JPH02298039A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02298039A
JPH02298039A JP11935189A JP11935189A JPH02298039A JP H02298039 A JPH02298039 A JP H02298039A JP 11935189 A JP11935189 A JP 11935189A JP 11935189 A JP11935189 A JP 11935189A JP H02298039 A JPH02298039 A JP H02298039A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
layer
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11935189A
Other languages
Japanese (ja)
Inventor
Hideharu Nakajima
中嶋 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11935189A priority Critical patent/JPH02298039A/en
Publication of JPH02298039A publication Critical patent/JPH02298039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a deterioration in a characteristic by a method wherein a pattern film corresponding to a gate electrode is formed on a semiconductor region, at least one part on the pattern film from a semiconductor layer con nected to the semiconductor region is removed and, after that, the pattern film is removed. CONSTITUTION:Pattern films 21, 22 having a pattern corresponding to a gate electrode 26 are formed on a semiconductor region 11 ; at least one part on the pattern films 21, 22 from a semiconductor layer 13 connected to the semicon ductor region 11 is removed; after that, the pattern films 21, 22 are removed. Accordingly, even when a removal selection ratio such as an etching selection ratio or the like is small at the semiconductor region 11 and the semiconductor layer 13, the semiconductor layer 13 in a part where the gate electrode 26 is formed can be removed without damaging the semiconductor region 11 when the pattern films 21, 22 are formed of a material whose selection ratio with reference to them is large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ソース・ドレイン領域を半導体層が覆ってい
る半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device in which a semiconductor layer covers a source/drain region.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な半導体装置の製造方法において、
ゲート電極に対応するパターンを有するパターン膜を半
導体領域上に形成しておき、半導体領域と接続している
半導体層のうちでパターン膜上の少なくとも一部を除去
し、その後にパターン膜を除去することによって、特性
の優れた半導体装置を製造することができる様にしたも
のである。
The present invention provides a method for manufacturing a semiconductor device as described above.
A patterned film having a pattern corresponding to the gate electrode is formed on the semiconductor region, at least a portion of the semiconductor layer connected to the semiconductor region on the patterned film is removed, and then the patterned film is removed. This makes it possible to manufacture semiconductor devices with excellent characteristics.

〔従来の技術〕[Conventional technology]

半導体装置の微細化のためには、例えばMOSトランジ
スタでは、ソース・ドレイン令頁域へのコンタクト8M
域の面積を小さくする必要がある。
In order to miniaturize semiconductor devices, for example, in MOS transistors, it is necessary to
It is necessary to reduce the area of the area.

この目的のために、ソース・ドレイン領域を半導体層が
覆っているMO3I−ランジスタが考えられており、そ
の一つの製造方法がrVLSIシンポジウム1988年
5月10日〜13日p、 11〜12」に記載されてい
る。
For this purpose, an MO3I transistor in which the source/drain region is covered with a semiconductor layer has been considered, and one of its manufacturing methods was described in the rVLSI Symposium, May 10-13, 1988, p. 11-12. Are listed.

この製造方法によれば、第3A図に示す様に、Si基板
11の表面に素子分離用のSing膜12を形成し、不
純物を含有しない純粋な多結晶Si層13を200nm
の厚さに堆積させ、As+イオン14及びP゛イオン1
5多結晶5ili13の前面に順次に注入する。
According to this manufacturing method, as shown in FIG. 3A, a Sing film 12 for element isolation is formed on the surface of a Si substrate 11, and a pure polycrystalline Si layer 13 containing no impurities is formed to a thickness of 200 nm.
As+ ions 14 and P' ions 1
5 polycrystalline 5ili13 is sequentially implanted.

次に、第3B図に示す様に、多結晶54層13上に5i
(h膜16をCVDによって堆積させ、この状態からS
ing膜16と多結晶St層13とをソース配線及びド
レイン配線のパターンにエツチングする。
Next, as shown in FIG. 3B, 5i is placed on the polycrystalline 54 layer 13.
(The h film 16 is deposited by CVD, and from this state
ing film 16 and polycrystalline St layer 13 are etched into patterns of source wiring and drain wiring.

従って、この時、チャネル領域つまりゲート電極を形成
すべき部分のSiO□lI!16及び多結晶Si層13
もエツチングする。
Therefore, at this time, SiO□lI! of the part where the channel region, that is, the gate electrode is to be formed! 16 and polycrystalline Si layer 13
Also etching.

次に、第3C図に示す様に、多結晶5rJl!13の側
面とSi基′4Fi11のチャネル領域の表面とに厚さ
15層mの5i01膜17を成長させ、コ(7)SiO
2膜17をゲート酸化膜とする。
Next, as shown in FIG. 3C, polycrystalline 5rJl! A 5i01 film 17 with a thickness of 15 m is grown on the side surfaces of the silicon base 13 and the surface of the channel region of the Si-based 4Fi11.
The second film 17 is used as a gate oxide film.

そして、Sin、膜16.17上に多結晶81層18を
堆積させ、この多結晶Si層18中にPを含有させ、多
結晶5iji18及び5i02膜16をゲート電極のパ
ターンにバターニングする。
Then, a polycrystalline 81 layer 18 is deposited on the Sin film 16 and 17, P is contained in the polycrystalline Si layer 18, and the polycrystalline 5iji 18 and 5i02 film 16 is patterned into a gate electrode pattern.

最後に、ツーステップランプアニールによって、第3D
図に示す様に、多結晶Si層13.18の表面にTiS
i2層19を形成して、これらの多結晶Si層13.1
8の低低抗化を図る。
Finally, by two-step ramp annealing, the 3D
As shown in the figure, TiS is applied to the surface of the polycrystalline Si layer 13.18.
Forming the i2 layer 19, these polycrystalline Si layers 13.1
Aiming to lower the resistance of 8.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、多結晶SiとSiとはエツチング選択比が小
さいので、第3B図の工程で多結晶Si層13をエツチ
ングする時に、Si基板11のチャネル領域もエツチン
グされ、この部分のSi基板]1が損傷を受ける。従っ
て、上述の一従来例では、特性の優れた半導体装置を製
造することができない。
However, since the etching selectivity of polycrystalline Si and Si is small, when the polycrystalline Si layer 13 is etched in the step shown in FIG. 3B, the channel region of the Si substrate 11 is also etched, and this portion of the Si substrate receive damage. Therefore, in the above-mentioned conventional example, a semiconductor device with excellent characteristics cannot be manufactured.

上記の文献にはSi基板11の損傷を回復させる方法も
記載されているが、損傷を受けない方が好ましいのは当
然である。
Although the above-mentioned document also describes a method for recovering damage to the Si substrate 11, it is naturally preferable that the Si substrate 11 not be damaged.

しかも、多結晶SN層13の厚さに匹敵する深さまでS
i基板11をエツチングすると、半導体装置の特性劣化
を避けられないことが、上記の文献にも記載されている
Moreover, the S
The above-mentioned document also states that when the i-substrate 11 is etched, deterioration of the characteristics of the semiconductor device is unavoidable.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体装置の製造方法は、ゲート電極26
に対応するパターンを有するパターン膜21.22を半
導体領域ll上に形成する工程と、不純物14.15を
含有する半導体層13を前記半導体領域11と接続し且
つ前記パターン膜21.22を覆う様に形成する工程と
、前記半導体層13から前記半導体領域11へ前記不純
物14.15を拡散させる工程と、前記パターン膜21
.22上の前記半導体層13の少なくとも一部を除去す
る工程と、前記半導体M13の少なくとも一部の前記除
去の後に前記パターン膜21.22を除去する工程と、
前記パターン膜21.22の前記除去の後に前記半導体
層13の表面とこの半導体層13に覆われていない前記
半導体領域11の表面とを酸化する工程と、前記酸化の
後に前記パターン11121.22が形成されていた部
分に前記ゲート電極26を形成する工程とを夫々具備し
ている。
In the method of manufacturing a semiconductor device according to the present invention, the gate electrode 26
a step of forming a patterned film 21.22 having a pattern corresponding to the above on the semiconductor region 11, and a step of connecting the semiconductor layer 13 containing the impurity 14.15 to the semiconductor region 11 and covering the patterned film 21.22. a step of diffusing the impurity 14.15 from the semiconductor layer 13 to the semiconductor region 11; and a step of forming the pattern film 21.
.. a step of removing at least a portion of the semiconductor layer 13 on the semiconductor layer 22; a step of removing the pattern film 21 and 22 after the removal of at least a portion of the semiconductor M13;
a step of oxidizing the surface of the semiconductor layer 13 and the surface of the semiconductor region 11 not covered with the semiconductor layer 13 after the removal of the pattern film 21.22; and a step of forming the gate electrode 26 in the previously formed portion.

(作 用〕 本発明による半導体装置の製造方法では、ゲート電極2
6に対応するパターンを有するパターン膜21.22を
半導体領域ll上に形成しておき、半導体領域11と接
続している半導体層13のうちでパターン膜21.22
上の少なくとも一部を除去し、その後にパターンH21
,22を除去する様にしている。
(Function) In the method for manufacturing a semiconductor device according to the present invention, the gate electrode 2
Patterned films 21 and 22 having a pattern corresponding to 6 are formed on the semiconductor region ll, and the patterned films 21 and 22 are formed in the semiconductor layer 13 connected to the semiconductor region 11.
At least a portion of the top is removed, and then pattern H21 is removed.
, 22 are removed.

従って、エツチング選択比等の除去選択比が半導体領域
11と半導体層13とで小さくても、これらに対して選
択比の大きな材料でパターン膜21.22を形成するこ
とによって、ゲート電極26を形成すべき部分の半導体
層13を半導体領域11に損傷を与えることなく除去す
ることができる。
Therefore, even if the removal selectivity such as etching selectivity is small between the semiconductor region 11 and the semiconductor layer 13, the gate electrode 26 can be formed by forming the patterned films 21 and 22 with a material that has a large selectivity with respect to these. The desired portion of the semiconductor layer 13 can be removed without damaging the semiconductor region 11.

また、半導体層13から半導体領域11への不純物14
.15の拡散によって、半導体領域ll中にソース・ド
レイン領域23.24が自己整合的に形成される共に半
導体層13がソース配線及びドレイン配線となる。
Further, impurity 14 from the semiconductor layer 13 to the semiconductor region 11
.. By the diffusion of 15, source/drain regions 23 and 24 are formed in the semiconductor region 11 in a self-aligned manner, and the semiconductor layer 13 becomes a source wiring and a drain wiring.

また、半導体層13の表面の酸化によってソース配線及
びドレイン配線とゲート電極26との間の絶縁膜25が
形成され、半導体層13に覆われていない半導体領域1
1の表面の酸化によってゲート酸化膜25が形成される
Furthermore, an insulating film 25 is formed between the source wiring, the drain wiring and the gate electrode 26 by oxidation of the surface of the semiconductor layer 13, and the semiconductor region 1 not covered with the semiconductor layer 13 is
By oxidizing the surface of 1, a gate oxide film 25 is formed.

〔実施例〕〔Example〕

以下、MO3I−ランジスタの製造に適用した本発明の
一実施例を、第1図及び第2図を参照しながら説明する
An embodiment of the present invention applied to the manufacture of MO3I transistors will be described below with reference to FIGS. 1 and 2.

本実施例でも、第1A図及び第2図に示す様に、Sin
g膜12膜形2までは上述の一従来例と同様に行う。本
実施例では、その後、薄い5i02膜21とPSG膜2
2とをSi基板11上に順次に形成し、ゲート電極のパ
ターンにPSG膜22及びSiO2膜21をエツチング
する。
In this embodiment as well, as shown in FIG. 1A and FIG.
Up to 12 g films and 2 films are processed in the same manner as in the above-mentioned conventional example. In this embodiment, after that, the thin 5i02 film 21 and the PSG film 2
2 and 2 are sequentially formed on the Si substrate 11, and the PSG film 22 and the SiO2 film 21 are etched in the pattern of the gate electrode.

PSG及びSto、とSiとのエツチング選択比は大き
いので、PSG月美2Z及び5i(hll! 21の工
・ンチング時にSi基板11のうちのソース・ドレイン
領域となる部分がエツチングされて1員傷を受けること
は事実上ない。
Since the etching selectivity between PSG, Sto, and Si is large, the portions of the Si substrate 11 that will become the source and drain regions are etched during the processing and etching of PSG Tsukimi 2Z and 5i (hl! Virtually no one receives it.

しかも、PSGはSin、に比べてエツチング速度が速
いので、PSG膜22のエツチング時にSungMl 
2がエツチングされる量は非常に少ない。
Moreover, since PSG has a faster etching speed than Sin, SungMl is used when etching the PSG film 22.
The amount of 2 etched is very small.

従って、Stとエツチング選択比が大きく且つSiO2
に比べてエツチング速度が速い材料であれば、PSGに
限らず他の材料の膜をPSG膜22の代りに用いてもよ
い。
Therefore, the etching selectivity ratio to St is large and SiO2
In place of the PSG film 22, a film made of any other material other than PSG may be used as long as the material has a faster etching rate than the PSG film 22.

その後、上述の一従来例と同様に多結晶Si層13の堆
積とこの多結晶Si層13へのAs“イオン14及びP
゛イオン15注入とを行い、更に、多結晶Si層13を
ソース配線及びドレイン配線のパターンにエツチング時
る。
Thereafter, a polycrystalline Si layer 13 is deposited and As" ions 14 and P
``Ion 15 implantation is performed, and the polycrystalline Si layer 13 is further etched into patterns of source wiring and drain wiring.

この時、ゲート電極を形成すべき部分の多結晶Si層1
3°もエツチングするが、第1A図及び第2図からも明
らかな様にこの部分にはPSG膜22が形成されており
、しかもPSGと多結晶Stとのエツチング選択比は大
きい。
At this time, the polycrystalline Si layer 1 in the part where the gate electrode is to be formed is
Although etching is performed by 3°, as is clear from FIGS. 1A and 2, the PSG film 22 is formed in this portion, and the etching selectivity between PSG and polycrystalline St is high.

従って、多結晶SiとSiとのエツチング選択比が小さ
いにも拘らず、Si基板11のうちでゲート電極を形成
すべき部分が多結晶Si層13のエツチング時に同時に
エツチングされて損傷を受けるということがない。
Therefore, even though the etching selectivity between polycrystalline Si and Si is small, the portion of the Si substrate 11 where the gate electrode is to be formed is etched and damaged at the same time as the polycrystalline Si layer 13 is etched. There is no.

その後、多結晶5ill l 3からSi基板11中へ
As及びPを固相拡散させてソース・ドレイン領域を形
成するが、AsよりもPの方が拡散係数が大きい。
Thereafter, As and P are solid-phase diffused from the polycrystal 5ill13 into the Si substrate 11 to form source/drain regions, but P has a larger diffusion coefficient than As.

従ってsin板11中には、^S及びPの両方を含むn
″領域23とPのみを含むn−領域24とが形成され、
二重拡散ドレイン構造が形成される。
Therefore, in the sin plate 11, there is n containing both ^S and P.
″area 23 and an n-area 24 containing only P are formed,
A double diffused drain structure is formed.

しかも、ソース・ドレイン令頁域であるn゛う頁域23
及びn−領域24を固相拡散で形成しているので、浅い
ソース・ドレイン領域を形成することができる。
Moreover, page area 23, which is the source/drain order page area,
Since the n- region 24 is formed by solid phase diffusion, shallow source/drain regions can be formed.

なおこの固相拡散は、多結晶31層13のバターニング
前に行ってもよく、また後述の第1B図や第1C図の工
程で行ってもよい。
Note that this solid phase diffusion may be performed before patterning the polycrystalline 31 layer 13, or may be performed in the steps shown in FIGS. 1B and 1C, which will be described later.

次に、第1B図に示す様に、フン酸によるウェットエツ
チング等でPSG膜22と5iozllり21とを除去
する。この時も、PSG及びSiO□とSiとのエツチ
ング選択比が大きいので、PSG膜22及び5i02膜
21のエツチング時にSi基板11のうちのゲート電極
を形成すべき部分がエツチングされて損傷を受けること
は事実上ない。
Next, as shown in FIG. 1B, the PSG film 22 and the 5 iodine film 21 are removed by wet etching using hydronic acid. At this time as well, since the etching selectivity between PSG and SiO□ and Si is high, when etching the PSG film 22 and the 5i02 film 21, the portion of the Si substrate 11 where the gate electrode is to be formed will be etched and damaged. There are virtually no

その後、熱酸化によってSto、膜25を形成する。Thereafter, the Sto film 25 is formed by thermal oxidation.

このSin、膜25のうちで多結晶Sil’!13の表
面に形成されてソース配線及びドレイン配線とゲート電
極との絶縁膜となる部分は、Si基板11の表面に形成
されてゲート酸化膜となる部分よりも厚い。
This Sin, polycrystalline Sil'! in the film 25! The portion formed on the surface of the Si substrate 13 to serve as an insulating film between the source wiring, the drain wiring, and the gate electrode is thicker than the portion formed on the surface of the Si substrate 11 to serve as a gate oxide film.

次に、第1C図及び第2図に示す様に、多結晶Si層2
6を堆積させ、この多結晶Si層26中へP゛イオン等
を注入し、更にこの多結晶St層26をゲート電極のパ
ターンにバターニングする。
Next, as shown in FIGS. 1C and 2, a polycrystalline Si layer 2
6 is deposited, P ions, etc. are implanted into the polycrystalline Si layer 26, and the polycrystalline St layer 26 is patterned into the pattern of a gate electrode.

なお、多結晶Si層26のバターニングすべき部分のう
ちでチャネルNM上の部分は多結晶5ijiila上に
あり、この部分の多結晶Si層26が平坦であるので、
多結晶Si層26のバターニングは容易である。
Note that among the parts of the polycrystalline Si layer 26 to be patterned, the part above the channel NM is on the polycrystalline 5ijila, and since the polycrystalline Si layer 26 in this part is flat,
Patterning of the polycrystalline Si layer 26 is easy.

その後、Tiを全面に堆積させて、不活性雰囲気中でシ
ンクを行う。すると、多結晶Si層26の表面に堆積し
ていたTiはシリサイド化してTiSi、層19が形成
され、ゲート電極の抵抗値が低減する。
After that, Ti is deposited on the entire surface and sinking is performed in an inert atmosphere. Then, the Ti deposited on the surface of the polycrystalline Si layer 26 is silicided to form a TiSi layer 19, and the resistance value of the gate electrode is reduced.

これに対して、5iOz膜25.12の表面に堆積して
いたTiは金属状態のままで残る。従って、ゲート電極
である多結晶Si層26との短絡を防止するために、そ
の後に金属状態のTiをエツチングする。
On the other hand, the Ti deposited on the surface of the 5iOz film 25.12 remains in a metallic state. Therefore, in order to prevent a short circuit with the polycrystalline Si layer 26 serving as the gate electrode, Ti in a metallic state is etched afterwards.

なお、TiのシンクをN、雰囲気中等で行ってもよい。Note that sinking of Ti may be performed in N, atmosphere, or the like.

この場合、多結晶5i126の表面に堆積していたTi
はやはりTiSix層19となるが、5iOt膜25.
12の表面に堆積していたTiは絶縁性の窒化物となる
In this case, Ti deposited on the surface of polycrystalline 5i126
is still the TiSix layer 19, but the 5iOt film 25.
The Ti deposited on the surface of 12 becomes insulating nitride.

従ってこの場合は、多結晶St層26との短絡を防止す
るためにTiの窒化物をエツチングする必要がない。
Therefore, in this case, it is not necessary to etch the Ti nitride in order to prevent a short circuit with the polycrystalline St layer 26.

また、多結晶5iJii26の表面にシリサイド層を形
成するための金属は、Ti以外でもよく、例えばpt等
を用いることができる。
Further, the metal for forming the silicide layer on the surface of the polycrystalline 5iJii 26 may be other than Ti, and for example, PT or the like may be used.

(発明の効果〕 本発明による半導体装置の製造方法では、ゲート電極を
形成すべき部分の半導体層を半導体領域に損傷を与える
ことなく除去することができるので、特性の優れた半導
体装置を製造することができる。
(Effects of the Invention) In the method for manufacturing a semiconductor device according to the present invention, the semiconductor layer in the portion where the gate electrode is to be formed can be removed without damaging the semiconductor region, so a semiconductor device with excellent characteristics can be manufactured. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を順次に示す側断面図、第2
図は一実施例によって製造した半導体装置の平面図であ
る。 第3図は本発明の一従来例を順次に示す側断面図である
。 なお図面に用いた符号において、 11−・・−・−−一〜−・・・・・・・・・St基板
13・・−・−・・・−・・−・・・・・・・多結晶S
i層14・・・−・−・・−・〜・・・・・・^S+イ
オン15−−−〜−−−−・・・・−・−・−・P+イ
オン21・・・・・・・−・−・・・−・・・・5iO
1)III22・・−・・・・・−・・・・−・・PS
G膜23・・・・−・・−・−・・−・・・−・n−領
域24・・・・・・・・・−・・・・・・・・・n−領
域25−・−・−・・・・・・・−・・5i02膜26
・・・・・・・・・・・・・・・・・・・多結晶5iJ
iiである。
Fig. 1 is a side sectional view sequentially showing one embodiment of the present invention;
The figure is a plan view of a semiconductor device manufactured according to one embodiment. FIG. 3 is a side sectional view sequentially showing a conventional example of the present invention. In addition, in the symbols used in the drawings, 11-...----1~--...St substrate 13--... Polycrystalline S
I layer 14...------------^S+ ion 15-------------------P+ ion 21...・・・−・−・・・−・・・・5iO
1) III22・・・・・・・・・・・・PS
G film 23...--...--------n-region 24---n- region 25--- -・-・・・・・5i02 film 26
・・・・・・・・・・・・・・・・・・Polycrystalline 5iJ
ii.

Claims (1)

【特許請求の範囲】  ゲート電極に対応するパターンを有するパターン膜を
半導体領域上に形成する工程と、 不純物を含有する半導体層を前記半導体領域と接続し且
つ前記パターン膜を覆う様に形成する工程と、 前記半導体層から前記半導体領域へ前記不純物を拡散さ
せる工程と、 前記パターン膜上の前記半導体層の少なくとも一部を除
去する工程と、 前記半導体層の少なくとも一部の前記除去の後に前記パ
ターン膜を除去する工程と、 前記パターン膜の前記除去の後に前記半導体層の表面と
この半導体層に覆われていない前記半導体領域の表面と
を酸化する工程と、 前記酸化の後に前記パターン膜が形成されていた部分に
前記ゲート電極を形成する工程とを夫々具備する半導体
装置の製造方法。
[Claims] A step of forming a patterned film having a pattern corresponding to a gate electrode on a semiconductor region, and a step of forming a semiconductor layer containing impurities so as to connect to the semiconductor region and cover the patterned film. a step of diffusing the impurity from the semiconductor layer into the semiconductor region; a step of removing at least a portion of the semiconductor layer on the pattern film; and a step of removing the pattern after the removal of at least a portion of the semiconductor layer. removing a film; oxidizing a surface of the semiconductor layer and a surface of the semiconductor region not covered by the semiconductor layer after the removal of the pattern film; and forming the pattern film after the oxidation. and forming the gate electrode in the previously formed portions.
JP11935189A 1989-05-12 1989-05-12 Manufacture of semiconductor device Pending JPH02298039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11935189A JPH02298039A (en) 1989-05-12 1989-05-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11935189A JPH02298039A (en) 1989-05-12 1989-05-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02298039A true JPH02298039A (en) 1990-12-10

Family

ID=14759341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11935189A Pending JPH02298039A (en) 1989-05-12 1989-05-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02298039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104827A (en) * 2010-11-08 2012-05-31 Hynix Semiconductor Inc Vertical type transistor having buried junction and method for forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104827A (en) * 2010-11-08 2012-05-31 Hynix Semiconductor Inc Vertical type transistor having buried junction and method for forming the same

Similar Documents

Publication Publication Date Title
US6191462B1 (en) Nitride-oxide sidewall spacer for salicide formation
US7338874B2 (en) Highly integrated semiconductor device with silicide layer that secures contact margin and method of manufacturing the same
US5464782A (en) Method to ensure isolation between source-drain and gate electrode using self aligned silicidation
US5346860A (en) Method for fabricating an interconnect structure in an integrated circuit
JPH10223889A (en) Mis transistor and its manufacture
US5911114A (en) Method of simultaneous formation of salicide and local interconnects in an integrated circuit structure
US6329277B1 (en) Method of forming cobalt silicide
JP2675713B2 (en) Semiconductor device and manufacturing method thereof
US6352899B1 (en) Raised silicide source/drain MOS transistors having enlarged source/drain contact regions and method
JPH0786579A (en) Semiconductor device
US6221760B1 (en) Semiconductor device having a silicide structure
US5395798A (en) Refractory metal silicide deposition process
JPH0837296A (en) Manufacture of semiconductor device
JPH0730104A (en) Semiconductor device and its manufacture
JPH02298039A (en) Manufacture of semiconductor device
US6764912B1 (en) Passivation of nitride spacer
JP3110054B2 (en) Semiconductor device and manufacturing method thereof
JP2940492B2 (en) Semiconductor device and manufacturing method thereof
JPH09148568A (en) Manufacture of semiconductor device
JP2822795B2 (en) Method for manufacturing semiconductor device
JP2002198437A (en) Semiconductor device and its fabricating method
JP3894271B2 (en) Manufacturing method of semiconductor device
JPH11186546A (en) Semiconductor device and manufacture thereof
JPH0714847A (en) Semiconductor device and manufacture thereof
JPH0777263B2 (en) Method for manufacturing semiconductor device