JPH02125832A - Soft magnetic amorphous alloy foil - Google Patents

Soft magnetic amorphous alloy foil

Info

Publication number
JPH02125832A
JPH02125832A JP27619088A JP27619088A JPH02125832A JP H02125832 A JPH02125832 A JP H02125832A JP 27619088 A JP27619088 A JP 27619088A JP 27619088 A JP27619088 A JP 27619088A JP H02125832 A JPH02125832 A JP H02125832A
Authority
JP
Japan
Prior art keywords
amorphous alloy
alloy
cobalt
amorphous
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27619088A
Other languages
Japanese (ja)
Inventor
Hidehiko Ohashi
英彦 大橋
Masaharu Oda
雅春 小田
Takemoto Kamata
健資 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP27619088A priority Critical patent/JPH02125832A/en
Publication of JPH02125832A publication Critical patent/JPH02125832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the soft magnetic characteristics and workability of the title foil by specifying the contg. atomic rate of iron and cobalt in an alloy and specifying the thickness of foil. CONSTITUTION:Soft magnetic amorphous alloy foil is formed with an alloy contg. iron and cobalt. The contg. atomic ratio of iron and cobalt in the alloy is regulated to >=90% cobalt. The thickness of the alloy foil is furthermore regulated to <=10mum. In this way, the soft magnetic characteristics and workability of the amorphous alloy foil can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気的特性、特に軟磁性に優れ、かつ従来の非
晶質合金に比べ薄く加工性が良好な非晶質合金箔に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amorphous alloy foil that has excellent magnetic properties, particularly soft magnetism, and is thinner and has better workability than conventional amorphous alloys.

〔従来の技術〕[Conventional technology]

非晶質合金は金属原子の配列が不規則で長周期性が欠如
しており、また、結晶粒界や格子欠陥が存在しないなど
結晶質の合金と比較して構造的特異性を有している。こ
れらに起因して非晶質合金は磁気的特性に優れている。
Amorphous alloys have irregular arrangement of metal atoms, lack long periodicity, and have structural specificities compared to crystalline alloys, such as the absence of grain boundaries and lattice defects. There is. Due to these factors, amorphous alloys have excellent magnetic properties.

特に、低履歴損失材料や高透磁率材料としての応用が有
望視されている。例えばFe基系の非晶質合金は飽和磁
束密度が大きく、低履歴損失の特性を生かしてトランス
の鉄心としての応用が考えられている。従来の珪素鋼板
に比べて大幅に損失が小さく経費節減になると言われて
いる。また、CO基系の非晶質合金は、広い周波数帯域
で保磁力が小さく、磁気増幅器用の磁気コアなどとして
用いられている。
In particular, applications as low hysteretic loss materials and high magnetic permeability materials are seen as promising. For example, Fe-based amorphous alloys have a high saturation magnetic flux density and are being considered for application as transformer iron cores by taking advantage of their low hysteresis loss characteristics. It is said that losses are significantly smaller and costs can be reduced compared to conventional silicon steel plates. Furthermore, CO-based amorphous alloys have a low coercive force over a wide frequency band, and are used as magnetic cores for magnetic amplifiers.

非晶質合金の製造方法として、最も一般的には急冷法が
挙げられる。これは、溶融金属を冷却した回転ロールに
導き、105〜1106de/ sで急冷することによ
り結晶化のための時間を与えずに固化させ、非晶質合金
を形成させるものである。しかし、急冷法によって作製
される非晶質合金は現在その製法上厚さが数108以上
の物に限られている。また溶融金属が冷却ロールに接触
する際に表面に凹凸が発生するため、これ以下の厚さを
有する薄膜を作ることは困難である。第4図に急冷法に
よる表面状態を示す。縦軸は膜厚方向の凹凸、横軸は膜
面方向の長さを示す。ロール接触面に比ベ自由凝固面の
凹凸が著しいことがわかる。
The most common method for producing amorphous alloys is a rapid cooling method. In this method, molten metal is introduced into a cooled rotating roll and rapidly cooled at 105 to 1106 de/s, thereby solidifying without giving time for crystallization to form an amorphous alloy. However, amorphous alloys produced by the rapid cooling method are currently limited to those having a thickness of several 108 or more due to the manufacturing method. Furthermore, when the molten metal comes into contact with the cooling roll, unevenness occurs on the surface, making it difficult to produce a thin film having a thickness smaller than this. Figure 4 shows the surface condition obtained by the rapid cooling method. The vertical axis shows the unevenness in the film thickness direction, and the horizontal axis shows the length in the film surface direction. It can be seen that the surface in contact with the rolls has significant irregularities compared to the free solidification surface.

非晶質合金の作製方法としては他にスパッタリング法、
真空蒸着法およびイオンブレーティング法などが検討さ
れている。しかしこれらの方法では非晶質合金の生産性
が悪くまた製造装置が高価である。さらになんらかの目
的物に付着させなければならず、非晶質合金を単離でき
ない。
Other methods for producing amorphous alloys include sputtering,
Vacuum deposition methods and ion blating methods are being considered. However, these methods have poor productivity for producing amorphous alloys and require expensive manufacturing equipment. Furthermore, the amorphous alloy must be attached to some object, and the amorphous alloy cannot be isolated.

他方、電解メツキ及び無電解メツキを用いた非晶質合金
製造法も検討されている(特開昭52140403号公
報、特開昭55−164092号公報)。最近ではパル
ス電解を用いた非晶質合金製造の検討もなされている(
特開昭60−33382号公報)。パルス幅を短くとり
、またデユーティ比を小さくとることにより、作用電極
近傍の該金属イオンの濃度分極層厚みを薄くすることが
でき、限界拡散電流ひいては過電圧を大きくすることが
でき、それにより非晶化が進行すると言われている。
On the other hand, methods for manufacturing amorphous alloys using electrolytic plating and electroless plating are also being studied (Japanese Patent Application Laid-open No. 52140403 and Japanese Patent Application Laid-Open No. 55-164092). Recently, studies have also been conducted on the production of amorphous alloys using pulsed electrolysis (
(Japanese Patent Application Laid-Open No. 60-33382). By making the pulse width short and the duty ratio small, the thickness of the concentration polarization layer of the metal ion near the working electrode can be made thinner, and the critical diffusion current and therefore the overvoltage can be increased, thereby increasing the amorphous is said to be progressing.

しかし、めっき法をもちいて軟磁性特性に優れ、かつ従
来の非晶質合金に比較して格段に薄いコバルト−鉄非晶
質合金箔を作製したという報告はない。
However, there is no report on the use of a plating method to produce a cobalt-iron amorphous alloy foil that has excellent soft magnetic properties and is significantly thinner than conventional amorphous alloys.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

工業製品として、目的の形状、大きさに容易にかつ精密
に加工できることは生産性やコストの低下ばかりでなく
、性能の向上にも大きな役割を果たす。そのためには、
任意の厚さで平滑であり、テープ状、シート状または箔
状であるものが汎用性に優れている。例えば磁気ヘッド
に関しては、今後垂直磁気記録方式の記録媒体が出現し
てくると磁気ヘッドは薄膜化が要求される。また、現在
磁気増幅器などの磁気コアには、高周波領域における保
磁力などの軟磁性特性の改善が要求されている。一般に
高周波の励磁電流が流れると磁性層中に流れる渦電流が
増加し、損失は大きくなる。
As an industrial product, being able to easily and precisely process it into the desired shape and size plays a major role in not only reducing productivity and cost, but also improving performance. for that purpose,
It is smooth with any thickness, and has excellent versatility in the form of a tape, sheet, or foil. For example, with regard to magnetic heads, as perpendicular magnetic recording type recording media appear in the future, magnetic heads will be required to be made thinner. Furthermore, magnetic cores of magnetic amplifiers and the like are currently required to improve soft magnetic properties such as coercive force in a high frequency region. Generally, when a high-frequency excitation current flows, eddy currents flowing in the magnetic layer increase, resulting in large losses.

渦電流は磁性層厚みに比例する。ところが、従来の急速
冷却法による非晶質合金では、20μ以下のものはでき
ない。さらに圧延して用いているがそれでも15Ja程
度以下にはならない。そのため非晶質合金テープをトロ
イダルコア状に巻いたり積層したりする際に実際に材料
の占める体積率(占積率)が問題となるが、表面の凹凸
のために80〜85%と珪素鋼板の95%に比べ著しく
小さくなってしまう。このため非晶質合金テープの形状
としては現在より一桁以上薄いものまた表面平滑性が格
段に向上したものの登場が待たれている。
Eddy current is proportional to the magnetic layer thickness. However, with amorphous alloys produced by conventional rapid cooling methods, it is not possible to produce amorphous alloys with a diameter of 20 μm or less. Although it is further rolled and used, it still does not become less than about 15 Ja. Therefore, when winding or laminating amorphous alloy tape into a toroidal core shape, the actual volume ratio (space factor) occupied by the material becomes a problem, but due to the unevenness of the surface, it is 80 to 85% compared to silicon steel sheets. This is significantly smaller than 95% of . For this reason, the appearance of amorphous alloy tapes that are an order of magnitude thinner than the current ones and that have significantly improved surface smoothness are awaited.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明者らは磁気的特性とくに軟磁性に優れた鉄
−コバルトを含有し、しかも従来の非晶質合金よりも格
段に薄く、かつ表面平滑性に優れた非晶質合金箔を発明
した。
Therefore, the present inventors invented an amorphous alloy foil that contains iron-cobalt that has excellent magnetic properties, especially soft magnetism, is much thinner than conventional amorphous alloys, and has excellent surface smoothness. .

すなわち、本発明によれば、電解めっき法又は無電解め
っき法を利用して、鉄およびコバルトを含有する合金に
おいて該合金中の鉄およびコバルトの含有原子比がコバ
ルト90%以上でありかつその厚みが10−以下である
ことを特徴とする軟磁性非晶質合金箔が提供される。
That is, according to the present invention, in an alloy containing iron and cobalt, the atomic ratio of iron and cobalt in the alloy is 90% or more of cobalt, and the thickness thereof is Provided is a soft magnetic amorphous alloy foil characterized in that .

磁性材料の軟磁性特性、特に保磁力はその磁性体の磁歪
に大きく依存する。また、磁歪は一般に合金組成の関数
となっており、鉄−コバルト系においてはコバルト基の
合金が軟磁性特性に優れている。好ましくは合金中の鉄
およびコバルトの原子数比率においてコバルトが90%
以上のものがよい。コバルトが90%より少ないと、す
なわち鉄が10%より多いと、磁歪が大きくなるので好
ましくない。特にコバルト94%のとき磁歪定数がほぼ
ゼロとなるのでこの原子数比率が最も好ましい。また、
コバルト、鉄のほかにクロムその他を少量(例えば1〜
2%)含めて合金の耐食性を向上させることもできる。
The soft magnetic properties of a magnetic material, especially the coercive force, greatly depend on the magnetostriction of the magnetic material. Furthermore, magnetostriction is generally a function of alloy composition, and among iron-cobalt alloys, cobalt-based alloys have excellent soft magnetic properties. Preferably, the atomic ratio of iron and cobalt in the alloy is 90% cobalt.
The above is good. If the cobalt content is less than 90%, that is, if the iron content is more than 10%, magnetostriction increases, which is not preferable. In particular, when the cobalt content is 94%, the magnetostriction constant becomes almost zero, so this atomic ratio is most preferable. Also,
In addition to cobalt and iron, small amounts of chromium and others (e.g. 1~
2%) can also be included to improve the corrosion resistance of the alloy.

さらに、電解めっき法又は無電解めっき法で鉄−コバル
ト合金を非晶質に析出させるためには、P、B、As、
Ge。
Furthermore, in order to deposit an iron-cobalt alloy in an amorphous state by electrolytic plating or electroless plating, P, B, As,
Ge.

Si、Te又はSeなどの半金属を含有する必要がある
。この合金は一般的には下記式で表すことができる。
It is necessary to contain a metalloid such as Si, Te or Se. This alloy can generally be represented by the following formula.

(Fe、Co+−x)y(MzM’ +−z) +−y
(式中、0≦x、ySZ≦1、X≧0.9であり、M、
M’ はP、 B、 As、  Ge、  Si 、 
 Te又はSeの半金属である。) 本発明の非晶質合金箔は厚みが10p以下である。そし
てめっき法で作製することによって表面凹凸が小さいこ
とができるので合金の体積率(占積率)が大きくなり、
透磁率その他の磁気特性にも優れる。また、厚みが小さ
いので渦電流の発生が少なく、高周波領域での軟磁性特
性に優れる。
(Fe, Co+-x)y(MzM' +-z) +-y
(In the formula, 0≦x, ySZ≦1, X≧0.9, M,
M' is P, B, As, Ge, Si,
It is a metalloid of Te or Se. ) The amorphous alloy foil of the present invention has a thickness of 10p or less. By using the plating method, the surface unevenness can be reduced, so the volume fraction (space factor) of the alloy can be increased.
It also has excellent magnetic permeability and other magnetic properties. In addition, since the thickness is small, eddy currents are generated less and the soft magnetic properties in the high frequency region are excellent.

勿論、厚みが薄いことは磁気ヘッドの薄膜化などの要求
にも応えるものである。また、本発明の非晶質合金箔は
、目的の形状、大きさに切り出し、用途に応じてそのま
まあるいは積層して用いることができる。例えば磁気ヘ
ッドに用いる場合はIO印以下の箔状の非晶質合金を馬
蹄形に切り出し、コイルを巻いて作製できる。磁気増幅
器用の磁気コアとして用いる場合には、細長くスリット
した非晶質合金箔をトロイダル状に巻回し、作製するこ
とができる。急冷法の非晶質合金に比べ格段に薄膜化し
たことにより、高周波領域での渦電流の発生を抑え、保
磁力も低減することができる。
Of course, the thinner thickness also meets the demand for thinner magnetic heads. Further, the amorphous alloy foil of the present invention can be cut into a desired shape and size and used as it is or in a layered manner depending on the purpose. For example, when used in a magnetic head, it can be produced by cutting a foil-like amorphous alloy smaller than the IO mark into a horseshoe shape and winding it into a coil. When used as a magnetic core for a magnetic amplifier, it can be produced by winding an amorphous alloy foil with long thin slits into a toroidal shape. By making the film much thinner than amorphous alloys produced by rapid cooling, it is possible to suppress the generation of eddy currents in the high frequency range and reduce coercive force.

さらには磁気増幅器本体を大幅に小さくすることが期待
できる。
Furthermore, it is expected that the main body of the magnetic amplifier can be made significantly smaller.

本発明の非晶質合金箔は表面を0.IJJWl以下の表
面粗さに研磨した電極を用い、電解析出した合金を剥離
することによってテープ状あるいは箔状の非晶質合金を
得ることができる。電極上に非晶質合金を析出させる技
術は特開昭52−140403号、同55−16409
2号及び同60−33382号公報などに公知であり、
金属と共に半金属を析出させるとか、(特にパルス電圧
を用いた)過電圧下で析出させるなどの手法による。テ
ープの厚さは電解時間によって容易に制御することがで
きる。また、パルス電析法を用いることで金属析出量に
比べて水素発生量を十分小さくでき、水素脆化を防止で
きる(特願昭62−186684号明細書)。さらに電
流密度、デユーティ比、パルス幅およびバイアス電圧印
加などによって製膜性を改善できる。また、還元作用を
有する試薬の添加も非常に有効である(特願昭63−7
4787号明細書)。
The amorphous alloy foil of the present invention has a surface of 0. An amorphous alloy in the form of a tape or foil can be obtained by peeling off the electrolytically deposited alloy using an electrode polished to a surface roughness of IJJWl or less. The technique of depositing an amorphous alloy on an electrode is disclosed in Japanese Patent Application Laid-open Nos. 52-140403 and 55-16409.
No. 2 and No. 60-33382, etc.,
Methods include depositing metalloids along with metals, or depositing under overvoltage (particularly using pulsed voltage). The thickness of the tape can be easily controlled by the electrolysis time. Furthermore, by using the pulse electrodeposition method, the amount of hydrogen generated can be sufficiently reduced compared to the amount of metal deposited, and hydrogen embrittlement can be prevented (Japanese Patent Application No. 186684/1984). Furthermore, film forming properties can be improved by adjusting current density, duty ratio, pulse width, bias voltage application, etc. Additionally, the addition of a reagent having a reducing effect is also very effective (Patent Application No. 1986-7)
4787 specification).

本発明の鉄−コバルト合金の軟磁性非晶質合金をメツキ
法で析出させるにメツキ浴に添加する好ましい半金属は
P(りん)であり、めっき浴中に次亜りん酸、次亜りん
酸塩(ナトリウム塩、カリウム塩など)又はこれらの混
合物を用いる。
When the soft magnetic amorphous alloy of the iron-cobalt alloy of the present invention is precipitated by the plating method, the preferred metalloid to be added to the plating bath is P (phosphorus), and the plating bath contains hypophosphorous acid, hypophosphorous acid, etc. Use salts (sodium salts, potassium salts, etc.) or mixtures thereof.

また、電解又は無電解めっき法によれば、基材が非導電
性であっても、表面が導電性又はめっき感受性であれば
合金をめっきすることができる。
Additionally, electrolytic or electroless plating methods allow the alloy to be plated even if the substrate is non-conductive, as long as the surface is conductive or sensitive to plating.

従って、ポリエチレン、ポリプロピレン、ポリアクリロ
ニトリル、ポリ塩化ビニル、ポリビニルアルコアール、
ポリエステル、ポリアミド、ポリイミド、ポリスルホン
、PPS、PPO,ポリオキシジアゾール等の可撓性プ
ラスチックフィルムの表面をめっきに感受性になるよう
に処理し、このフィルムを巻き取りながらめっき浴を通
過させて所定時間だけめっきすることによって、厚みが
10−以下の非晶質Fe−Co合金箔を可撓性プラスチ
ックフィルム上に得ることも可能である。
Therefore, polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol,
The surface of a flexible plastic film made of polyester, polyamide, polyimide, polysulfone, PPS, PPO, polyoxydiazole, etc. is treated to make it susceptible to plating, and the film is rolled up and passed through a plating bath for a predetermined period of time. It is also possible to obtain an amorphous Fe--Co alloy foil with a thickness of 10 mm or less on a flexible plastic film by plating only a thin film.

そして、このような絶縁体上に直接形成した非晶質Fe
−Co合金箔、又は独立の非晶質Fe −C。
Then, amorphous Fe formed directly on such an insulator
-Co alloy foil or free-standing amorphous Fe-C.

合金箔と絶縁体フィルムとの積層体を、積層又は巻回し
て磁性コアその他のインダクタを構成することもできる
。磁性コアの高周波特性を改善するため、絶縁体フィル
ムとして低誘電率高分子、例えばポリフッ化ビニリデン
、ポリ四フッ化エチレン、ポリフッ化ビニルなどに必要
により、ガラス繊維、炭素繊維、無機補強剤、セラミッ
クスなどのフィラーを含有せしめたものより作られたも
のを用いるのがよい。このように絶縁体を介在させるこ
とによって渦電流の発生を防止又は極小化することがで
きる。
A magnetic core or other inductor can also be constructed by laminating or winding a laminate of alloy foil and insulating film. In order to improve the high frequency characteristics of the magnetic core, low dielectric constant polymers such as polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, etc. are used as an insulating film, and if necessary, glass fibers, carbon fibers, inorganic reinforcing agents, and ceramics are used. It is better to use a material made from a material containing a filler such as. By interposing the insulator in this way, the generation of eddy current can be prevented or minimized.

〔作 用〕[For production]

本発明の非晶質合金箔は磁歪が極めて小さいかほぼゼロ
の鉄・コバルト合金からなり、かつ軟磁性に優れた非晶
質合金であり、さらに電解又は無電解めっき法で厚みl
0J−以下に形成されることによって、体積率が大きい
から極薄膜として構成されたので、従来の急冷法による
非晶質合金薄膜と比べて著しく軟磁性特性が改良され、
かつ箔であるので使い勝手もよい。
The amorphous alloy foil of the present invention is made of an iron-cobalt alloy with extremely low or almost zero magnetostriction and is an amorphous alloy with excellent soft magnetism.
By forming the film to a thickness of 0J or less, the film has a large volume fraction and is therefore extremely thin, resulting in significantly improved soft magnetic properties compared to an amorphous alloy thin film produced by the conventional quenching method.
And since it is made of foil, it is easy to use.

〔実施例〕〔Example〕

実施例 非晶質合金Aの製膜 塩化鉄(II) 2g/β、硫酸コバルト(I[)27
8 g /β、次亜リン酸ナトリウム21g/#、はう
酸6g/j2をpH1,4に調製し、電流密度0.1A
 / c++tにて電解析出を行った。
Example Film production of amorphous alloy A Iron chloride (II) 2 g/β, cobalt sulfate (I[) 27
8 g/β, sodium hypophosphite 21 g/#, and halogen acid 6 g/j2 were adjusted to pH 1.4, and the current density was 0.1 A.
Electrolytic deposition was performed at /c++t.

メツキ浴の中に上記組成のメツキ水溶液を入れ、白金か
らなる対極と作用電極の間に電圧を印加して金属などを
作用極上に析出させる。作用電極表面は中心線表面粗さ
を0.IJml以下に鏡面仕上げを施し、さらに硬質ク
ロムめっき仕上げしである。
An aqueous plating solution having the above composition is placed in a plating bath, and a voltage is applied between the counter electrode made of platinum and the working electrode to deposit metals on the working electrode. The working electrode surface has a center line surface roughness of 0. It has a mirror finish below IJml and is further finished with hard chrome plating.

電析膜は直ちに剥離し、洗浄後乾燥する。The deposited film is immediately peeled off, washed and dried.

電析膜の膜厚は作用電極のめっき液中の滞在時間に依存
する。7分の電析の後に得られた非晶質合金箔の厚みは
7戸であった。また、ピンホールもなく柔軟性に優れた
物であった。
The thickness of the deposited film depends on the residence time of the working electrode in the plating solution. The thickness of the amorphous alloy foil obtained after 7 minutes of electrodeposition was 7 mm. Moreover, it had no pinholes and had excellent flexibility.

非晶質合金Bの製膜 硫酸鉄(II) 0.2g/jl’、硫酸コバルト(I
I)27、8 g / R1次亜リン酸ナトリウム21
g/j!、はう酸6 g/lおよびクエン酸ナトリウム
58.8 g/lを水酸化す)IJウム水溶液でpt1
9.0に調製した。これを用いて、ポリエチレンテレツ
クレートフィルム上に膜厚が10R1となるまで無電解
めっきを行った。浴温は90℃とした。
Film production of amorphous alloy B Iron sulfate (II) 0.2 g/jl', cobalt sulfate (I
I) 27,8 g / R1 sodium hypophosphite 21
g/j! , 6 g/l of halonic acid and 58.8 g/l of sodium citrate) in an aqueous solution of pt1
9.0. Using this, electroless plating was performed on a polyethylene terrestrial film until the film thickness reached 10R1. The bath temperature was 90°C.

得られたフィルムは鏡面光沢を有し、ピンホールも存在
せず、また柔軟性に優れたものであった。
The obtained film had specular gloss, no pinholes, and excellent flexibility.

試料の非品性の観察 非晶質合金AのX線解析チャートを第1図に示す。第1
図において、横軸は試料からのX線敗乱角であり、縦軸
は散乱強度である。このように金属特有の結晶に基づく
ピークはまったく見られず完全に非晶化しているものと
考えられる。同様に非晶質合金Bについても非晶化が確
認された。
Observation of quality of sample An X-ray analysis chart of amorphous alloy A is shown in FIG. 1st
In the figure, the horizontal axis is the X-ray scattering angle from the sample, and the vertical axis is the scattering intensity. In this way, no peaks due to crystals peculiar to metals are observed, and it is considered that the metal is completely amorphous. Similarly, amorphousization was confirmed for amorphous alloy B as well.

合金組成の測定 非晶質合金Aを硝酸5−に溶解し、蒸留水を加えて10
0−とした。この液をICP発光分析装置(日本ジャー
レル・アッシュ製1c八P−575MK−II型)によ
って定量分析した。その結果重量比でFe  : Co
  : P=4.8 :83.2 :12.0(I2) の結果を得た。このときの鉄およびコバルトの含有原子
数比は6:94である。
Measurement of Alloy Composition Amorphous alloy A was dissolved in 5-nitric acid, and distilled water was added to the solution.
It was set to 0-. This liquid was quantitatively analyzed using an ICP emission spectrometer (model 1c8P-575MK-II manufactured by Jarrell Ash Japan). As a result, the weight ratio of Fe: Co
The following results were obtained: P=4.8:83.2:12.0 (I2). The atomic ratio of iron and cobalt at this time was 6:94.

表面平滑性の測定 ランクテーラ−・ホブラン社製触針式表面粗さ計によっ
て走査方向倍率50倍、粗さ方向倍率10、000倍に
て合金テープの表面粗さを測定し、JIS−BO601
により中心線平均粗さを算出したところ、0.1岬であ
った。(但しカットオフ値0.8 mm、測定長30m
m) 比較非晶質合金C 日本非晶質金属株式会社製、メトグラス2605S−2
を用いた。以上各試料の仕様を下表にまとめて示す。
Measurement of surface smoothness The surface roughness of the alloy tape was measured using a stylus type surface roughness meter manufactured by Rank Taylor Hovran at a magnification of 50 times in the scanning direction and a magnification of 10,000 times in the roughness direction.
When the center line average roughness was calculated, it was 0.1 cape. (However, the cutoff value is 0.8 mm, and the measurement length is 30 m.
m) Comparative amorphous alloy C manufactured by Japan Amorphous Metal Co., Ltd., Metglas 2605S-2
was used. The specifications of each sample are summarized in the table below.

表1 各試料の仕様 組 成 厚さ(m)  Ra 非晶質合金A   Fe−Co−P    7   0
.1比較試料CFe−B−5i−C252,0実施例2 各試料AおよびCを10枚重ねその摩みlを測定し、体
積率を次式を用いて算出した。
Table 1 Specifications for each sample Composition Thickness (m) Ra Amorphous alloy A Fe-Co-P 7 0
.. 1 Comparative Sample CFe-B-5i-C252,0 Example 2 Ten sheets of each of Samples A and C were stacked and their wear l was measured, and the volume ratio was calculated using the following formula.

■ その結果を表2に示す。■ The results are shown in Table 2.

表2 体積率算出結果 A        72.2      97C271
,890 以上より中心線平均粗さが0.5−以下のものは体積率
が高く磁気コア材料として使用した場合変換効率が高く
低コストのものが得られることが期待できる。
Table 2 Volume ratio calculation result A 72.2 97C271
, 890 or more, those with a center line average roughness of 0.5- or less have a high volume fraction, and when used as a magnetic core material, it can be expected that a product with high conversion efficiency and low cost can be obtained.

実施例3 トロイダルコアを第2図に透磁率測定回路を第4図に示
す。各試料AおよびBをトロイダル状(ro =5.0
mm、 r、=3.8+nm、 rl =2.5mm)
■に巻回し、0.2φのエナメル線で1次コイル2およ
び2次コイル3をそれぞれ50回巻き、透磁率の測定を
行った。発振器(4)より一定周波数の交流電流を一次
コイル(2)に流し、二次コイル(3)の誘導起電力を
電圧計(7)を用いて測定する。なお、透磁率は次式に
より算出した。
Example 3 A toroidal core is shown in FIG. 2, and a magnetic permeability measurement circuit is shown in FIG. 4. Each sample A and B was formed into a toroidal shape (ro = 5.0
mm, r, = 3.8 + nm, rl = 2.5 mm)
The primary coil 2 and the secondary coil 3 were each wound 50 times with a 0.2φ enamelled wire, and the magnetic permeability was measured. An alternating current with a constant frequency is passed through the primary coil (2) from an oscillator (4), and the induced electromotive force in the secondary coil (3) is measured using a voltmeter (7). Note that the magnetic permeability was calculated using the following formula.

■ H=0.2N ■ μ−B/H H:磁化力 N:コイル巻数 rニドロイダルコア半径
 I:電流 B:磁束密度 V:2次コイル発生起電力
 f;周波数 A・・・試料断面積μ:透磁率 透磁率の測定結果を以下に示す。
■ H=0.2N ■ μ-B/H H: Magnetizing force N: Number of coil turns r Nidroidal core radius I: Current B: Magnetic flux density V: Secondary coil generated electromotive force f: Frequency A... Sample cross-sectional area μ: Magnetic permeability The measurement results of magnetic permeability are shown below.

表3 透磁率測定結果 厚さ(廊)   透磁率 A       7     35.000c    
   25     20.000本発明の試料は、磁
気特性にも優れていることがわかる。
Table 3 Magnetic permeability measurement results Thickness (corridor) Magnetic permeability A 7 35.000c
25 20.000 It can be seen that the sample of the present invention also has excellent magnetic properties.

〔発明の効果〕〔Effect of the invention〕

本発明の非晶質合金箔は改良された軟磁性を有しかつ加
工性にも優れ、用途展開において汎用性に富むものであ
る。
The amorphous alloy foil of the present invention has improved soft magnetism, excellent workability, and is highly versatile in terms of application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例の非晶質合金AのX線回折チャート、
第2図はトロイダルリング形状を示す模式図、第3図は
透磁率測定回路を示す模式図、第4図は急冷非晶質合金
テープの表面粗さを表すチャートである。 1・・・トロイダルリング、2・・・−次コイル、3・
・・二次コイノペ   4・・・発振器、5・・・電圧
計、     6・・・増幅積分器、7・・・電圧計。 (16〉 JiI疑1凛
FIG. 1 is an X-ray diffraction chart of amorphous alloy A of Example,
FIG. 2 is a schematic diagram showing a toroidal ring shape, FIG. 3 is a schematic diagram showing a magnetic permeability measuring circuit, and FIG. 4 is a chart showing the surface roughness of a rapidly solidified amorphous alloy tape. 1... Toroidal ring, 2... -order coil, 3...
... Secondary Koinope 4... Oscillator, 5... Voltmeter, 6... Amplification integrator, 7... Voltmeter. (16〉 JiI Suspect 1 Rin

Claims (1)

【特許請求の範囲】[Claims] 1、鉄およびコバルトを含有する合金において該合金中
の鉄およびコバルトの含有原子比がコバルト90%以上
でありかつその厚みが10μm以下であることを特徴と
する軟磁性非晶質合金箔。
1. A soft magnetic amorphous alloy foil characterized in that an alloy containing iron and cobalt has an atomic ratio of cobalt of 90% or more and a thickness of 10 μm or less.
JP27619088A 1988-11-02 1988-11-02 Soft magnetic amorphous alloy foil Pending JPH02125832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27619088A JPH02125832A (en) 1988-11-02 1988-11-02 Soft magnetic amorphous alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27619088A JPH02125832A (en) 1988-11-02 1988-11-02 Soft magnetic amorphous alloy foil

Publications (1)

Publication Number Publication Date
JPH02125832A true JPH02125832A (en) 1990-05-14

Family

ID=17565953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27619088A Pending JPH02125832A (en) 1988-11-02 1988-11-02 Soft magnetic amorphous alloy foil

Country Status (1)

Country Link
JP (1) JPH02125832A (en)

Similar Documents

Publication Publication Date Title
CN101600813B (en) Amorphous fe100-a-bpamb alloy foil and method for preparation thereof
US5484494A (en) Amorphous alloy and method for its production
US5435903A (en) Process for the electrodeposition of an amorphous cobalt-iron-phosphorus alloy
JP2010518252A5 (en)
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP4041796B2 (en) Method for producing metal material having biaxial texture
JPH0426105A (en) Soft magnetic thin film
Kamei et al. Magnetic properties and microstructure of electrodeposited Fe− P amorphous alloy
JPH02125832A (en) Soft magnetic amorphous alloy foil
JPH0765228B2 (en) Method for producing high magnetic flux density quaternary alloy electrodeposited thin film
JPH01247590A (en) Amorphous alloy
JPH03126889A (en) Production of amorphous alloy
US4495241A (en) Magnetic tape
JPH03199391A (en) Amorphous alloy and production thereof
JPS6187889A (en) Production of thin alloy strip
Najafi et al. Fabrication and magnetic properties of ordered Co100− xPbx nanowire arrays electrodeposited in AAO templates: Effects of annealing temperature and frequency
JPH03126847A (en) Soft-magnetic amorphous alloy foil
JPS6261660B2 (en)
JPS6155590B2 (en)
JPH01247589A (en) Production of amorphous alloy
JPH02301593A (en) Production of thin amorphous alloy film
Xue et al. The fabrication and the coercivity mechanism of segmented (Ni/Fe) m composite nanowire arrays
Nagao et al. Effect of Ni addition on CPP-GMR response in electrodeposited Co-Ni/Cu multilayered nanocylinders with an ultra-large aspect ratio
Selvambikai et al. Corrosion and Magnetic Characterization of Electroplated NiFe and NiFeW Soft Magnetic Thin Films
Ji et al. Structural and magnetic properties of electrochemically assembled Ni–Pb/Al2O3 nanostructures