JPH02298767A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPH02298767A
JPH02298767A JP12010489A JP12010489A JPH02298767A JP H02298767 A JPH02298767 A JP H02298767A JP 12010489 A JP12010489 A JP 12010489A JP 12010489 A JP12010489 A JP 12010489A JP H02298767 A JPH02298767 A JP H02298767A
Authority
JP
Japan
Prior art keywords
concentrating
absorption liquid
absorption
absorbent
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12010489A
Other languages
Japanese (ja)
Inventor
Sumio Shimoda
下田 純美夫
Katsutoshi Shimoyama
勝利 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12010489A priority Critical patent/JPH02298767A/en
Publication of JPH02298767A publication Critical patent/JPH02298767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide desirable absorption characteristic free from danger with easy operation without erosion of other component with neutral properties by employing alkaline metal such as Li, K, etc., and compound salts of halogen such as F, Cl, Br, etc. as absorbent of concentrating means. CONSTITUTION:Since the concentrating means of dilute absorption liquid 14 is by a reverse immersion method in a concentrating unit 33, its result coefficient is extremely high, and since fire power is not used, a restriction for applications is not applied, there is no necessity of considering discharge gas, fuel leakage, fire, etc., and inspection and maintenance are facilitated. Since the absorbent of the concentrating means includes alkaline metal such as Li, K, etc., and compound salts of halogen such as F, Cl, Br, etc., it is not strong acid, strong alkaline, but substantially neutral, does not erode a semipermeable film 34 and other component, facilitates its operation, provides no danger and satisfactory absorbing properties.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸発器、吸収器、濃縮部を管路により後続し
て冷凍サイクルを構成し、濃縮部における稀釈吸収液の
濃縮手段を逆浸透法による濃縮手段にした吸収冷凍装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention comprises a refrigeration cycle in which an evaporator, an absorber, and a concentrating section are connected through a pipe, and the means for concentrating the diluted absorption liquid in the concentrating section is reversed. This invention relates to an absorption refrigeration device using a osmosis method as a concentration means.

〔従来の技術〕[Conventional technology]

従来の吸収冷凍装置は、第2図に示すように構成されて
いる。
A conventional absorption refrigeration system is constructed as shown in FIG.

系全体は真空状態でおり、蒸発器(1)において。The whole system is under vacuum, in the evaporator (1).

純水からなる冷却液(2)を冷却液散水ポンプ(3)、
冷却液循環パイプ(4)、流量調整弁(5)を経て冷却
液散水器(6)から蒸発器(1)内に散水する。
Cooling liquid (2) consisting of pure water is passed through a cooling liquid sprinkler pump (3),
Water is sprinkled into the evaporator (1) from a coolant sprinkler (6) via a coolant circulation pipe (4) and a flow rate adjustment valve (5).

このとき、蒸発器(1)内が真空状態のため、水滴は蒸
発器(1)内、の伝熱管(7)内の水から気化熱を奪い
ながら蒸発し、伝熱管(7)内の水が冷却し、冷房用の
冷水として使用される。
At this time, since the inside of the evaporator (1) is in a vacuum state, the water droplets evaporate while taking vaporization heat from the water inside the heat exchanger tube (7) inside the evaporator (1). is used as cold water for air conditioning.

一方、冷却液(2)の蒸発した水蒸気は1通路(8)を
通って吸収器(9)に導入する。
On the other hand, the evaporated water vapor of the cooling liquid (2) is introduced into the absorber (9) through one passage (8).

吸収器(9)において、濃縮された吸収液aOが吸収液
散水器Qυから散水され、水蒸気が吸収液Oqに吸収さ
れる。
In the absorber (9), the concentrated absorption liquid aO is sprinkled from an absorption liquid sprinkler Qυ, and water vapor is absorbed into the absorption liquid Oq.

このとき、吸収液00は作動温度によって吸収剤の種類
や濃度が異なり、臭化リチウム、塩化リチウム等の水溶
液又は臭化カルシウム、塩化カルシウム等の濃水溶液が
用いられ2臭化リチウムの場合30〜70%の範囲、臭
化カルシウムの場合40〜70%の範囲で使用される。
At this time, the type and concentration of the absorbent in the absorption liquid 00 differs depending on the operating temperature, and an aqueous solution of lithium bromide, lithium chloride, etc. or a concentrated aqueous solution of calcium bromide, calcium chloride, etc. is used. It is used in the range of 70%, and in the case of calcium bromide in the range of 40-70%.

また、吸収器(9i内は水蒸気と吸収液00との接触面
積を大にするため、吸収液QQの7ヤワリングや延面滴
下等を行い、水蒸気の吸収を容易にする。
In addition, in order to increase the contact area between the water vapor and the absorption liquid 00 in the absorber (9i), the absorption liquid QQ is subjected to 7 Yawaring or dripping on the entire surface to facilitate the absorption of water vapor.

そして、吸収器(9)Kおける水蒸気の吸収により真空
状態が維持され、蒸発器(1)における冷却液(2)の
蒸発及び吸収器(9)における水蒸気の吸収が継続され
る。
The vacuum state is maintained by the absorption of water vapor in the absorber (9)K, and the evaporation of the cooling liquid (2) in the evaporator (1) and the absorption of water vapor in the absorber (9) continue.

さらに、吸収器(9)内の伝熱管(2)に止弁a]から
冷却水が流通し2吸収液α0の吸収熱が伝熱管(2)内
の冷却水に吸収される。
Further, cooling water flows through the heat transfer tube (2) in the absorber (9) from the stop valve a], and the absorbed heat of the second absorption liquid α0 is absorbed by the cooling water in the heat transfer tube (2).

一方、水蒸気を吸収し濃度の低下した稀釈吸収液(14
)は、吸収液循環ボンデ05.吸収液循環パイプQe、
止弁aη及び熱交換器(至)を経て濃縮器四に流入する
On the other hand, the diluted absorption liquid (14
) is an absorbent circulation bonder 05. Absorbent circulation pipe Qe,
It flows into the concentrator 4 via the stop valve aη and the heat exchanger (to).

この濃縮器01において、稀釈吸収液α→は加熱用バー
ナ(7)により加熱され、吸収した水蒸気を放出し、濃
縮された吸収液QOとなり、熱交換器(ト)、吸収液循
環パイプ@、吸収液散水ポンプ翰、流量調整弁−を経て
散水器θυから濃縮吸収液αりが散水される。
In this concentrator 01, the diluted absorption liquid α→ is heated by a heating burner (7), releases the absorbed water vapor, and becomes a concentrated absorption liquid QO, which is transferred to a heat exchanger (g), an absorption liquid circulation pipe @, The concentrated absorption liquid α is sprinkled from the water sprinkler θυ via the absorption liquid sprinkler pump and the flow rate adjustment valve.

そして、濃縮器(1すにおいて放出された水蒸気は。The water vapor released in the condenser (1) is

通路(ハ)を通って膨縮″a(ホ)に流入する。It flows through the passage (c) into the expansion/contraction "a" (e).

一方、吸収器(9)の伝熱管@は冷却水循環バイブ(ホ
)を介して凝縮器曽内の伝熱管翰に接続されており、伝
熱管■内の冷却水により水蒸気が冷却されて冷却液(2
)となシ、冷却液循環パイプ弼、冷却液循環ボンデ翰、
止弁(至)を経て蒸発器(1)に流入する。
On the other hand, the heat exchanger tubes @ of the absorber (9) are connected to the heat exchanger tubes in the condenser via the cooling water circulation vibrator (E), and the water vapor is cooled by the cooling water in the heat exchanger tubes and the cooling liquid is (2
)tonashi, coolant circulation pipe 2, coolant circulation bonder,
It flows into the evaporator (1) through the stop valve (to).

以上、蒸発器(1)、吸収器(9)、濃縮器0I及び凝
縮器(ハ)が管路により接続されて冷凍サイクルが構成
されている。
As described above, the evaporator (1), the absorber (9), the concentrator 0I, and the condenser (c) are connected by a pipe to constitute a refrigeration cycle.

ところで、従来の装置は、稀釈吸収液a4の濃縮に、濃
縮器0呻において加熱用バーナーによる蒸発法を用いて
いるため、成績係数が悪く、かつ、火力によるため適用
上の制約があり、さらに、排ガスの処理、燃料洩れ対策
、火災防止、保守管理等。
By the way, the conventional apparatus uses an evaporation method using a heating burner in the concentrator 0 to concentrate the diluted absorption liquid A4, so the coefficient of performance is poor, and there are restrictions on application because it relies on thermal power. , exhaust gas treatment, fuel leakage prevention, fire prevention, maintenance management, etc.

種々の問題点がある。There are various problems.

そこで1本発明者等は特願昭68−805450の吸収
冷凍装置において、濃縮部における稀釈吸収液の濃縮手
段を逆浸透法による濃縮手段にすることを発明した。
Therefore, the inventors of the present invention invented a method of concentrating the diluted absorption liquid in the concentrating section in an absorption refrigerating apparatus disclosed in Japanese Patent Application No. 68-805450 using a reverse osmosis method.

その1例は、第1図に示す通りであシ、第2図の場合と
同様、系全体は真空状態であり、同様の冷却液(2)、
吸収液QOが使用され、貯留槽0υの冷却液(2)が冷
却液循環パイプ暁、冷却液散水ボンデ(3)。
An example of this is as shown in Figure 1. As in Figure 2, the entire system is in a vacuum state, and the same coolant (2),
The absorption liquid QO is used, and the cooling liquid (2) in the storage tank 0υ is connected to the cooling liquid circulation pipe (Xiao), and the cooling liquid watering bond (3).

流量調整弁(5)を経て蒸発器(1)内の冷却液散水器
(6)から散水され、水滴が伝熱管(7)内の水から気
化熱を奪って蒸発する。
Water is sprayed from the cooling liquid sprinkler (6) in the evaporator (1) via the flow rate adjustment valve (5), and the water droplets take the heat of vaporization from the water in the heat transfer tube (7) and evaporate.

冷却液(2)の蒸発した水蒸気は通路(8)を通って吸
収器(9)に導入し、濃縮吸収液Oqが吸収液循環バイ
ブぐυ、吸収液散水ポンプ翰、流量調整弁(ホ)を経て
吸収液散水器0ηから吸収器(9)内に散水し、水蒸気
が吸収液QQに吸収され、伝熱管口内の冷却水により吸
収液qQの吸収熱が吸収される。
The evaporated water vapor of the cooling liquid (2) is introduced into the absorber (9) through the passage (8), and the concentrated absorption liquid Oq is passed through the absorption liquid circulation vibrator Gυ, the absorption liquid sprinkler pump head, and the flow rate adjustment valve (H). Water is sprinkled into the absorber (9) from the absorption liquid sprinkler 0η, the water vapor is absorbed by the absorption liquid QQ, and the heat of absorption of the absorption liquid qQ is absorbed by the cooling water in the mouth of the heat transfer tube.

水蒸気を吸収した稀釈吸収液aΦは、吸収液循環ポンプ
叫、吸収液循環パイプOe、止弁αη及び熱交換器(ト
)を経て濃縮部(331に流入する。
The diluted absorption liquid aΦ that has absorbed water vapor flows into the concentration section (331) through the absorption liquid circulation pump, the absorption liquid circulation pipe Oe, the stop valve αη, and the heat exchanger (g).

この濃縮部ωにおいて、半透膜□□□による逆浸透法か
らなる濃一手段により、稀釈吸収液C141中の水が半
透膜岨)を透過して移動し、稀釈吸収液Q41が濃縮さ
れた吸収液0Qとなり、吸収液循環パイプμsを経て熱
交換器(至)に流入する。
In this concentration section ω, the water in the diluted absorption liquid C141 passes through the semipermeable membrane □□□ and moves through the semipermeable membrane □□□, and the diluted absorption liquid Q41 is concentrated. The absorbent liquid 0Q flows into the heat exchanger through the absorbent circulation pipe μs.

そして、濃縮部酷において半透膜(資)を透過した水、
すなわち冷却液(2)は貯留槽0])に流入する。
Then, the water that has passed through the semipermeable membrane (material) in the concentration section,
That is, the cooling liquid (2) flows into the storage tank 0]).

一方、蒸発器(1)の底部の冷却液(2)は、冷却液循
環パイプ(1)、冷却液循環ボンデσ、止弁駕及び逆止
弁翰を経て吸収液循環パイプqQの稀釈吸収液θ尋に合
流する。
On the other hand, the coolant (2) at the bottom of the evaporator (1) passes through the coolant circulation pipe (1), the coolant circulation bond σ, the stop valve cage, and the check valve holder, and is then transferred to the diluted absorption liquid in the absorption liquid circulation pipe qQ. Join θ fathom.

すなわち、稀釈吸収液0弔の製綿j手段が、濃縮部C3
31における逆浸透法による濃縮手段であるため。
That is, the cotton making means with 0 diluted absorbent is used in the concentration section C3.
Because it is a concentration method using reverse osmosis method in 31.

成績係数が第2図に比しきわめて高く、かつ、火力を用
いないため適用上の制約を受けず、さらに。
The coefficient of performance is extremely high compared to Figure 2, and since no firepower is used, there are no restrictions on application.

第2図のような排ガス、燃料洩れ、火災等を考慮する必
要がなく、保守管理を容易にすることができる。
There is no need to consider exhaust gas, fuel leakage, fire, etc. as shown in FIG. 2, and maintenance management can be facilitated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第1図の逆浸透法による場合、使用する吸収剤及び半透
膜に種々の制約がある。
When using the reverse osmosis method shown in FIG. 1, there are various restrictions on the absorbent and semipermeable membrane used.

すなわち吸収剤として2強酸1強アルカリ性物質の中に
優れた吸収特性を有するものが多数あるが、それ等の物
質では半透膜が堪えることができなく2他の部品の耐食
性にも問題があり、かつ。
In other words, there are many absorbents that have excellent absorption properties, such as 2 strong acids, 1 strong alkalinity, but these materials cannot withstand semipermeable membranes, and 2 have problems with the corrosion resistance of other parts. ,and.

取扱い上も有害、危険なものも多い。Many of them are harmful and dangerous to handle.

また、半透膜として、吸収剤の濃縮に不適当で不安定な
もの、比較的製作が困難であり、入手が容易でないもの
がある。
Additionally, some semipermeable membranes are unsuitable and unstable for concentrating absorbents, others are relatively difficult to manufacture, and some are not easily available.

本発明は、前記の点に留意してなされたものである。The present invention has been made with the above points in mind.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するために2本発明の吸収冷凍装置は、
蒸発器、吸収器、濃縮部を管路により接続して冷凍サイ
クルを構成し、前記濃縮部における稀釈吸収液の濃縮手
段を逆浸透法による濃縮手段にした吸収冷凍装置におい
て。
In order to solve the above problems, the absorption refrigeration apparatus of the present invention has the following features:
An absorption refrigeration apparatus in which an evaporator, an absorber, and a concentrator are connected through a pipe line to constitute a refrigeration cycle, and the means for concentrating the diluted absorption liquid in the concentrator is a concentrating means by reverse osmosis.

前記濃縮手段の吸収剤を、Li、に等のアルカリ金属と
F、C1,Br等ハロゲンの化合塩類としたものである
The absorbent of the concentration means is a compound salt of an alkali metal such as Li and halogen such as F, C1, and Br.

また、前記濃縮手段の吸収剤を、Mg、Ca等のアルカ
リ土金属、!: F 、 C1、Br等ハロゲンの化合
塩類としたものである。
Further, the absorbent of the concentration means may be an alkaline earth metal such as Mg or Ca! : Compound salts of halogens such as F, C1, Br, etc.

さらに、前記#樹手段の半透膜を、セルロース系、ポリ
エーテル系、ポリアミド系等の有機化合物系にしたもの
である。
Furthermore, the semi-permeable membrane of the above-mentioned resin means is made of an organic compound such as cellulose, polyether, or polyamide.

〔作 用〕[For production]

前記のように構成された本発明の吸収冷凍装置は、吸収
剤がLi、に等のアルカリ金属又はMg 、 Ca等の
アルカリ土金属とF 、 CI 、 Br等ハロゲンの
化合塩類からなるため1強酸2強アルカリ性でなくほぼ
中性であり、半透膜及び他の部品を侵食することなく、
取扱いが容易で危険がなく、吸収特性も良好である。
The absorption refrigeration system of the present invention configured as described above is characterized by the fact that the absorbent is composed of compound salts of alkali metals such as Li and Ni or alkaline earth metals such as Mg and Ca, and halogens such as F, CI, and Br. 2. It is not strongly alkaline but almost neutral, and does not corrode semipermeable membranes and other parts.
It is easy to handle, non-hazardous, and has good absorption properties.

また、半透膜がセルロース系、ポリエーテル系。In addition, the semipermeable membrane is cellulose-based or polyether-based.

ポリアミド系等の有機化合物系であるため、吸収剤のf
iklに最適で安定性を有し、!l!lii作及び入手
が容易で経済性に優れている。
Because it is based on organic compounds such as polyamide, the absorbent f
Ideal for ikl and has stability! l! It is easy to make and obtain, and is highly economical.

〔実施例〕〔Example〕

(実施例1) 濃縮手段の吸収剤を、Li、に等のアルカリ金属とF 
、 C9、Br等ハロゲンの化合塩類とした。
(Example 1) The absorbent of the concentration means is made of alkali metals such as Li and F.
, C9, Br, and other halogen compound salts.

(実施例2) 吸収剤を、Mg、Ca等のアルカリ土金属とF。(Example 2) The absorbent is made of alkaline earth metals such as Mg and Ca and F.

C1、Br等ハロゲンの化合塩類とした。Compound salts of halogens such as C1 and Br were used.

(実施例3) 半透膜を、セルロース系、ポリエーテル系、ポリアミド
系等の有機化合物系にした。
(Example 3) The semipermeable membrane was made of an organic compound such as cellulose, polyether, or polyamide.

〔発明の効果〕〔Effect of the invention〕

本発明は1以上説明したように構成されているので、以
下に記載する効果を奏する。
Since the present invention is constructed as described in one or more of the above descriptions, it achieves the advantages described below.

吸収剤がLi、に等のアルカリ金属又はMg 、 Ca
等のアルカリ土金属とF 、 C6、Br等ハロゲンの
化合塩類からなるため1強酸1強アルカリ性でなくほぼ
中性であり、半透膜及び他の部品を侵食することなく、
取扱いが容易で危険がなく、吸収特性も良好である。
Absorbent is alkali metal such as Li, Mg, Ca
It is composed of compound salts of alkaline earth metals such as F, C6, Br, etc., so it is not a strong acid or a strong alkaline, but is almost neutral, and does not corrode semipermeable membranes and other parts.
It is easy to handle, non-hazardous, and has good absorption properties.

また、半透膜がセルロース系、ポリエーテル系。In addition, the semipermeable membrane is cellulose-based or polyether-based.

ポリアミド系等の有機化合物系であるため、吸収剤の1
1組に最適で安定性を有し、製作及び入手が容易で経済
性に優れている。
Since it is based on organic compounds such as polyamide, the absorbent
It is suitable for one set, has stability, is easy to manufacture and obtain, and is economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図゛は本発明が適用される吸収冷凍装置の1例の系
統図、第2図は従来例の系統図である。 (1)・・・蒸発器、(9)・・・吸収器、00・・・
吸収液、■・・・濃縮部、□□□・・・半透膜。
FIG. 1 is a system diagram of an example of an absorption refrigeration system to which the present invention is applied, and FIG. 2 is a system diagram of a conventional example. (1)...Evaporator, (9)...Absorber, 00...
Absorption liquid, ■...concentration section, □□□...semipermeable membrane.

Claims (3)

【特許請求の範囲】[Claims] (1)蒸発器、吸収器、濃縮部を管路により接続して冷
凍サイクルを構成し、前記濃縮部における稀釈吸収液の
濃縮手段を逆浸透法による濃縮手段にした吸収冷凍装置
において、 前記濃縮手段の吸収剤を、Li、K等のアルカリ金属と
F、Cl、Br等ハロゲンの化合塩類とした吸収冷凍装
置。
(1) An absorption refrigeration apparatus in which an evaporator, an absorber, and a concentrating section are connected by a pipe to form a refrigeration cycle, and the means for concentrating the diluted absorption liquid in the concentrating section is a means for concentrating the diluted absorption liquid by reverse osmosis. An absorption refrigeration device in which the absorbent is a compound salt of an alkali metal such as Li or K and a halogen such as F, Cl or Br.
(2)蒸発器、吸収器、濃縮部を管路により接続して冷
凍サイクルを構成し、前記濃縮部における稀釈吸収液の
濃縮手段を逆浸透法による濃縮手段にした吸収冷凍装置
において、 前記濃縮手段の吸収剤を、Mg、Ca等のアルカリ土金
属とF、Cl、Br等ハロゲンの化合塩類とした吸収冷
凍装置。
(2) An absorption refrigeration apparatus in which an evaporator, an absorber, and a concentrating section are connected by a pipe to constitute a refrigeration cycle, and the means for concentrating the diluted absorption liquid in the concentrating section is a means for concentrating the diluted absorption liquid by reverse osmosis. An absorption refrigeration device in which the absorbent is a compound salt of alkaline earth metals such as Mg and Ca and halogens such as F, Cl and Br.
(3)蒸発器、吸収器、濃縮部を管路により接続して冷
凍サイクルを構成し、前記濃縮部における稀釈吸収液の
濃縮手段を逆浸透法による濃縮手段にした吸収冷凍装置
において、 前記濃縮手段の半透膜を、セルロース系、ポリエーテル
系、ポリアミド系等の有機化合物系にした吸収冷凍装置
(3) An absorption refrigeration apparatus in which an evaporator, an absorber, and a concentrating section are connected by a pipe to constitute a refrigeration cycle, and the means for concentrating the diluted absorption liquid in the concentrating section is a concentrating means by reverse osmosis, wherein the concentration An absorption refrigeration device whose semipermeable membrane is made of an organic compound such as cellulose, polyether, or polyamide.
JP12010489A 1989-05-12 1989-05-12 Absorption refrigerator Pending JPH02298767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010489A JPH02298767A (en) 1989-05-12 1989-05-12 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010489A JPH02298767A (en) 1989-05-12 1989-05-12 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JPH02298767A true JPH02298767A (en) 1990-12-11

Family

ID=14778026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010489A Pending JPH02298767A (en) 1989-05-12 1989-05-12 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH02298767A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
JP2013529280A (en) * 2010-04-20 2013-07-18 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent containing lithium chloride and an organic chloride salt
US8500867B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
WO2009098155A1 (en) * 2008-02-05 2009-08-13 Evonik Degussa Gmbh Absorption type refrigerating machine
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US8500867B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
JP2013529280A (en) * 2010-04-20 2013-07-18 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent containing lithium chloride and an organic chloride salt
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures

Similar Documents

Publication Publication Date Title
JPH02298767A (en) Absorption refrigerator
JP2592625B2 (en) Heat absorbing device and method
JP3883838B2 (en) Absorption refrigerator
JPS61110853A (en) Absorption heat pump/refrigeration system
US3316736A (en) Absorption refrigeration systems
JP7015671B2 (en) Absorption heat exchange system
CN101849147B (en) Non-vacuum absorption refrigeration
JP2858908B2 (en) Absorption air conditioner
JP2554782B2 (en) Absorption heat pump device
JPH02183771A (en) Absorption refrigerator
JPH0198863A (en) Absorption refrigerator
JPH04309756A (en) Mixed absorbing liquid and absorption heat exchanger using the same liquid
JPH02150675A (en) Absorption type refrigerating device
JP2668063B2 (en) Absorbent composition for absorption air conditioner
DK164920B (en) HEAT PUMP OF THE ABSORPTION CYCLE TYPE WITH WORK MIXTURE CONTAINING CAESIUM HYDROXIDE AND POTASSIUM HYDROXIDE
JPS5849780B2 (en) Absorption heat pump
JPS5951971A (en) Absorbing liquid for absorption refrigerating machine or absorption heat pump
JPS6310451Y2 (en)
JPH0528751B2 (en)
JPH03225163A (en) Absorption heat pump
JPH0379633B2 (en)
JP4201403B2 (en) Absorption refrigerator
JPH086982B2 (en) Absorption refrigerator
JPH02183772A (en) Absorption refrigerator
JP2004069092A (en) Absorption type water cooling/heating machine