JPH0379633B2 - - Google Patents

Info

Publication number
JPH0379633B2
JPH0379633B2 JP57129289A JP12928982A JPH0379633B2 JP H0379633 B2 JPH0379633 B2 JP H0379633B2 JP 57129289 A JP57129289 A JP 57129289A JP 12928982 A JP12928982 A JP 12928982A JP H0379633 B2 JPH0379633 B2 JP H0379633B2
Authority
JP
Japan
Prior art keywords
refrigerant
container
water
liquid
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57129289A
Other languages
Japanese (ja)
Other versions
JPS5918354A (en
Inventor
Katsuyuki Mashita
Yonezo Ikumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57129289A priority Critical patent/JPS5918354A/en
Publication of JPS5918354A publication Critical patent/JPS5918354A/en
Publication of JPH0379633B2 publication Critical patent/JPH0379633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Description

【発明の詳細な説明】 (イ) 発明の技術分野 本発明は、ジメチルフオルムアミド(DMFと
いう)−フロン22(R22という)、テトラエチレン
グリコールジメチルエーテル(E181という)−
R22、N−メチル−2−ピロリドン(NPという)
−トリフルオロエタノール(TFEという)等の
有機系吸収剤と冷媒を用いた吸収冷温水機に関
し、特に、太陽熱利用温水、排温水等の低温水或
いは外気その他の低温流体の安価な熱エネルギー
を利用して冬期には低温流体の温度レベル以上の
暖房・給湯用温水を取り出し、夏期には冷房用冷
水を取り出せるようにしたものに関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to dimethylformamide (referred to as DMF) - Freon 22 (referred to as R22), tetraethylene glycol dimethyl ether (referred to as E181) -
R22, N-methyl-2-pyrrolidone (referred to as NP)
- Regarding absorption chiller-heating machines that use organic absorbents and refrigerants such as trifluoroethanol (TFE), in particular, they utilize inexpensive thermal energy from low-temperature water such as solar hot water, waste water hot water, outside air, and other low-temperature fluids. In the winter, hot water for heating and hot water supply at a temperature higher than that of the low-temperature fluid can be taken out, and in the summer, cold water for cooling can be taken out.

(ロ) 従来技術 吸収剤と冷媒に水−アンモニア、臭化リチウム
−水を用いた吸収冷凍機或いは吸収ヒートポンプ
(吸収冷温水機)は、従来、広く知られている。
(b) Prior Art Absorption refrigerators or absorption heat pumps (absorption chiller/heater) using water-ammonia or lithium bromide-water as absorbents and refrigerants are widely known.

(ハ) 従来技術の問題点 上記した従来の吸収冷温水機においては、機器
間を循環する冷媒の凍結や吸収液の結晶、凝固を
伴ない易く、外気等の安価な低温流体のみを利用
して所定の冷温水を取り出せるようにした吸収冷
温水機の実用化は難かしい問題があつた。
(c) Problems with the conventional technology In the conventional absorption chiller/heater described above, the refrigerant circulating between the devices tends to freeze, the absorbent liquid crystallizes, and solidifies, and only inexpensive low-temperature fluids such as outside air are used. There were problems that made it difficult to put into practical use an absorption chiller/heater that could take out a predetermined amount of cold and hot water.

(ニ) 問題点を解決する手段 本発明は、上記問題点に鑑み、吸収冷温水機の
作動流体にR22、TFE等の有機系冷媒とDMF、
NP等の有機系吸収剤を用い、かつ温水取り出し
時と冷水取り出し時とにおいて、蒸発器と吸収器
との機能を逆転させるように作動流体、熱源流体
及び冷却流体の流路を切替える構成にすることに
より、太陽熱利用温水や外気等の安価な熱エネル
ギーを利用して、冬には熱源流体温度以上の温水
を得、夏には冷水を得ることのできる吸収冷温水
機の実用化を達成したものである。
(d) Means for solving the problems In view of the above problems, the present invention uses organic refrigerants such as R22 and TFE, and DMF, as the working fluid of an absorption chiller/heater.
An organic absorbent such as NP is used, and the flow paths of the working fluid, heat source fluid, and cooling fluid are switched so that the functions of the evaporator and absorber are reversed when hot water is taken out and when cold water is taken out. As a result, we have achieved the practical application of an absorption chiller/heater that can obtain hot water above the heat source fluid temperature in the winter and cold water in the summer by using inexpensive thermal energy such as solar hot water or outdoor air. It is something.

(ホ) 実施例 第1図は本発明の一実施例を示すもので、1
は、太陽熱利用温水等の低温水が流通する熱源管
2を収納し、冷媒を吸収して冷媒量の多くなつた
吸収液(以下、濃液という)を低温流体の熱で沸
騰させることにより冷媒をガス化して分離し、冷
媒量の少ない吸収液(以下、稀液という)を作る
発生器、3は、発生器1で気化する冷媒にガス状
態で混入している吸収剤を流下する液状の吸収剤
との接触で分離し、冷媒ガスの割合を増大させる
精留器、4は、精留器3から送られてくるガス流
を冷却して吸収剤成分の最終分離する分縮器、5
は、分縮器4において吸収剤成分の殆んどなくな
つたガス流を外気で冷却して液化し、この液化冷
媒を、四方弁6を介して、第1容器7若しくは第
2容器8に供給する空冷式凝縮器、9は、第1容
器7と第2容器8とで成り、発生器1からの稀液
が、四方弁6を介して、第1容器7若しくは第2
容器8に供給され、第1容器7において凝縮器5
からの液化冷媒を気化させた場合には、この気化
冷媒を第2容器8において発生器1からの稀液に
吸収させ、第2容器8において液化冷媒を気化さ
せた場合には、この気化冷媒を第1容器7におい
て稀液に吸収させるように第1容器7と第2容器
8との蒸発吸収作用が切替わる蒸発吸収器、10
は稀液と濃液とを熱交換させる溶液熱交換器、1
1は、蒸発吸収器9からの濃液を分縮器4、溶液
熱交換器10、濃液散布器12を順次経由させて
発生器1へ送る濃液ポンプ、13及び13′は減
圧器で、これらは、冷媒ガス管14、冷媒液管1
5、第1冷媒・稀液管16、第2冷媒・稀液管1
7、冷媒・稀液分配管18,18′…、冷媒・稀
液分散器19、第1冷媒・濃液管20、第2冷
媒・濃液管21、濃液管22及び稀液管23で気
密に配管接続されて冷媒と吸収液との循環径路を
形成している。
(E) Embodiment FIG. 1 shows an embodiment of the present invention.
houses the heat source tube 2 through which low-temperature water such as solar hot water flows, and absorbs the refrigerant and boils the absorption liquid (hereinafter referred to as concentrated liquid), which has increased the amount of refrigerant, with the heat of the low-temperature fluid. A generator 3 gasifies and separates the refrigerant to produce an absorbent liquid with a small amount of refrigerant (hereinafter referred to as dilute liquid). a rectifier, 4, which separates on contact with the absorbent and increases the proportion of refrigerant gas, and a demultiplexer, 5, which cools the gas stream coming from the rectifier 3 and performs a final separation of the absorbent components.
In the dephlegmator 4, the gas stream, which has almost no absorbent component, is cooled with outside air and liquefied, and this liquefied refrigerant is transferred to the first container 7 or the second container 8 via the four-way valve 6. The supply air-cooled condenser 9 consists of a first container 7 and a second container 8, and the diluted liquid from the generator 1 is passed through the four-way valve 6 to the first container 7 or the second container 8.
The condenser 5 is supplied to the container 8 and the condenser 5 is supplied to the first container 7
When the liquefied refrigerant from the generator 1 is vaporized, this vaporized refrigerant is absorbed into the diluted liquid from the generator 1 in the second container 8; an evaporative absorber, 10, in which the evaporative absorption action between the first container 7 and the second container 8 is switched so that the diluted liquid is absorbed in the first container 7;
is a solution heat exchanger that exchanges heat between a dilute liquid and a concentrated liquid, 1
1 is a concentrated liquid pump that sends the concentrated liquid from the evaporator-absorber 9 to the generator 1 through the demultiplexer 4, the solution heat exchanger 10, and the concentrated liquid spargeer 12 in sequence; 13 and 13' are pressure reducers; , these are the refrigerant gas pipe 14 and the refrigerant liquid pipe 1.
5. First refrigerant/dilute liquid pipe 16, second refrigerant/dilute liquid pipe 1
7. Refrigerant/dilute liquid distribution pipes 18, 18'..., refrigerant/dilute liquid disperser 19, first refrigerant/concentrated liquid pipe 20, second refrigerant/concentrated liquid pipe 21, concentrated liquid pipe 22, and dilute liquid pipe 23. The piping is airtightly connected to form a circulation path for the refrigerant and absorption liquid.

前記第1容器7には水管24が収納され、該水
管に液化冷媒若しくは稀液が散布されるようにな
つており、第2容器8には、その内側に前記熱源
管2と並列接続された開閉弁25,25′付きの
熱源管2′が収納されて該熱源管に液化冷媒が散
布されるようになつていると共に外側には多数の
フイン26,26…が形成されて器内を流通する
稀液が外気で冷却されるようになつている。27
は前記第2容器8に配備した送風機、28は空冷
式凝縮器5に配備した送風機であり、29及び3
0は夫々発生器1及び精留器3に収納した充填材
である。
A water pipe 24 is housed in the first container 7, and a liquefied refrigerant or a diluted liquid is sprayed into the water pipe.The second container 8 has a water pipe 24 connected in parallel with the heat source pipe 2 inside thereof. A heat source tube 2' with on-off valves 25, 25' is housed so that liquefied refrigerant can be sprayed into the heat source tube, and a large number of fins 26, 26... are formed on the outside to allow circulation within the vessel. The diluted liquid is cooled by outside air. 27
28 is a blower installed in the second container 8, 28 is a blower installed in the air-cooled condenser 5, and 29 and 3 are blowers installed in the second container 8.
0 is the filler contained in the generator 1 and the rectifier 3, respectively.

次に第1図に示した吸収冷温水機の運転動作に
ついて説明する。冷水を取り出すときは、熱源管
2に太陽熱利用温水等の低温水を流す一方熱源管
2′の開閉弁25,25′を閉じて発生器1にのみ
低温水を供給し、冷媒液管15と第1冷媒・稀液
管16と、稀液管23と第2冷媒・稀液管17と
が夫々連通するように四方弁6の流路(破線で示
した流路)をセツトし、かつ、送風機27,28
及び濃液ポンプ11を作動させ、水管24に水を
流して運転する。而して、発生器1で生じた吸収
剤成分を含有する冷媒ガスは、充填材29を通過
する間に濃液散布器12から散布されて流下する
濃液と接触して吸収剤含有率を低下し、更に精留
器3の充填材30を通過して吸収剤含有率を低下
しつつ分縮器4に至る。分縮器4に至つた冷媒ガ
スは該分縮器に収納した濃液管22内を流通する
濃液に冷却されて凝縮し、この凝縮した冷媒量の
多い吸収液(以下、還流液という)は充填材3
0,29へと流下しつつ発生器1へ戻る間に該発
生器から上昇して来る冷媒ガスの吸収剤成分を分
離するための気液接触用液として利用される。こ
のようにして吸収剤成分の殆んどなくなつた冷媒
ガスは、分縮器4から冷媒ガス管14を経て空冷
式凝縮器5に至り、外気で冷却されて液化する。
この液化冷媒は冷媒液管15を通つて四方弁6を
経由し、第1冷媒・稀液管16を通つて減圧器1
3を経由した後、第1容器7内の冷媒・稀液分散
器19に至る。一方、発生器1において冷媒成分
の少くなつた稀液は、該発生器底部から稀液管2
3、溶液熱交換器10、稀液管23、四方弁6、
第2冷媒・稀液管17、減圧器13′、冷媒・稀
液分配管18,18′…を経て第2容器8へ至る。
そして、前記分散器19から第1容器7内の水管
24へ散布された液化冷媒は該水管を流通する水
より吸熱して気化し、この気化冷媒は、送風機2
7で送風される外気によつて冷却され乍ら第2容
器8内を流れる稀液に吸収される。このようにし
て、前記水管24から冷水が得られる。すなわ
ち、蒸発吸収器9において、第1容器7は蒸発
器、第2容器8は吸収器としての機能を有してい
るのである。気化冷媒を吸収した稀液は濃液とな
り、この濃液と第1容器7内で気化しなかつた未
気化冷媒液は、第1、第2冷媒・濃液管20,2
1、濃液管22を通つて濃液ポンプ11、分縮器
4、溶液熱交換器10を経由し、濃液散布器12
に至つて発生器1に戻る。
Next, the operation of the absorption chiller/heater shown in FIG. 1 will be explained. When taking out cold water, low-temperature water such as hot water using solar heat is allowed to flow through the heat source pipe 2, while the on-off valves 25, 25' of the heat source pipe 2' are closed to supply low-temperature water only to the generator 1, and the refrigerant liquid pipe 15 and The flow path of the four-way valve 6 (the flow path indicated by the broken line) is set so that the first refrigerant/dilute liquid pipe 16, the dilute liquid pipe 23, and the second refrigerant/dilute liquid pipe 17 communicate with each other, and Blower 27, 28
Then, the concentrated liquid pump 11 is operated to flow water into the water pipe 24 for operation. Thus, while the refrigerant gas containing the absorbent component generated in the generator 1 passes through the filler 29, it comes into contact with the concentrated liquid sprayed from the concentrated liquid sprayer 12 and flows down to reduce the absorbent content. It further passes through the filler 30 of the rectifier 3 and reaches the dephlegmator 4 while decreasing the absorbent content. The refrigerant gas that has reached the condenser 4 is cooled and condensed into a concentrated liquid that flows through the concentrated liquid pipe 22 housed in the condenser, and this condensed absorption liquid with a large amount of refrigerant (hereinafter referred to as reflux liquid) is filler 3
The refrigerant gas is used as a gas-liquid contacting liquid to separate the absorbent component of the refrigerant gas rising from the generator 1 while flowing down to the generator 1. The refrigerant gas, which has almost no absorbent component in this way, passes from the demultiplexer 4 through the refrigerant gas pipe 14 to the air-cooled condenser 5, where it is cooled by outside air and liquefied.
This liquefied refrigerant passes through the refrigerant liquid pipe 15, the four-way valve 6, and the first refrigerant/dilute liquid pipe 16 into the pressure reducer 1.
3, it reaches the refrigerant/dilute liquid disperser 19 in the first container 7. On the other hand, the diluted liquid whose refrigerant content has decreased in the generator 1 is transferred from the bottom of the generator to the diluted liquid pipe 2.
3, solution heat exchanger 10, diluted liquid pipe 23, four-way valve 6,
It reaches the second container 8 via the second refrigerant/dilute liquid pipe 17, the pressure reducer 13', the refrigerant/dilute liquid distribution pipes 18, 18'...
The liquefied refrigerant dispersed from the distributor 19 to the water pipe 24 in the first container 7 absorbs heat from the water flowing through the water pipe and vaporizes.
While being cooled by the outside air blown at 7, the diluted liquid is absorbed by the diluted liquid flowing in the second container 8. In this way, cold water is obtained from the water pipe 24. That is, in the evaporative absorber 9, the first container 7 functions as an evaporator, and the second container 8 functions as an absorber. The dilute liquid that has absorbed the vaporized refrigerant becomes a concentrated liquid, and this concentrated liquid and the unvaporized refrigerant liquid that was not vaporized in the first container 7 are transferred to the first and second refrigerant/concentrated liquid pipes 20 and 2.
1. Pass through the concentrated liquid pipe 22, the concentrated liquid pump 11, the demultiplexer 4, the solution heat exchanger 10, and the concentrated liquid sprayer 12.
Then, the process returns to generator 1.

また、温水を取り出すときは、前記開閉弁2
5,25′を開いて発生器1及び第2容器8に低
温水を供給し、冷媒液管15と第2冷媒・稀液管
17と、稀液管23と第1冷媒・稀液管16とが
夫々連通するように四方弁6の流路(実線で示し
た流路)をセツトし、かつ、送風機28は停止
し、送風機27及び濃液ポンプ11を作動させ、
水管24に水を流して運転する。
In addition, when taking out hot water, the on-off valve 2
5, 25' are opened to supply low temperature water to the generator 1 and the second container 8, and the refrigerant liquid pipe 15, the second refrigerant/dilute liquid pipe 17, the dilute liquid pipe 23 and the first refrigerant/dilute liquid pipe 16 The flow paths of the four-way valve 6 (the flow paths shown by solid lines) are set so that they communicate with each other, and the blower 28 is stopped and the blower 27 and concentrated liquid pump 11 are operated.
It is operated by flowing water through the water pipe 24.

温水取り出し時において、発生器1で生じた冷
媒ガスが凝縮器5で液化して四方弁6に至るまで
の動作、還流液の動作、発生器1からの稀液が四
方弁6に至るまでの動作並びに蒸発吸収器9から
の濃液が発生器1へ戻るまでの動作は冷水取り出
し時と同様であるので説明を省略する。
When hot water is taken out, the refrigerant gas generated in the generator 1 is liquefied in the condenser 5 and reaches the four-way valve 6. The operation and the operation until the concentrated liquid from the evaporator-absorber 9 returns to the generator 1 are the same as when cold water is taken out, so the explanation will be omitted.

而して、液化冷媒は、四方弁6から第2冷媒・
稀液管17を通つて減圧器13′を経由し、冷
媒・稀液分配管18,18′…を経て第2容器8
に至り、該容器内の熱源管2′に散布される。一
方、稀液は、四方弁6から第1冷媒・稀液管16
を通つて減圧器13を経由し、第1容器7内の冷
媒・稀液分散器19に至り、第1容器7内の水管
24に散布される。そして、熱源管2′に散布さ
れた液化冷媒は、該管内に流通する低温水より吸
熱して気化し、この気化冷媒が第1容器7内の水
管24に散布される稀液に吸収される際に発生す
る熱(以下、吸収熱という)によつて該水管から
低温水の温度以上の温水が得られる。すなわち、
蒸発吸収器9において、第1容器7は吸収器、第
2容器8は蒸発器としての機能を有しているので
ある。
Thus, the liquefied refrigerant is transferred from the four-way valve 6 to the second refrigerant.
The second container 8 passes through the dilute liquid pipe 17, the pressure reducer 13', and the refrigerant/dilute liquid distribution pipes 18, 18'...
The heat source tube 2' in the container is then sprayed. On the other hand, the diluted liquid is supplied from the four-way valve 6 to the first refrigerant/diluted liquid pipe 16.
The refrigerant/dilute liquid disperser 19 in the first container 7 is reached via the pressure reducer 13 and is dispersed into the water pipe 24 in the first container 7. The liquefied refrigerant sprayed into the heat source pipe 2' absorbs heat from the low-temperature water flowing through the pipe and vaporizes, and this vaporized refrigerant is absorbed by the diluted liquid sprayed into the water pipe 24 in the first container 7. The heat generated during this process (hereinafter referred to as absorbed heat) allows hot water at a temperature higher than that of low-temperature water to be obtained from the water pipe. That is,
In the evaporative absorber 9, the first container 7 functions as an absorber, and the second container 8 functions as an evaporator.

第2図は、第1図に示した本発明実施例におい
て、作動流体としてR22を冷媒に、DMFを吸収
剤に用いて運転した場合のデユーリング線図の一
例を示したもので、夏期においては約90℃の太陽
熱利用温水を約85℃になるまで使用し、約35℃の
外気を使用して約14℃で水管24に入つてくる水
を約9℃の冷水として取り出し(第2図C参照)、
冬期においては約45℃の太陽熱利用温水を約40℃
になるまで使用し、約7℃の外気を使用して約58
℃で水管24に入つてくる水を約63℃の温水とし
て取り出したサイクル例(第2図H参照)を示し
たものである。尚、冬期において、外気温が例え
ば0℃にまで低下し、それに伴なつて太陽熱利用
温水も例えば37℃に低下した場合でも本発明吸収
冷温水機にあつては約57℃の温水を得られること
も確認された。
Fig. 2 shows an example of the Dueling diagram when the embodiment of the present invention shown in Fig. 1 is operated using R22 as the refrigerant and DMF as the absorbent as the working fluid. Solar heated water at about 90°C is used until the temperature reaches about 85°C, and outside air at about 35°C is used to take out the water entering the water pipe 24 at about 14°C as cold water at about 9°C (Fig. 2C). reference),
In the winter, solar heat water that is approximately 45℃ is heated to approximately 40℃.
Use it until it becomes about 58℃ using outside air at about 7℃.
This shows an example of a cycle (see Fig. 2H) in which water entering the water pipe 24 at a temperature of 63°C is taken out as hot water at a temperature of about 63°C. In the winter, even if the outside temperature drops to, for example, 0°C and the hot water using solar heat also drops to, for example, 37°C, the absorption water cooler/heater of the present invention can provide hot water of approximately 57°C. This was also confirmed.

第2図から明らかなように、吸収冷温水機の作
動流体としてR22−DMFを用いることにより、
駆動熱源温度を低くても冷凍サイクル又はヒート
ポンプサイクルが形成されるので、排温水や太陽
熱利用温水、外気等の低温流体のみを使用して、
冷房用冷水又は暖房・給湯用温水を得ることがで
き、灯油やガス等の高価な熱源を使用しなくても
良く、省エネルギーかつ経済的な吸収冷温水機と
なる。尚、作動流体にR22−E181、TFE−NPを
用いた場合にも同様に冷水、温水が得られる。
As is clear from Figure 2, by using R22-DMF as the working fluid of the absorption chiller/heater,
A refrigeration cycle or a heat pump cycle can be formed even if the drive heat source temperature is low, so only low-temperature fluids such as waste water, solar hot water, or outside air are used.
It is possible to obtain cold water for air conditioning or hot water for heating and hot water supply, and there is no need to use expensive heat sources such as kerosene or gas, resulting in an energy-saving and economical absorption chiller/heater. Note that cold water and hot water can be similarly obtained when R22-E181 and TFE-NP are used as the working fluid.

(ヘ) 発明の効果 以上のように、本発明吸収冷温水機は、作動流
体としてR22、TFE等の有機系冷媒とDMF、NP
等の有機系吸収剤を用いたものであるから、作動
流体の性質上、凝固点が低く、しかも駆動熱源の
温度レベルが低くても冷媒の凍結や吸収液の結
晶、凝固を生じることなく冷凍運転又はヒートポ
ンプ運転を行なうことができ、かつ、温水取り出
し時即ちヒートポンプ運転時と冷水取り出し時即
ち冷凍運転時とにおいて、蒸発器と吸収器との機
能を逆転させるように作動流体、低温水や外気等
の熱源流体及び外気等の冷却流体の流路を切替え
るようにしたものであるから、太陽熱利用温水や
外気等の安価な熱エネルギーのみを利用して冬に
は熱源流体温度以上の暖房・給湯用温水を得、夏
には冷房用冷水を得ることができ、実用的価値大
なるものである。
(F) Effect of the invention As described above, the absorption chiller/heater of the present invention uses organic refrigerants such as R22 and TFE and DMF and NP as working fluids.
Because it uses an organic absorbent such as Alternatively, heat pump operation can be performed, and the working fluid, low-temperature water, outside air, etc. This system switches the flow paths of the heat source fluid and the cooling fluid such as outside air, so it uses only inexpensive thermal energy such as solar hot water or outside air, and in winter, it can be used for heating and hot water at temperatures higher than the heat source fluid temperature. It is of great practical value as it allows you to obtain hot water and cold water for air conditioning in the summer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す回路構成概
略説明図、第2図は、第1図に示した実施例にお
いて作動流体としてR22を冷媒に、DMFを吸収
剤に用いて運転したときのデユーリング線図の一
例を示したものである。第2図中、パラメータの
数値は冷媒濃度の百分率、Hはヒートポンプ運転
のサイクル、Cは冷凍運転のサイクルを示す。 1……発生器、2,2′……熱源管、5……凝
縮器、6……四方弁、7……第1容器、8……第
2容器、9……蒸発吸収器、10……溶液熱交換
器、24……水管、25,25′……開閉弁、2
6……フイン、27……送風機。
Fig. 1 is a schematic explanatory diagram of a circuit configuration showing one embodiment of the present invention, and Fig. 2 shows an example in which the working fluid in the embodiment shown in Fig. 1 was operated using R22 as a refrigerant and DMF as an absorbent. This figure shows an example of a Düring diagram at the time. In FIG. 2, the numerical values of the parameters are percentages of the refrigerant concentration, H indicates the cycle of heat pump operation, and C indicates the cycle of refrigeration operation. DESCRIPTION OF SYMBOLS 1... Generator, 2, 2'... Heat source tube, 5... Condenser, 6... Four-way valve, 7... First container, 8... Second container, 9... Evaporative absorber, 10... ...Solution heat exchanger, 24...Water pipe, 25, 25'...Opening/closing valve, 2
6...Fin, 27...Blower.

Claims (1)

【特許請求の範囲】[Claims] 1 フロン22、トリフルオロエタノール等の有機
系冷媒とジメチルフオルムアミド、N−メチル−
2−ピロリドン等の有機系吸収剤を用い、太陽熱
利用温水等低温流体の流通する熱源管を収納した
発生器、凝縮器、水管を収納した第1容器と内側
に低温流体の流通する熱源管を収納すると共に外
側に外気と熱交換するためのフインを形成した第
2容器とで成る蒸発吸収器並びに溶液熱交換器を
配管接続し、前記発生器及び第2容器に収納した
熱源管に低温流体を流通させると共に第2容器内
の熱源管へ凝縮器からの冷媒液を散布して気化さ
せた冷媒が第1容器内の水管へ散布せしめた吸収
液に吸収されるようにし、前記発生器に収納した
熱源管にのみ低温流体を流通させると共に第1容
器内の水管へ凝縮器からの冷媒液を散布して気化
させた冷媒が第2容器内を流通させつつ外気で冷
却した吸収液に吸収されるように前記蒸発吸収器
の蒸発吸収作用を切替える機構を備え、前記水管
から冷水と温水とのいずれかを取り出し得るよう
にした吸収冷温水機。
1 Organic refrigerants such as Freon 22 and trifluoroethanol and dimethylformamide, N-methyl-
2-Using an organic absorbent such as pyrrolidone, a generator containing a heat source tube through which a low-temperature fluid such as solar hot water flows, a condenser, a first container housing a water tube, and a heat source tube through which a low-temperature fluid flows inside. An evaporative absorber and a solution heat exchanger are connected via piping, and a low-temperature fluid is supplied to the heat source tube housed in the generator and the second vessel. At the same time, the refrigerant liquid from the condenser is spread to the heat source pipe in the second container so that the vaporized refrigerant is absorbed by the absorption liquid spread to the water pipe in the first container, and The low-temperature fluid is circulated only through the housed heat source tubes, and the refrigerant liquid from the condenser is sprayed into the water tubes in the first container, and the vaporized refrigerant is absorbed by the absorption liquid cooled by outside air while flowing in the second container. The absorption chiller/heater is equipped with a mechanism for switching the evaporative absorption action of the evaporative absorber so that either cold water or hot water can be taken out from the water pipe.
JP57129289A 1982-07-23 1982-07-23 Absorption cold and hot water machine Granted JPS5918354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129289A JPS5918354A (en) 1982-07-23 1982-07-23 Absorption cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129289A JPS5918354A (en) 1982-07-23 1982-07-23 Absorption cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS5918354A JPS5918354A (en) 1984-01-30
JPH0379633B2 true JPH0379633B2 (en) 1991-12-19

Family

ID=15005890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129289A Granted JPS5918354A (en) 1982-07-23 1982-07-23 Absorption cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS5918354A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384605A (en) * 2011-10-25 2012-03-21 华南理工大学 Ultrasonic-strengthened generator for absorption refrigerator

Also Published As

Publication number Publication date
JPS5918354A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
US4437321A (en) Absorption cooling and heating system
JPH0379633B2 (en)
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
KR200144045Y1 (en) Absorption type cooler
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JPH04116352A (en) Absorption cooler/heater
JP2003343939A (en) Absorption refrigerating machine
JPS5832301B2 (en) absorption refrigerator
JP4596683B2 (en) Absorption refrigerator
JPS6122224B2 (en)
JP3429906B2 (en) Absorption refrigerator
JP2543258B2 (en) Absorption heat source device
JP2865305B2 (en) Absorption refrigerator
KR100608410B1 (en) Absorption chiller of double effect
KR0113790Y1 (en) Absorption refrigerating machine
JPS6113550B2 (en)
JPS5829818Y2 (en) absorption refrigerator
JP5233715B2 (en) Absorption refrigeration system
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JP2005106408A (en) Absorption type freezer
JPH11344268A (en) Absorption refrigerating device
JP2003014327A (en) Absorption refrigeration machine
JPH05272831A (en) Absorption refrigerator
JPH0355739B2 (en)