JPH0837296A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0837296A
JPH0837296A JP17391494A JP17391494A JPH0837296A JP H0837296 A JPH0837296 A JP H0837296A JP 17391494 A JP17391494 A JP 17391494A JP 17391494 A JP17391494 A JP 17391494A JP H0837296 A JPH0837296 A JP H0837296A
Authority
JP
Japan
Prior art keywords
insulating film
film
groove
gate wiring
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17391494A
Other languages
Japanese (ja)
Inventor
Mutsumi Okajima
睦 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17391494A priority Critical patent/JPH0837296A/en
Publication of JPH0837296A publication Critical patent/JPH0837296A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/66583Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make a gate wiring of material of low resistance such as metal or the like so as to restrain it from increasing in resistance with micronization of it in width by a method wherein a groove in which the gate wiring is buried is cut, in an insulating film doped with impurities, and the impurties are diffused into a semiconductor substrate from the insulating film. CONSTITUTION:A PSG film 12 is anisotropically etched, and then a resist pattern 13 is removed, whereby a gate wiring burying groove 14 is formed. Then, a PSG film 15 which is smaller in P (phosphorus) concentration than a PSG film 12 and formed on all the surface of a substrate is etched back, whereby a spacer PSG film 15a is formed on the side wall of the groove 14. Then, a gate insulating film 17 is formed on the surface of the silicon substrate arc the base of the groove 14 through a thermal oxidation method. Then, P is diffused into the silicon substrate 10 from the PSG film 12 for the formation of source.drain regions 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細配線構造を有する
半導体装置の製造方法に係り、特に半導体集積回路基板
上に絶縁ゲート型電界効果トランジスタ(MOS FE
T)を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a fine wiring structure, and more particularly to an insulated gate field effect transistor (MOS FE) on a semiconductor integrated circuit substrate.
T).

【0002】[0002]

【従来の技術】従来のMOS FETの形成方法の一例
について、図3(a)乃至(e)および図4(a)乃至
(d)を参照しながら説明する。まず、p型シリコン基
板31上にゲート絶縁膜32を熱酸化法により形成す
る。次に、ゲート絶縁膜32上にゲート配線(電極兼
用)の多結晶シリコン33とシリコン窒化膜34を順次
堆積する。
2. Description of the Related Art An example of a conventional method for forming a MOS FET will be described with reference to FIGS. 3 (a) to 3 (e) and FIGS. 4 (a) to 4 (d). First, the gate insulating film 32 is formed on the p-type silicon substrate 31 by a thermal oxidation method. Next, on the gate insulating film 32, a polycrystalline silicon 33 for a gate wiring (also serving as an electrode) and a silicon nitride film 34 are sequentially deposited.

【0003】次に、シリコン窒化膜34上にゲート配線
形成用のレジストパターン35を形成する。次に、上記
レジストパターン35をマスクとして、異方性エッチン
グ法によりシリコン窒化膜34および多結晶シリコン3
3を加工した後、レジストパターン35を除去すること
により、ゲート配線36を形成する。
Next, a resist pattern 35 for forming a gate wiring is formed on the silicon nitride film 34. Next, using the resist pattern 35 as a mask, the silicon nitride film 34 and the polycrystalline silicon 3 are formed by an anisotropic etching method.
After processing 3, the resist pattern 35 is removed to form the gate wiring 36.

【0004】次に、上記ゲート配線36をマスクとして
低濃度のP(リン)をイオン注入する。次に、全面にシ
リコン窒化膜37を堆積する。次に、全面エッチバック
を行うことにより、ゲート配線36の側壁にシリコン窒
化膜37からなるスペーサー37aを形成する。次に、
高濃度のPをイオン注入した後、注入した不純物をアニ
ール(熱処理)により活性化することにより、MOS
FETのソース・ドレイン領域38を形成する。
Next, low concentration P (phosphorus) is ion-implanted using the gate wiring 36 as a mask. Next, a silicon nitride film 37 is deposited on the entire surface. Next, the entire surface is etched back to form a spacer 37a made of the silicon nitride film 37 on the side wall of the gate wiring 36. next,
After ion-implanting high-concentration P, the implanted impurities are activated by annealing (heat treatment).
Source / drain regions 38 of the FET are formed.

【0005】ところで、上記したようにゲート配線36
を形成した後にゲート配線36をイオン注入マスクとし
てイオン注入によりソース・ドレイン拡散層38を形成
する場合、イオン注入した不純物を活性化させるため、
800℃以上の高温での熱処理が必要となる。
By the way, as described above, the gate wiring 36
When the source / drain diffusion layer 38 is formed by ion implantation using the gate wiring 36 as an ion implantation mask after the formation of, the ion implanted impurities are activated.
Heat treatment at a high temperature of 800 ° C. or higher is required.

【0006】従って、ゲート配線36の材料としては、
多結晶シリコン33のように高温に耐えられる材料が用
いられるが、このようなゲート配線材料は、ゲート配線
幅の微細化に伴って高抵抗化が問題となってきている。
Therefore, as the material of the gate wiring 36,
A material such as polycrystalline silicon 33 that can withstand high temperature is used, but such a gate wiring material has a problem of high resistance as the gate wiring width becomes finer.

【0007】また、上記したようにゲート配線36を形
成する際、下地となる半導体基板31に素子分離膜やト
レンチキャパシタ等による段差が存在する場合であっ
て、このような段差箇所をゲート配線36が通る場合に
は、段差箇所にゲート配線36のエッチング残りが発生
し、ゲート配線36間のショートを引き起こし易い。
In addition, when the gate wiring 36 is formed as described above, there is a step due to an element isolation film, a trench capacitor, or the like on the underlying semiconductor substrate 31, and such a step portion is located at the gate wiring 36. When passing through, the etching residue of the gate wiring 36 is generated at the step portion, and it is easy to cause a short circuit between the gate wirings 36.

【0008】[0008]

【発明が解決しようとする課題】上記したように従来の
MOS FETの形成方法は、ゲート配線形成後にソー
ス・ドレイン拡散層形成に伴うイオン注入不純物活性化
のための高温での熱処理を必要とするので、ゲート配線
材料として耐高温性が要求され、ゲート配線幅の微細化
に伴ってゲート配線の高抵抗化が問題となってきてい
る。
As described above, the conventional method for forming a MOS FET requires heat treatment at a high temperature for activating the ion-implanted impurities accompanying the formation of the source / drain diffusion layers after forming the gate wiring. Therefore, high temperature resistance is required as the gate wiring material, and the increase in resistance of the gate wiring has become a problem with the miniaturization of the gate wiring width.

【0009】本発明は上記の問題点を解決すべくなされ
たもので、MOS FETのソース・ドレイン拡散層形
成後にゲート配線を形成することにより、ゲート配線材
料に対する耐高温性の要求が緩和され、ゲート配線幅の
微細化に伴うゲート配線の高抵抗化を抑制し得る半導体
装置の製造方法を提供することを目的とする。
The present invention has been made to solve the above problems. By forming the gate wiring after forming the source / drain diffusion layer of the MOS FET, the requirement for high temperature resistance of the gate wiring material is relaxed. An object of the present invention is to provide a method for manufacturing a semiconductor device, which can suppress the increase in resistance of the gate wiring due to the miniaturization of the gate wiring width.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に、上記半導体基板と異なる導
電型を持つ第1の不純物を含む第1の絶縁膜を堆積する
工程と、上記第1の絶縁膜を加工して前記半導体基板に
達する溝を形成する工程と、上記溝の底面の半導体基板
表面を酸化し、溝の底面に第2の絶縁膜を形成する工程
と、前記第1の絶縁膜中の第1の不純物を前記半導体基
板中に拡散させ、基板と異なる導電型の第1の拡散領域
を形成する工程と、前記第1の絶縁膜および第2の絶縁
膜の上に導電体層を堆積する工程と、前記溝内部の上記
導電体層を残し、前記第1の絶縁膜上の上記導電体層を
除去する工程とを具備することを特徴とする。
A method of manufacturing a semiconductor device according to the present invention comprises a step of depositing, on a semiconductor substrate, a first insulating film containing a first impurity having a conductivity type different from that of the semiconductor substrate. A step of processing the first insulating film to form a groove reaching the semiconductor substrate; a step of oxidizing the bottom surface of the groove on the surface of the semiconductor substrate to form a second insulating film on the bottom surface of the groove; A step of diffusing a first impurity in a first insulating film into the semiconductor substrate to form a first diffusion region having a conductivity type different from that of the substrate; and a step of forming the first insulating film and the second insulating film. The method is characterized by comprising a step of depositing a conductor layer on the top and a step of leaving the conductor layer inside the groove and removing the conductor layer on the first insulating film.

【0011】[0011]

【作用】本発明の半導体装置の製造方法によれば、MO
S FETを形成する際に、不純物をドープした絶縁膜
にゲート配線埋込み用の溝を形成し、上記絶縁膜から半
導体基板へ不純物を拡散させることによりソース・ドレ
イン拡散層を形成した後に、ゲート配線を埋込み形成す
るので、ゲート配線材料に金属等の低抵抗の材料を用い
ることができる。また、ゲート配線間の絶縁膜を拡散源
としてソース・ドレイン拡散層をゲート配線と自己整合
した状態で形成することができる。
According to the method of manufacturing a semiconductor device of the present invention, the MO
When forming an SFET, a trench for embedding a gate wiring is formed in an insulating film doped with an impurity, and a source / drain diffusion layer is formed by diffusing the impurity from the insulating film into a semiconductor substrate, and then a gate wiring is formed. Since it is embedded, a low resistance material such as metal can be used as the gate wiring material. Further, the source / drain diffusion layer can be formed in a state of being self-aligned with the gate wiring using the insulating film between the gate wirings as a diffusion source.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1(a)乃至(e)および図2(a)乃
至(d)は、本発明の第1実施例に係るMOS FET
の形成方法の一例における主要工程でのウエハー断面を
示している。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1A to 1E and 2A to 2D are MOS FETs according to the first embodiment of the present invention.
3A to 3C are cross-sectional views of a wafer in the main process in one example of the forming method of FIG.

【0013】まず、p型Si(シリコン)基板10上に
基板と異なる導電型を持つ第1の不純物を含む第1の絶
縁膜を形成する。この第1の絶縁膜として、例えばLP
−CVD法(減圧気相成長法)により、PSG膜(リン
・シリケートガラス膜)12を400nm程度堆積す
る。この場合、下地となるシリコン基板10には、例え
ばフィールド酸化膜11のような素子分離膜やトレンチ
キャパシタ等による段差が存在する場合を想定してい
る。
First, a first insulating film containing a first impurity having a conductivity type different from that of the substrate is formed on a p-type Si (silicon) substrate 10. As the first insulating film, for example, LP
A PSG film (phosphorus / silicate glass film) 12 is deposited to a thickness of about 400 nm by the CVD method (pressure reduction vapor deposition method). In this case, it is assumed that the underlying silicon substrate 10 has a step due to an element isolation film such as the field oxide film 11 or a trench capacitor.

【0014】次に、上記PSG膜12上にゲート配線形
成用のレジストパターン13を形成する。次に、異方性
エッチング法、例えばRIE(反応性イオンエッチン
グ)法により前記PSG膜12をエッチングした後に前
記レジストパターン13を除去することにより、ゲート
配線埋込み用の溝14を形成する。
Next, a resist pattern 13 for forming a gate wiring is formed on the PSG film 12. Next, the PSG film 12 is etched by an anisotropic etching method, for example, RIE (reactive ion etching) method, and then the resist pattern 13 is removed to form a groove 14 for burying the gate wiring.

【0015】次に、LP−CVD法により、基板上全面
に前記PSG膜12よりP(リン)濃度の薄いPSG膜
15を100nm程度堆積する。次に、上記PSG膜1
5をエッチバックすることにより、前記溝14の側壁に
スペーサー用PSG膜15aを形成する(残存させ
る)。
Then, a PSG film 15 having a P (phosphorus) concentration lower than that of the PSG film 12 is deposited to a thickness of about 100 nm on the entire surface of the substrate by the LP-CVD method. Next, the PSG film 1
By etching back 5, the spacer PSG film 15a is formed (remains) on the sidewall of the groove 14.

【0016】次に、熱酸化法により、前記溝の底面のシ
リコン基板表面にゲート絶縁膜17を形成する。次に、
熱拡散法により。前記PSG膜12からシリコン基板1
0中にPを拡散させることにより、ソース・ドレイン領
域18を形成する。この場合、前記PSG膜12からの
拡散によりn+ 層18aを、前記スペーサー用PSG膜
15aからの拡散によりn- 層18bを形成する。
Next, a gate insulating film 17 is formed on the surface of the silicon substrate on the bottom surface of the groove by a thermal oxidation method. next,
By thermal diffusion method. Silicon substrate 1 from the PSG film 12
The source / drain regions 18 are formed by diffusing P into 0. In this case, an n + layer 18a is formed by diffusion from the PSG film 12, and an n- layer 18b is formed by diffusion from the spacer PSG film 15a.

【0017】次に、基板上全面に金属等の低抵抗材料、
例えばW(タングステン)19を600nm程度堆積す
る。次に、CMP(化学機械研磨)法により、前記W1
9、PSG膜12およびスペーサー用PSG膜15aの
一部を研磨して除去することにより、Wの埋込みゲート
配線19aを形成する(残存させる)。
Next, a low resistance material such as metal is formed on the entire surface of the substrate,
For example, W (tungsten) 19 is deposited to a thickness of about 600 nm. Next, by the CMP (chemical mechanical polishing) method, the W1
9, the PSG film 12 and a part of the PSG film 15a for spacers are polished and removed to form (remain) the buried gate wiring 19a of W.

【0018】上記実施例のMOS FETの形成方法に
よれば、ソース・ドレイン拡散層18の形成後にゲート
配線19aを形成するので、ゲート配線材料に金属等の
低抵抗の材料を用いることができる。
According to the method of forming a MOS FET of the above embodiment, since the gate wiring 19a is formed after the source / drain diffusion layer 18 is formed, a low resistance material such as metal can be used as the gate wiring material.

【0019】また、ソース・ドレイン拡散層18を形成
する18a、18bは、ゲート配線19a間の絶縁膜1
2、15aを拡散源としているので、前記ゲート配線1
9aと自己整合した状態で形成することができる。
The source / drain diffusion layers 18 are formed by the insulating film 1 between the gate wirings 19a and 18b.
Since the diffusion sources 2 and 15a are used, the gate wiring 1
9a can be formed in a self-aligned state.

【0020】さらに、前記ゲート配線19aが埋め込み
配線構造となっているので、ゲート配線19a間のショ
ートを引き起こし難くなっている。なお、上記実施例で
は、溝14の側壁にスペーサー用絶縁膜15aを形成す
るために基板上全面に絶縁膜15を堆積する際、第1の
絶縁膜(本例ではPSG膜12)より低い濃度の第1の
不純物(本例ではP)を含む絶縁膜(本例ではPSG膜
15)を堆積したが、これに限らず、第1の不純物とは
異なる第2の不純物を含む絶縁膜を堆積するようにして
もよい。
Further, since the gate wiring 19a has a buried wiring structure, it is difficult to cause a short circuit between the gate wirings 19a. In the above-described embodiment, when the insulating film 15 is deposited on the entire surface of the substrate in order to form the spacer insulating film 15a on the sidewall of the groove 14, the concentration lower than that of the first insulating film (PSG film 12 in this example) is used. The insulating film containing the first impurity (P in this example) (PSG film 15 in this example) was deposited, but not limited to this, an insulating film containing a second impurity different from the first impurity is deposited. You may do it.

【0021】また、上記実施例では、PSG膜12、ス
ペーサー用PSG膜15a、ゲート絶縁膜17の上に堆
積する導電体層として、Wを示したが、これに限らず、
他の金属(例えばアルミニウムAl)膜、または、多結
晶シリコン膜と金属膜との積層膜、または、多結晶シリ
コン膜とシリサイド膜(WSi、TiSiなど)との積
層膜を用いてもよい。
In the above embodiment, W is shown as the conductor layer deposited on the PSG film 12, the spacer PSG film 15a and the gate insulating film 17, but the present invention is not limited to this.
Another metal (for example, aluminum Al) film, a laminated film of a polycrystalline silicon film and a metal film, or a laminated film of a polycrystalline silicon film and a silicide film (WSi, TiSi, etc.) may be used.

【0022】[0022]

【発明の効果】上述したように本発明の半導体装置の製
造方法によれば、MOS FETのソース・ドレイン拡
散層形成後にゲート配線を形成することにより、ゲート
配線材料に対する耐高温性の要求が緩和され、ゲート配
線幅の微細化に伴うゲート配線の高抵抗化を抑制するこ
とができる。
As described above, according to the method for manufacturing a semiconductor device of the present invention, by forming the gate wiring after forming the source / drain diffusion layer of the MOS FET, the requirement for high temperature resistance to the gate wiring material is relaxed. Therefore, it is possible to suppress the increase in resistance of the gate wiring due to the miniaturization of the gate wiring width.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るMOS FETの形
成方法の一例における工程の一部を示すウエハーの断面
図。
FIG. 1 is a sectional view of a wafer showing a part of the steps in an example of a method for forming a MOS FET according to a first embodiment of the present invention.

【図2】図1に続く工程を示す断面図。FIG. 2 is a cross-sectional view showing a step that follows FIG.

【図3】従来のMOS FETの形成方法の一例におけ
る工程の一部を示すウエハーの断面図。
FIG. 3 is a sectional view of a wafer showing a part of the steps in an example of a conventional method for forming a MOS FET.

【図4】図3に続く工程を示す断面図。FIG. 4 is a cross-sectional view showing a step that follows FIG.

【符号の説明】[Explanation of symbols]

10…p型Si基板、12…P濃度が高いPSG膜、1
3…レジストパターン、14…ゲート配線用溝、15…
P濃度が低いPSG膜、15a…スペーサー用PSG
膜、17…ゲート絶縁膜、18…ソース・ドレイン領
域、18a…n+ 拡散層、18b…n- 拡散層、19…
W、19a…W埋め込みゲート配線。
10 ... p-type Si substrate, 12 ... PSG film with high P concentration, 1
3 ... Resist pattern, 14 ... Gate wiring groove, 15 ...
PSG film with low P concentration, 15a ... PSG for spacer
Film, 17 ... Gate insulating film, 18 ... Source / drain region, 18a ... N + diffusion layer, 18b ... N- diffusion layer, 19 ...
W, 19a ... W embedded gate wiring.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、上記半導体基板と異な
る導電型を持つ第1の不純物を含む第1の絶縁膜を堆積
する工程と、上記第1の絶縁膜を加工して前記半導体基
板に達する溝を形成する工程と、上記溝の底面の半導体
基板表面を酸化し、溝の底面に第2の絶縁膜を形成する
工程と、前記第1の絶縁膜中の第1の不純物を前記半導
体基板中に拡散させ、基板と異なる導電型の第1の拡散
領域を形成する工程と、前記第1の絶縁膜および第2の
絶縁膜の上に導電体層を堆積する工程と、前記溝内部の
上記導電体層を残し、前記第1の絶縁膜上の上記導電体
層を除去する工程とを具備することを特徴とする半導体
装置の製造方法。
1. A step of depositing a first insulating film containing a first impurity having a conductivity type different from that of the semiconductor substrate on the semiconductor substrate, and processing the first insulating film to form the semiconductor substrate on the semiconductor substrate. Forming a reaching groove, oxidizing the bottom surface of the semiconductor substrate surface of the groove to form a second insulating film on the bottom surface of the groove, and removing the first impurity in the first insulating film from the semiconductor. Diffusing into the substrate to form a first diffusion region having a conductivity type different from that of the substrate, depositing a conductor layer on the first insulating film and the second insulating film, and inside the groove And removing the conductor layer on the first insulating film while leaving the conductor layer.
【請求項2】 請求項1記載の半導体装置の製造方法に
おいて、前記溝を形成する工程と前記第2の絶縁膜を形
成する工程との間で、さらに、前記第1の絶縁膜上およ
び溝の底部に第3の絶縁膜を堆積する工程と、上記溝の
側壁の第3の絶縁膜を残して、残りの第3の絶縁膜を除
去することにより溝の側壁にスペーサー用絶縁膜を形成
する工程とを具備することを特徴とする半導体装置の製
造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising: between the step of forming the groove and the step of forming the second insulating film, further on the first insulating film and the groove. A step of depositing a third insulating film on the bottom of the groove, and the remaining third insulating film is removed by leaving the third insulating film on the side wall of the groove to form an insulating film for spacers on the side wall of the groove. A method of manufacturing a semiconductor device, comprising:
【請求項3】 請求項2記載の半導体装置の製造方法に
おいて、前記第3の絶縁膜を堆積する際、前記第1の絶
縁膜より低い濃度の第1の不純物を含む絶縁膜または第
1の不純物と異なる第2の不純物を含む絶縁膜を堆積
し、前記第1の絶縁膜中の第1の不純物を半導体基板中
に拡散させる際、スペーサー用絶縁膜から上記第1の不
純物または第2の不純物を半導体基板中に拡散させるこ
とにより、スペーサー用絶縁膜直下の半導体基板中に、
第1の拡散領域と同じ導電型で第1の拡散領域よりも導
電率の小さい第2の拡散領域を形成することを特徴とす
る半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein, when depositing the third insulating film, an insulating film or a first insulating film containing a first impurity having a lower concentration than that of the first insulating film. When depositing an insulating film containing a second impurity different from the impurity and diffusing the first impurity in the first insulating film into the semiconductor substrate, the first insulating film or the second impurity is removed from the spacer insulating film. By diffusing the impurities into the semiconductor substrate, the semiconductor substrate immediately below the insulating film for the spacer is
A method of manufacturing a semiconductor device, comprising forming a second diffusion region having the same conductivity type as that of the first diffusion region and a conductivity lower than that of the first diffusion region.
【請求項4】 請求項1記載の半導体装置の製造方法に
おいて、前記第1の絶縁膜上および第2の絶縁膜上に導
電体層を堆積する際、金属膜、または多結晶シリコン膜
と金属膜の積層膜、または、多結晶シリコン膜とシリサ
イド膜の積層膜を堆積することを特徴とする半導体装置
の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein when depositing a conductor layer on the first insulating film and the second insulating film, a metal film or a polycrystalline silicon film and a metal are used. A method of manufacturing a semiconductor device, comprising depositing a laminated film of films or a laminated film of a polycrystalline silicon film and a silicide film.
JP17391494A 1994-07-26 1994-07-26 Manufacture of semiconductor device Pending JPH0837296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17391494A JPH0837296A (en) 1994-07-26 1994-07-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17391494A JPH0837296A (en) 1994-07-26 1994-07-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0837296A true JPH0837296A (en) 1996-02-06

Family

ID=15969424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17391494A Pending JPH0837296A (en) 1994-07-26 1994-07-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0837296A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275115B1 (en) * 1997-09-04 2000-12-15 김영환 A method for forming storage dot and a method for fabricating single electron memory using the same
KR100296004B1 (en) * 1996-12-26 2001-08-07 니시무로 타이죠 Semiconductor device and method for manufacturing the same
KR100332125B1 (en) * 1999-06-30 2002-04-10 박종섭 Mothod of manufacturing a CMOS transistor
US6563178B2 (en) 2000-03-29 2003-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the device
US6661066B2 (en) 1999-05-21 2003-12-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including inversely tapered gate electrode and manufacturing method thereof
US6713333B2 (en) 2001-10-29 2004-03-30 Nec Electronics Corporation Method for fabricating a MOSFET
KR100453910B1 (en) * 2003-01-30 2004-10-20 아남반도체 주식회사 Fabrication method of MOS transistor
KR100613373B1 (en) * 2004-08-03 2006-08-17 동부일렉트로닉스 주식회사 Fabrication method of MOS transistor
JP2006352158A (en) * 1996-07-12 2006-12-28 Toshiba Corp Method of manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352158A (en) * 1996-07-12 2006-12-28 Toshiba Corp Method of manufacturing semiconductor device
JP4580914B2 (en) * 1996-07-12 2010-11-17 株式会社東芝 Manufacturing method of semiconductor device
KR100296004B1 (en) * 1996-12-26 2001-08-07 니시무로 타이죠 Semiconductor device and method for manufacturing the same
KR100275115B1 (en) * 1997-09-04 2000-12-15 김영환 A method for forming storage dot and a method for fabricating single electron memory using the same
US6661066B2 (en) 1999-05-21 2003-12-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including inversely tapered gate electrode and manufacturing method thereof
KR100332125B1 (en) * 1999-06-30 2002-04-10 박종섭 Mothod of manufacturing a CMOS transistor
US6563178B2 (en) 2000-03-29 2003-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the device
US6713333B2 (en) 2001-10-29 2004-03-30 Nec Electronics Corporation Method for fabricating a MOSFET
KR100453910B1 (en) * 2003-01-30 2004-10-20 아남반도체 주식회사 Fabrication method of MOS transistor
KR100613373B1 (en) * 2004-08-03 2006-08-17 동부일렉트로닉스 주식회사 Fabrication method of MOS transistor

Similar Documents

Publication Publication Date Title
TWI390666B (en) Method for fabricating soi device
US20020008261A1 (en) Transistor, semiconductor device and manufacturing method of semiconductor device
JPH1117166A (en) Manufacturing for semiconductor device
JP2003347420A (en) Semiconductor device and method of manufacturing the same
JP3205306B2 (en) Semiconductor device and method of manufacturing the same
US6197648B1 (en) Manufacturing method of MOSFET having salicide structure
US5102811A (en) High voltage bipolar transistor in BiCMOS
JP4086099B2 (en) Method for forming semiconductor device
JP3725465B2 (en) Semiconductor device and manufacturing method thereof
JP2006156807A (en) Semiconductor device and its manufacturing method
JPH0837296A (en) Manufacture of semiconductor device
US5843826A (en) Deep submicron MOSFET device
US6534393B1 (en) Method for fabricating local metal interconnections with low contact resistance and gate electrodes with improved electrical conductivity
JP3394914B2 (en) Semiconductor device and manufacturing method thereof
US7176536B2 (en) Semiconductor device having metal silicide layer on source/drain region and gate electrode and method of manufacturing the same
JPH08264769A (en) Manufacture of semiconductor device
US6686276B2 (en) Semiconductor chip having both polycide and salicide gates and methods for making same
JPH0730104A (en) Semiconductor device and its manufacture
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JP3134344B2 (en) Semiconductor device
JP3855638B2 (en) Manufacturing method of semiconductor device
US6221725B1 (en) Method of fabricating silicide layer on gate electrode
JPH0653237A (en) Manufacture of semiconductor element
JP3608999B2 (en) Manufacturing method of semiconductor device
JP4880149B2 (en) MIS field effect transistor and manufacturing method thereof