magnetic material
- material film
- film
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemically Coating (AREA)
- Magnetic Record Carriers (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気ヘッド材料、センサ
ー材料、磁気シールド材料、または垂直磁気記録媒体の
下地層等に使用される軟磁性材料膜に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic material film used as a magnetic head material, a sensor material, a magnetic shield material, or an underlayer of a perpendicular magnetic recording medium.
【0002】[0002]
【従来の技術】例えば磁気記録の分野では、従来の面内
記録方式に比べ高記録密度に有利な垂直磁気記録方式が
提案されており、近年この垂直磁気記録媒体の実用化が
活発に行われている。2. Description of the Related Art For example, in the field of magnetic recording, a perpendicular magnetic recording method, which is advantageous in high recording density as compared with the conventional longitudinal recording method, has been proposed, and in recent years, the perpendicular magnetic recording medium has been actively put into practical use. ing.
【0003】垂直磁気記録媒体としては、記録特性の観
点から垂直記録層の下地層として、透磁率の高い軟磁性
層をもつ二層膜構造が最も有利とされている。この軟磁
性層の特性として、高透磁率、低保磁力が要求される
が、工業的に安価に大量生産できることが必要である。
従来このような軟磁性層はパーマロイ膜が一般的に広く
用いられており、スパッタリングや電気めっきにより成
膜されている。As a perpendicular magnetic recording medium, a two-layer film structure having a soft magnetic layer having a high magnetic permeability as an underlayer of the perpendicular recording layer is most advantageous from the viewpoint of recording characteristics. High magnetic permeability and low coercive force are required for the characteristics of the soft magnetic layer, but it is necessary that the soft magnetic layer can be mass-produced industrially at low cost.
Conventionally, a permalloy film is generally widely used for such a soft magnetic layer, and is formed by sputtering or electroplating.
【0004】しかしながら、パーマロイ膜の場合、記録
特性や耐外部磁場性の観点から、数μmの厚さの膜を成
膜する必要があり、スパッタリング法は不向きである。
パーマロイ膜をめっき法によって成膜する方法として電
気めっき法と無電解めっき法があるが、電気めっき法に
よって成膜する場合には成膜速度は大きいが、電極を対
向させる必要があり工業的に考えるとめっき浴あたりの
処理数が少なくなり、生産効率が低いという問題があっ
た。また電流密度のムラによる組成分布が生じ、結果的
に磁気特性に分布が生じるという問題があった。無電解
めっき法による軟磁性材料膜の組成に関しては、NiFeP
、CoP 及びCoB などについて検討されているが、現状
の段階で知られている組成及びその製造方法では、組成
の制御やそれにともなう良好な磁気特性を得る条件範囲
が非常に狭く、また連続めっきする際のめっき浴の安定
性に問題があり、良好な磁気特性とめっき浴安定性(以
下、浴安定性と言う)を両立させる浴組成ができないと
いう問題があった。However, in the case of a permalloy film, it is necessary to form a film having a thickness of several μm from the viewpoint of recording characteristics and resistance to external magnetic fields, and the sputtering method is not suitable.
There are electroplating method and electroless plating method as a method for forming a permalloy film by a plating method. When the film is formed by an electroplating method, the film formation rate is high, but it is necessary to make the electrodes face each other industrially. Considering this, there was a problem that the number of treatments per plating bath was small and the production efficiency was low. Further, there is a problem that a composition distribution is generated due to the unevenness of the current density, and as a result, the magnetic characteristics are distributed. Regarding the composition of the soft magnetic material film by electroless plating, NiFeP
, CoP, CoB, etc. have been studied, but with the composition and manufacturing method known at the current stage, the range of conditions for obtaining compositional control and good magnetic properties is extremely narrow, and continuous plating is performed. In this case, there is a problem in stability of the plating bath, and there is a problem that a bath composition that makes good magnetic properties and plating bath stability (hereinafter referred to as bath stability) compatible cannot be obtained.
【0005】本発明は上記問題点に鑑みてなされたもの
であって、軟磁性材料薄膜の組成とその製造方法につい
て検討し、良好な軟磁性材料膜組成とこの膜を連続的に
安定して成膜する時に必要な浴安定性が良好な無電解め
っき浴で処理する製造方法を見いだすことができ、本発
明を完成するに至った。即ち、本発明の目的は良好な軟
磁気特性を示す軟磁性材料膜とこの軟磁性材料膜を安定
に安価に製造することができる無電解めっきによる製造
方法を提供することである。The present invention has been made in view of the above problems. The composition of a thin film of a soft magnetic material and a method of manufacturing the thin film are studied, and a good soft magnetic material film composition and a stable composition of this film are continuously stabilized. It was possible to find a manufacturing method in which an electroless plating bath having good bath stability required for film formation was used, and the present invention was completed. That is, it is an object of the present invention to provide a soft magnetic material film exhibiting good soft magnetic characteristics and a manufacturing method by electroless plating capable of stably manufacturing the soft magnetic material film at low cost.
【0006】[0006]
【課題を解決するための手段】本発明の軟磁性材料膜
は、Ni、Fe及びPからなり、そのNi含有量が70〜
85重量%で、Fe/P(重量比)(以下、Fe/Pで表
す)の値が 8〜15であることを特徴とするものである。
また、本発明の軟磁性材料膜は、X線回折によるNiF
e(111)面におけるロッキングカーブの半値幅が1
5度以下である前記組成を有するものが特に好ましい。
さらに、本発明の軟磁性材料膜の製造方法は、ニッケル
及び鉄を主成分とする金属イオン、並びにpH調整剤を
含む調整剤からなり、pH緩衝剤として硫酸アンモニウ
ムを 0.2〜0.5 mol/L 、前記金属イオンの錯化剤として
クエン酸塩を 0.5〜1 mol/L 及び金属イオンの還元剤と
して次亜リン酸塩を 0.005〜0.03 mol/Lを含む無電解め
っき浴中で基材を処理して、基材の表面に請求項1記載
の軟磁性材料膜を製造することを特徴とするものであ
る。The soft magnetic material film of the present invention comprises Ni, Fe and P and has a Ni content of 70-70.
It is characterized in that the value of Fe / P (weight ratio) (hereinafter represented by Fe / P) is 8 to 15 at 85% by weight.
The soft magnetic material film of the present invention is made of NiF by X-ray diffraction.
The full width at half maximum of the rocking curve on the e (111) plane is 1
Those having the above composition of 5 degrees or less are particularly preferable.
Furthermore, the method for producing the soft magnetic material film of the present invention comprises a metal ion containing nickel and iron as main components, and a pH adjusting agent-containing ammonium sulfate as a pH buffering agent of 0.2 to 0.5 mol / L, The substrate was treated in an electroless plating bath containing 0.5 to 1 mol / L citrate as a complexing agent for metal ions and 0.005 to 0.03 mol / L hypophosphite as a reducing agent for metal ions. The soft magnetic material film according to claim 1 is manufactured on the surface of the base material.
【0007】[0007]
【作用】以下、本発明についてさらに詳細に説明する。The present invention will be described in more detail below.
【0008】本発明の軟磁性材料膜は、Ni、Fe及び
Pからなり、通常これらの合金である。ここでいう合金
は、少なくとも前記原子の二種以上の化合物及び/又は
少なくとも前記原子の二種以上の固溶体、もしくは前記
化合物及び/又は固溶体と前記原子の一種以上との混合
物からなるものを言う。The soft magnetic material film of the present invention comprises Ni, Fe and P, and is usually an alloy of these. The alloy here means an alloy composed of at least two or more compounds of the above atoms and / or at least two or more solid solutions of the above atoms, or a mixture of the above compounds and / or solid solutions and one or more of the above atoms.
【0009】本発明の軟磁性材料膜の磁気特性は、その
保磁力が5Oe以下、好ましくは4Oe以下のものである。
Ni含有量が変化するとその保磁力が変化し、70重量%
未満の組成のもの、及び85重量%を越える組成のものは
5Oeより大きな保磁力を有し、好ましくない。The soft magnetic material film of the present invention has a magnetic property that its coercive force is 5 Oe or less, preferably 4 Oe or less.
When the Ni content changes, its coercive force also changes to 70% by weight.
The composition of less than 85% and the composition of more than 85% by weight have a coercive force of more than 5 Oe, which is not preferable.
【0010】また、Ni含有量が70〜85重量%の組成で
あっても、Fe/Pの値が大きすぎたり小さすぎたりす
ると保磁力は大きくなり好ましくなく、 8〜15の範囲で
あれば5Oe以下の良好な軟磁気特性を示す。Fe/Pが
8より小さくなる、すなわちP(リン)の占める割合が
増加すると膜中にとりこまれたリンは非磁性のリン化合
物として磁壁をトラップし、保磁力を増加させるような
作用を及ぼす。従って、良好な軟磁気特性を得るために
は膜中に含まれるリンをできるだけ低減するのが好まし
い。P含有量が非常に小さくなってもFe/Pは増加す
るが、次亜リン酸塩を還元剤として無電解めっきを行う
場合、工業的に適正な析出速度が必要とされるので、1
重量%以下にすることは好ましくない。Further, even if the Ni content is 70 to 85% by weight, if the Fe / P value is too large or too small, the coercive force becomes large, which is not preferable. It exhibits excellent soft magnetic properties of 5 Oe or less. Fe / P is
When it becomes smaller than 8, that is, when the proportion of P (phosphorus) increases, phosphorus taken into the film traps the domain wall as a non-magnetic phosphorus compound and acts to increase the coercive force. Therefore, in order to obtain good soft magnetic characteristics, it is preferable to reduce phosphorus contained in the film as much as possible. Although Fe / P increases even if the P content becomes extremely small, when performing electroless plating with hypophosphite as a reducing agent, an industrially appropriate deposition rate is required, so 1
It is not preferable to set the content to the weight% or less.
【0011】上記本発明の組成を有するNi、Fe、P
からなる軟磁性材料膜の構造と磁気特性を検討した結
果、NiFe(111)面の配向性を示すロッキングカ
ーブから優れた磁気特性を有する構造のものをX線回折
の半値幅で特定することができることがわかった。即ち
前記本発明のNi、Fe、Pからなる軟磁性材料膜の場
合、回折によるNiFe(111)面におけるロッキン
グカーブの半値幅が15度以下のものが良好な磁気特性
を示す。ロッキングカーブの半値幅は小さい程よいが、
実際に得られるものは最低でも1度程度である。Ni, Fe, P having the above composition of the present invention
As a result of studying the structure and magnetic properties of the soft magnetic material film made of, it is possible to specify the structure having excellent magnetic properties from the rocking curve indicating the orientation of the NiFe (111) plane by the half width of X-ray diffraction. I knew I could do it. That is, in the case of the above-described soft magnetic material film of Ni, Fe, and P of the present invention, a magnetic field having a half-width of the rocking curve on the NiFe (111) plane by diffraction of 15 degrees or less shows good magnetic characteristics. The smaller the half-width of the rocking curve, the better, but
The actual result is at least once.
【0012】リンの含有量と本発明の軟磁性材料膜の構
造との関係は一般に次のように考えられてている。即
ち、膜中に含まれるリン含有量が増すにつれて、構造が
アモルファスライクになる。膜中にとりこまれたリンは
非磁性のリン化合物として磁壁をトラップし、軟磁気特
性を低下させるような作用を及ぼす。従って、良好な軟
磁気特性を得るためには膜中に含まれるリン含有量をで
きるだけ低減するのが好ましい。またこのような結晶配
向性の強い膜は再加熱をほどこしてもアモルファスのよ
うに結晶化して構造が変化することがないので、熱に対
する磁気特性安定性に優れている。The relationship between the phosphorus content and the structure of the soft magnetic material film of the present invention is generally considered as follows. That is, as the phosphorus content in the film increases, the structure becomes amorphous like. Phosphorus incorporated in the film traps the domain wall as a non-magnetic phosphorus compound and acts to reduce the soft magnetic properties. Therefore, in order to obtain good soft magnetic properties, it is preferable to reduce the phosphorus content contained in the film as much as possible. Further, such a film having a strong crystallographic orientation does not crystallize and change its structure like an amorphous even if it is reheated, and therefore it is excellent in magnetic property stability against heat.
【0013】リンの含有量はめっき浴中の次亜リン酸塩
の濃度によって変化するが、軟磁性材料膜の結晶構造に
影響を及ぼす。次亜リン酸塩を還元剤として用いた無電
解めっきにより得られたNiFeP軟磁性材料膜膜につ
いて、次亜リン酸濃度を変化させて得た膜のX線回折パ
ターンを図1に示す。次亜リン酸濃度が低いほどfcc
構造NiFe(111)の回折ピークがシャープになっ
ていて、強い結晶配向性を有している。Although the phosphorus content changes depending on the concentration of hypophosphite in the plating bath, it affects the crystal structure of the soft magnetic material film. FIG. 1 shows the X-ray diffraction pattern of the NiFeP soft magnetic material film obtained by electroless plating using hypophosphite as a reducing agent by changing the hypophosphorous acid concentration. The lower the concentration of hypophosphorous acid, the more fcc
The structure NiFe (111) has a sharp diffraction peak and has a strong crystal orientation.
【0014】次に、X線回折測定において、NiFe
(111)面のピーク角度(2θ)に検出器を固定し
て、試料に対する入射角をスキャン測定し、試料膜厚方
向における結晶配向度の情報を含むロッキング曲線を測
定した。例えば、マックサイエンス社製 XMP-18 X線回
折装置を使い、CuKαターゲットで50KV,50m
Aの条件で測定して得られたロッキング曲線の半値幅と
保磁力との関係を図2に示す。配向性が大きいほど、軟
磁気特性が良好であることがわかる。Next, in X-ray diffraction measurement, NiFe
The detector was fixed to the peak angle (2θ) of the (111) plane, the incident angle to the sample was scan-measured, and the rocking curve including the information on the crystal orientation degree in the sample film thickness direction was measured. For example, using Mac Science XMP-18 X-ray diffractometer, CuKα target at 50KV, 50m
FIG. 2 shows the relationship between the full width at half maximum of the rocking curve obtained by measurement under the condition A and the coercive force. It can be seen that the softer the magnetic properties, the better the greater the orientation.
【0015】次に本発明の軟磁性材料膜の製造方法につ
いて説明する。本発明の軟磁性材料膜の製造方法は、ニ
ッケル及び鉄を主成分とする金属イオン、並びにpH調
整剤を含む水溶液からなり、pH緩衝剤として硫酸アン
モニウムを 0.2〜0.5 mol/L、前記金属イオンの錯化剤
としてクエン酸塩を 0.5〜1 mol/L 及び金属イオンの還
元剤として次亜リン酸塩を 0.005〜0.03mol/L を含む無
電解めっき浴中で、基材を処理して基材表面に前記組
成、すなわちNi含有量が70〜85重量%、Fe/Pが 8
〜15の軟磁性材料膜を製造する方法である。Next, a method of manufacturing the soft magnetic material film of the present invention will be described. The method for producing a soft magnetic material film of the present invention is composed of an aqueous solution containing a metal ion containing nickel and iron as main components, and a pH adjusting agent, and ammonium sulfate of 0.2 to 0.5 mol / L as a pH buffering agent. Treat the substrate in an electroless plating bath containing 0.5 to 1 mol / L citrate as a complexing agent and 0.005 to 0.03 mol / L hypophosphite as a reducing agent for metal ions. The above composition on the surface, that is, Ni content of 70 to 85 wt% and Fe / P of 8
15 is a method for producing a soft magnetic material film.
【0016】本発明の製造方法において、軟磁性材料膜
の組成、安定しためっき浴及び生産性(析出速度)を得
る上で最も重要であるのがめっき浴の組成である。基本
となるめっき浴の構成成分は以下のとおりである。 (めっき浴の構成成分) ・金属イオン:硫酸ニッケル・硫酸第一鉄 ・錯化剤:クエン酸ナトリウム ・緩衝剤:硫酸アンモニウム ・還元剤:次亜リン酸ナトリウム ・pH調整剤:水酸化ナトリウム・アンモニアIn the production method of the present invention, the composition of the plating bath is most important for obtaining the composition of the soft magnetic material film, the stable plating bath and the productivity (deposition rate). The components of the basic plating bath are as follows. (Components of plating bath) -Metal ion: nickel sulfate-ferrous sulfate-Complexing agent: sodium citrate-Buffer agent: ammonium sulfate-Reducing agent: sodium hypophosphite-pH adjusting agent: sodium hydroxide-ammonia
【0017】上記各成分の限定理由を以下に説明する。
図3はpH緩衝剤である硫酸アンモニウム濃度と析出レー
トの関係をみたものである。硫酸アンモニウム濃度が
0.2 mol/Lより小さくなると析出レートが小さくなる。
硫酸アンモニウムはアンミン基として金属イオンに配位
するので緩衝剤と同時に錯化剤としての作用がある。析
出レートが減少するのはアンミン基の配位分が減少し、
還元困難型の金属錯体に変化しているためと考えられ
る。また硫酸アンモニウム濃度が 0.5 mol/Lよりも大き
くなると金属が沈澱しやすくなるので好ましくない。従
って硫酸アンモニウム濃度は 0.2〜0.5 mol/L で行うこ
とが好ましい。また高温アルカリ下ではアンモニアとし
て蒸発するので、浴中のアンモニアイオン(もしくはア
ンミン基)濃度をアンモニア水を添加することにより一
定に保つ必要がある。このアンモニア水の添加はpH下
降を抑制する効果もある。The reasons for limiting the above components will be described below.
FIG. 3 shows the relationship between the concentration of ammonium sulfate as a pH buffer and the deposition rate. Ammonium sulfate concentration
When it is less than 0.2 mol / L, the precipitation rate becomes small.
Ammonium sulphate acts as a complexing agent at the same time as a buffer because it coordinates with the metal ion as an ammine group. The decrease in the deposition rate is due to the decrease in the coordination of the ammine group,
This is probably because the metal complex has changed to a difficult-to-reduce type. If the ammonium sulfate concentration is higher than 0.5 mol / L, the metal is likely to precipitate, which is not preferable. Therefore, the ammonium sulfate concentration is preferably 0.2 to 0.5 mol / L. Further, since it evaporates as ammonia under high temperature alkali, it is necessary to keep the concentration of ammonia ions (or ammine groups) in the bath constant by adding aqueous ammonia. The addition of this ammonia water also has the effect of suppressing the pH drop.
【0018】クエン酸塩の濃度は、めっき操作中の浴安
定性に影響を及ぼす。クエン酸濃度が 0.5 mol/Lより小
さいと酸化鉄の沈澱を生じ浴安定性がよくない。0.5 m
ol/L以上でめっきを行えば連続めっき時においても良好
な浴安定性を示す。Citrate concentration affects bath stability during plating operations. If the citric acid concentration is less than 0.5 mol / L, iron oxide will precipitate and the bath stability will be poor. 0.5 m
If plating is performed at ol / L or more, good bath stability is exhibited even during continuous plating.
【0019】同時に、クエン酸塩濃度は保磁力にも影響
を及ぼし、図4に示すようにクエン酸濃度が大きくなる
につれて保磁力は増加する。保磁力5Oe以下の軟磁気特
性を有するためには 1.2mol/L 以下が好ましく、さらに
4Oe以下の軟磁気特性を有するためには 1 mol/L以下が
好ましい。従って浴安定性と磁気特性の観点からクエン
酸塩の濃度は 0.5〜 1.0 mol/L、さらに好ましくは0.6
〜0.8 mol/L がよい。At the same time, the citrate concentration also affects the coercive force, and as shown in FIG. 4, the coercive force increases as the citric acid concentration increases. In order to have coercive force of 5 Oe or less in soft magnetic properties, 1.2 mol / L or less is preferable, and in order to have soft magnetic properties of 4 Oe or less, 1 mol / L or less is preferable. Therefore, from the viewpoint of bath stability and magnetic properties, the concentration of citrate is 0.5 to 1.0 mol / L, more preferably 0.6.
~ 0.8 mol / L is recommended.
【0020】次亜リン酸塩の濃度はと析出レート及び得
られためっき膜の保磁力に影響を及ぼす。析出レートと
軟磁気特性の観点から次亜リン酸塩濃度は0.005 〜 0.0
3 mol/L 、できれば0.015 〜 0.025 mol/Lが好ましい。
次亜リン酸塩濃度が0.005 mol/L 未満であると析出速度
が遅く好ましくなく、また 0.03 mol/L より大きいと軟
磁気特性が不良となり好ましくない。またそれにともな
い、本めっき浴で無電解めっきを行なうと、結晶配向性
の強い膜が得られるので再加熱をほどこしても、アモル
ファス構造の場合のように結晶化して構造が変化するこ
とがないので、熱に対する磁気特性安定性に優れてい
る。The concentration of hypophosphite affects the deposition rate and the coercive force of the obtained plated film. From the viewpoint of precipitation rate and soft magnetic properties, the hypophosphite concentration is 0.005 to 0.0
3 mol / L, preferably 0.015 to 0.025 mol / L.
When the hypophosphite concentration is less than 0.005 mol / L, the precipitation rate is slow and unfavorable, and when it is more than 0.03 mol / L, the soft magnetic properties are unfavorably poor. Along with this, when electroless plating is performed in this plating bath, a film with a strong crystal orientation is obtained, so even if it is reheated, it does not crystallize and change its structure like the case of the amorphous structure. Excellent magnetic property stability against heat.
【0021】次に、本発明の実施例の一例について具体
的に説明する。Next, an example of the embodiment of the present invention will be specifically described.
【実施例1〜5、比較例1〜5】約5000ÅのNiPの無
電解めっき膜を形成したアルミ基板(直径 48 mmφ×厚
さ 0.508 mm )を基材として、表1の実施例1〜5及び
表2の比較例1〜5に示すめっき浴中に浸漬し、同じく
表1及び表2に示す条件で無電解めっき処理した。この
ようにして約5μmの軟磁性材料膜が得られた。これら
の膜の特性と浴安定性を表1及び表2に示した。[Examples 1 to 5 and Comparative Examples 1 to 5] Examples 1 to 5 in Table 1 were prepared using an aluminum substrate (diameter 48 mmφ x thickness 0.508 mm) on which an electroless plating film of NiP of about 5000 Å was formed as a base material. And immersed in the plating baths shown in Comparative Examples 1 to 5 in Table 2 and subjected to electroless plating under the same conditions shown in Tables 1 and 2. Thus, a soft magnetic material film having a thickness of about 5 μm was obtained. The properties and bath stability of these membranes are shown in Tables 1 and 2.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】実施例1〜5では良好な軟磁気特性を示し
ており、かつ浴安定性も良好であった。これに対し、比
較例1ではFe/Pが小さすぎ、比較例2ではFe/P
が大きすぎ、いずれも保磁力が大きく軟磁気特性が良好
でなかった。比較例3は次亜リン酸塩を多くして行った
ものであるが、やはり保磁力が大きく軟磁気特性が実施
例に比べてよくない。これは膜中のP(リン)の含有量
が大きいためである。比較例4は緩衝剤として硫酸アン
モニウムのかわりにほう酸を用いたものであるが、軟磁
気特性及び浴安定性ともに良好でない。これはほう酸に
比べ、硫酸アンモニウムが錯化剤として安定性及び磁気
特性に有効であることを示している。比較例5はクエン
酸塩が少ないためめっき浴が分解しないものの、酸化鉄
の沈澱がみられ浴安定性が不良であった。実施例1〜5
で得られたそれぞれの軟磁性材料膜の上に、スパッタリ
ング法によって 0.1μmの厚さのCoCr17Ta5 の垂
直磁気記録層、カーボン保護層を形成したところ、いず
れも磁気記録密度が高く、良好な磁気記録特性を示す垂
直磁気記録媒体を作製することができた。これに反し
て、比較例1〜5で得られたそれぞれの軟磁性材料膜の
上に、実施例の場合と同様の工程で垂直磁気記録媒体を
作製したが、それらの磁気記録特性は実施例に比較して
劣るものであった。In Examples 1 to 5, good soft magnetic properties were exhibited, and the bath stability was also good. On the other hand, Fe / P is too small in Comparative Example 1, and Fe / P in Comparative Example 2.
Was too large, and both had large coercive force and were not good in soft magnetic characteristics. Comparative Example 3 was carried out with a large amount of hypophosphite, but the coercive force was also large and the soft magnetic characteristics were not good as compared with the Examples. This is because the content of P (phosphorus) in the film is large. In Comparative Example 4, boric acid was used instead of ammonium sulfate as a buffer, but the soft magnetic characteristics and bath stability were not good. This indicates that ammonium sulfate is more effective as a complexing agent in stability and magnetic properties than boric acid. In Comparative Example 5, although the plating bath was not decomposed due to the small amount of citrate, precipitation of iron oxide was observed and the bath stability was poor. Examples 1-5
A 0.1 μm thick CoCr 17 Ta 5 perpendicular magnetic recording layer and a carbon protective layer were formed on each of the soft magnetic material films obtained in 1. by a sputtering method. A perpendicular magnetic recording medium showing excellent magnetic recording characteristics could be manufactured. On the contrary, a perpendicular magnetic recording medium was produced on each of the soft magnetic material films obtained in Comparative Examples 1 to 5 by the same process as in the example, but their magnetic recording characteristics were different from those of the example. It was inferior to.
【0025】[0025]
【発明の効果】本発明により、保磁力が小さい良好な軟
磁気特性を有する軟磁性材料膜を得ることができ、また
再現性がよく、安定して量産可能な無電解めっき浴によ
る製造方法を提供することが可能となった。また、この
軟磁性材料膜は磁気ヘッド材料、磁気記録媒体、センサ
ー材料やこれらの磁気材料のシールド材料、例えばハー
ドディスクドライブケースなどに有効に利用することが
できる。According to the present invention, it is possible to obtain a soft magnetic material film having a small coercive force and excellent soft magnetic characteristics, and also a method of manufacturing by an electroless plating bath which has good reproducibility and can be stably mass-produced. It is now possible to provide. Further, this soft magnetic material film can be effectively used as a magnetic head material, a magnetic recording medium, a sensor material and a shield material for these magnetic materials, for example, a hard disk drive case.
【図1】 本発明の方法によって得られた軟磁性材料膜
のX線回折パターンを示す。FIG. 1 shows an X-ray diffraction pattern of a soft magnetic material film obtained by the method of the present invention.
【図2】 ロッキングカーブの半値幅と保磁力の関係を
示す図である。FIG. 2 is a diagram showing a relationship between a full width at half maximum of a rocking curve and a coercive force.
【図3】 本発明の方法における硫酸アンモニウムの濃
度と析出レートを示す図である。FIG. 3 is a diagram showing the concentration of ammonium sulfate and the deposition rate in the method of the present invention.
【図4】 本発明の方法におけるクエン酸塩の濃度と保
磁力の関係を示す図である。FIG. 4 is a diagram showing the relationship between the citrate concentration and the coercive force in the method of the present invention.
Claims (3)
量が70重量%〜85重量%で、Fe/P(重量比)の値が
8〜15であることを特徴とする軟磁性材料膜。1. Ni, Fe and P, wherein the content of Ni is 70% by weight to 85% by weight and the value of Fe / P (weight ratio) is
A soft magnetic material film having a thickness of 8 to 15.
おけるロッキングカーブの半値幅が15度以下であるこ
とを特徴とする請求項1記載の軟磁性材料膜。2. The soft magnetic material film according to claim 1, wherein a half-value width of a rocking curve on a NiFe (111) plane by X-ray diffraction is 15 degrees or less.
ン、並びにpH調整剤を含む水溶液からなり、pH緩衝
剤として硫酸アンモニウムを 0.2〜0.5 mol/L 、前記金
属イオンの錯化剤としてクエン酸塩を 0.5〜1 mol/L 及
び金属イオンの還元剤として次亜リン酸塩を 0.005〜0.
03mo l/Lを含む無電解めっき浴中で基材を処理して、基
材の表面に請求項1記載の軟磁性材料膜を製造する方
法。3. An aqueous solution containing metal ions containing nickel and iron as main components, and a pH adjusting agent, wherein ammonium sulfate is 0.2 to 0.5 mol / L as a pH buffer, and citrate is a complexing agent for the metal ions. 0.5 to 1 mol / L and hypophosphite as a reducing agent for metal ions 0.005 to 0.
A method for producing a soft magnetic material film according to claim 1 on a surface of a substrate by treating the substrate in an electroless plating bath containing 03 mol / L.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21181393A JPH0766034A (en) | 1993-08-26 | 1993-08-26 | Soft magnetic material film and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21181393A JPH0766034A (en) | 1993-08-26 | 1993-08-26 | Soft magnetic material film and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0766034A true JPH0766034A (en) | 1995-03-10 |
Family
ID=16612024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21181393A Pending JPH0766034A (en) | 1993-08-26 | 1993-08-26 | Soft magnetic material film and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766034A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007512430A (en) * | 2003-11-05 | 2007-05-17 | フリースケール セミコンダクター インコーポレイテッド | Composition for electroless deposition of nickel iron on workpiece and method |
US7361419B2 (en) | 2003-02-04 | 2008-04-22 | Fuji Electric Device Technology Co., Ltd. | Substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording medium, and manufacturing methods thereof |
JP2008097822A (en) * | 2003-09-12 | 2008-04-24 | Univ Waseda | Substrate for magnetic recording medium, and the magnetic recording medium |
US7622205B2 (en) | 2004-04-16 | 2009-11-24 | Fuji Electric Device Technology Co. Ltd. | Disk substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate |
US8000063B2 (en) | 2006-04-14 | 2011-08-16 | Tdk Corporation | Magneto-resistive element, thin film magnetic head, magnetic head device, and magnetic recording/reproducing apparatus |
US8039045B2 (en) | 2004-07-27 | 2011-10-18 | Fuji Electric Co., Ltd. | Method of manufacturing a disk substrate for a magnetic recording medium |
US8737022B2 (en) * | 2012-07-13 | 2014-05-27 | Tdk Corporation | Multilayer film, magnetic head, magnetic head device, magnetic recording/reproducing apparatus and method for manufacturing multilayer film |
KR20210114917A (en) | 2019-01-22 | 2021-09-24 | 멜텍스 가부시키가이샤 | Electroless Ni-Fe alloy plating solution |
-
1993
- 1993-08-26 JP JP21181393A patent/JPH0766034A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361419B2 (en) | 2003-02-04 | 2008-04-22 | Fuji Electric Device Technology Co., Ltd. | Substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording medium, and manufacturing methods thereof |
JP2008097822A (en) * | 2003-09-12 | 2008-04-24 | Univ Waseda | Substrate for magnetic recording medium, and the magnetic recording medium |
JP2007512430A (en) * | 2003-11-05 | 2007-05-17 | フリースケール セミコンダクター インコーポレイテッド | Composition for electroless deposition of nickel iron on workpiece and method |
US7622205B2 (en) | 2004-04-16 | 2009-11-24 | Fuji Electric Device Technology Co. Ltd. | Disk substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate |
US8039045B2 (en) | 2004-07-27 | 2011-10-18 | Fuji Electric Co., Ltd. | Method of manufacturing a disk substrate for a magnetic recording medium |
US8000063B2 (en) | 2006-04-14 | 2011-08-16 | Tdk Corporation | Magneto-resistive element, thin film magnetic head, magnetic head device, and magnetic recording/reproducing apparatus |
US8737022B2 (en) * | 2012-07-13 | 2014-05-27 | Tdk Corporation | Multilayer film, magnetic head, magnetic head device, magnetic recording/reproducing apparatus and method for manufacturing multilayer film |
KR20210114917A (en) | 2019-01-22 | 2021-09-24 | 멜텍스 가부시키가이샤 | Electroless Ni-Fe alloy plating solution |
DE112019006704T5 (en) | 2019-01-22 | 2021-09-30 | Meltex Inc. | SOLUTION FOR ELECTRONIC DEPOSITION OF A Ni-Fe ALLOY |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7192662B2 (en) | Ultra high saturation moment soft magnetic thin film | |
US6855240B2 (en) | CoFe alloy film and process of making same | |
JP3229718B2 (en) | Soft magnetic alloys, soft magnetic thin films and multilayer films | |
US7641783B2 (en) | Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution | |
JPH0766034A (en) | Soft magnetic material film and manufacture thereof | |
JP3201892B2 (en) | Soft magnetic thin film and magnetic inductive MR head using the same | |
JP3102505B2 (en) | Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head | |
JP2005086012A (en) | Magnetic thin film, manufacturing method thereof, and magnetic head using the magnetic thin film | |
US5571573A (en) | Process of forming magnetic devices with enhanced poles | |
JP3201763B2 (en) | Soft magnetic thin film | |
JP3514800B2 (en) | Soft magnetic thin film and method of manufacturing the same | |
JP3826323B2 (en) | Manufacturing method of plated magnetic thin film | |
JPH04229607A (en) | Magnetically soft thin film and its manufacture | |
JPS63111195A (en) | Electroplating bath | |
JPS59170254A (en) | Electroless plating bath | |
JPH0696949A (en) | Manufacture of magnetic thin film | |
KR101250256B1 (en) | MANUFACTURING METHOD OF CoP ALLOY THIN FILM AND PERPENDICULAR MAGNETIC RECORDING MEDIUM | |
US5830587A (en) | Magnetic devices with enhanced poles | |
JPS59215474A (en) | Electroless plating bath | |
JPH0729734A (en) | Magnetic thin film and manufacture thereof | |
Matsuda et al. | Influence of ultrasonic radiation on electroless cobalt phosphorus deposition | |
JPH06251978A (en) | Soft magnetic thin film and manufacture thereof | |
JPH0372611A (en) | Electroless plated soft magnetic thin film | |
JPH02228479A (en) | Electroless plating bath | |
SU1127004A1 (en) | Process for manufacturing cylindrical magnetic films |