JPH02293351A - 光導波路の製造法とそれに使用するイオン交換マスク - Google Patents

光導波路の製造法とそれに使用するイオン交換マスク

Info

Publication number
JPH02293351A
JPH02293351A JP2094900A JP9490090A JPH02293351A JP H02293351 A JPH02293351 A JP H02293351A JP 2094900 A JP2094900 A JP 2094900A JP 9490090 A JP9490090 A JP 9490090A JP H02293351 A JPH02293351 A JP H02293351A
Authority
JP
Japan
Prior art keywords
ion exchange
glass substrate
mask
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094900A
Other languages
English (en)
Inventor
Seppo Honkanen
セッポ・ホンカネン
Simo Tammela
シモ・タンメラ
Ari Tervonen
アリ・テルボネン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of JPH02293351A publication Critical patent/JPH02293351A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオン交換マスクを備えないガラス基板表面
エリア内でイオンの源とガラス基板との間のイオン交換
が生じる、ガラス基板内でのイオン交換技術による光導
波路の製造法とその製造に用いるイオン交換マスクに関
する。
(従来の技術) ガラス基板内でのイオン交換技術により製造された光導
波路は、光通信、センサ、及び他の関連する分野での光
信号処理の応用における使用のために有用である。
イオン交換において、ガラス内に元々存在するイオン(
Na”イオン)を外部のイオン源からの他のイオン(C
s”,Rb”,Li’、K゛、Ag”、Tビなど)と拡
散により交換することによってガラス基板の屈折率を局
所的に変更(増加)するとき、光導波路がガラス基板内
に形成される。イオン源は、一般的に、熔融塩溶液また
はガラスの表面に蒸着した銀膜からなる。イオン交換技
術の原理については、次の論文が参照される。
[1]アール.グイ.ラマスワミ (R.V.Rama
 swamy)著、イオン交換されるガラス導彼路:レ
ビュー(Ion−exchangedGlass  W
aveguide:  A  Review)、Jou
rnal  of  Lightwave  Tech
nology,第6巻第6号、1988年6月。
伝統的に、マスク層として作用する金属膜は、ガラス基
板の表面の上に蒸着される。光導波路に対応する開口す
なわち窓は、次に、リングラフィ技術により金属膜にパ
ターンが形成される。イオンは、昇温された温度で開口
すなわち窓を通ってガラスの中に拡散される。イオン交
換の結果、ガラス基板の屈折率は、マスク開口で増加し
、このため、ガラス内に光導波路すなわち光チャネルが
形成される。
イオン源が熔融塩からなるとき、今日普通には、ピンホ
ールすなわちマスクを貫通する点状腐食の形成を防ぐた
めの膜マスクとして、2層マスク(例えばA I /A
 I ,03)を使用する。しかし、般に、熔融塩溶液
は、長い拡散時間を必要とする深い光導波路の製造が困
難な程度にすべての金属マスクを腐食する。熔融塩溶液
に関連したマスクの使用の例は、次の論文に記載されて
いる。
[2]エイチ.ジエイ、リリエンホフ(H.  JLi
 I ienhof)著、ガラス内の電界増大イオン交
換によるマルチモード光ストリノブ導波路の屈折率プロ
ファイル(I ndex  Pro f ile  o
f  Multimode  OpticaI  St
rip  Waveguide  by  Field
−enhanced  Ion  Exchange 
 in  Glass)、Opt icsCommun
 i ca t i on s,第35巻第1号、19
80年10月。
[3]エイジ オクダ(E i j i  Okuda
)著、ブレーナ勾配屈折率ガラス導波路と4端子分岐回
路と星型結合回路(Planar  Gradient
−Index  Glass  Waveguide 
 and  its  Applications  
 to  a  4−port  Branched 
  Circuit   and   Star   
Coupler)、Applied  Optics,
第23巻第11号、1984年6月。
銀の薄膜は、熔融塩のイオン源の代わりに使用出来る。
銀(Ag)の膜はガラス基板の表面に蒸着される。その
ため、イオン交換はこの銀膜と基板の他の側に位置する
カソード膜との間に結合される電界の影響の下に起こる
。光チャネルを製造するために、(銀膜に面する)アノ
ード側はパターンを形成せねばならない。このパターン
は、銀膜に直接に形成できる。わずかにより容易に実行
できる技法は、リングラフィ技法がアルミニウムに対し
てより適用しやすいので、ガラスと銀膜との間にパター
ンを形成したアルミニウムマスク膜を使用することであ
る。リソグラフィ工程は、高品質ガラス基板の上のクロ
ムのマスク膜からなる市販のCrマスクガラスを使用す
ることによって、省くことができる。製造者は、集積回
路の生産において非常に高精度で信頼性が高く使用され
るリソグラフィ技法によりクロム膜をパターン化する。
これらのクロムマスクは、熔融塩溶液がクロムを腐食す
るため、熔融塩溶液には使用出来ない。銀膜を有するマ
スクの使用の例は、次の論文に記載されている。
[4]エス,ホンカネ7 (S.Honkanen)I
F、ファイバ光センサ応用のための導波結合回路の製造
のためのイオン交換工程(Ion  Exchange
  Process  for  Fabricati
on  of  WaveguideCouplers
  for  Fiber  Optic  Sens
or  Applications)、Journal
  of  Applied  Physics、第6
1巻第52頁〜第56頁、1987年1月。
[5コエー.ターボネン(A.Te rvOnen)著
、導波路結合回路の製造のためのガラス内のイオン交換
法(Jon  Exchange  Processe
s  in  Glass  for  Fabric
ation  of  Waveguide  Cou
plers)、SPIE第862巻一〇ptical 
  interconectionS (1987年)
第32頁〜第39頁。
銀膜はマスク膜の開口を通してガラス基板に接触するよ
うにされているので、マスクにおける段落及び/又は端
部は、深い光チャネルを形成し厚い銀膜を使用するとき
に、イオン交換の制御を乱す。文献[5]に開示された
方法では、ガラスの表面に形成されたカリウムを含むゾ
ーンが金属膜の面の中に使用され、こうして、銀膜を上
に形成するための平らな面を得る。この方法の問題は、
マスクゾーン内のカリウムイオンが処理温度(約200
゜C)で低い移動度を有するけれども、カリウムイオン
の一部は銀イオンで置換され、マスクエリア内の屈折率
を変えることである。この理由のために、長い拡散時間
を要する深い光チャネルが製造されるときに、カリウム
を含むゾーンが十分効率的には作用しない。さらに、こ
れは、ある応用においては異なったチャネルの間でのク
ロストークを生じることがある。
本発明の目的は、上述の問題点を防止した光導波路の新
しい製造法とイオン交換マスクを提供することである。
(問題点を解決するための手段) 本発明に係る光導波路の製造法は、第1のイオン交換マ
スクを備えないガラス基板表面エリア内でイオン源とガ
ラス基板との間のイオン交換が生じる、ガラス基板内で
のイオン交換技術による光導波路の製造法において、上
記のイオン交換マスクがガラス基板の表面に刑成される
空乏エリアによって形成されることを特徴とする。
本発明に係る第2の光導波路の製造法においては、上記
の空乏エリアの形成工程が、上記の第1の製造法におけ
るガラス基板の表面に第1の金属膜を蒸着する工程と、
光導波路を形成するためのエリアから第1金属膜を除去
する工程と、ガラス基板の反対側に第2の金属膜を蒸着
する工程と、第1金属膜の下のガラス基板の表面内のイ
オンが表面の近くから移動して、空乏エリアが表面内に
形成されるように、第1と第2の金属膜の間に電界を結
合する工程と、上記の両金属膜を除去する工程とからな
ることを特徴とする。
さらに本発明に係るイオン交換マスクは、ガラス基板内
でのイオン交換技術による光導波路の製造法のために使
用するイオン交換マスクであって、イオン交換マスクが
ガラス基板の表面に形成される空乏エリアからなること
を特徴とする。
(作用) 本発明の基本的思想は、ガラス基板の1つの側に形成さ
れた金属膜マスク(アノード)とガラス基板の他方の側
に形成された金属膜(カソード)との間に、昇温された
温度で、電界が結合されることである。そこで、この金
属膜の下の(ナトリウムイオンなどの)陽イオンは、表
面の近《から移動して、いわゆる空乏エリア(デブリー
ションエリア)を形成する。ここで用いられたように、
「空乏エリア」という用語は、ナトリウムイオンがたと
えあるとしてもほとんど存在しないガラス基板のエリア
をいう。金属マスクが除去されるとき、空乏エリアパタ
ーンがガラス基板の表面に残される。この空乏エリアの
パターンは、金属膜マスクパターンの「コピー」である
。次に、通常のイオン交換工程が、イオン源として銀膜
または熔融塩を用いて、実行される。ガラス基板の表面
に形成された空乏エリアはイオン交換マスクとして作用
し、イオン交換は、空乏エリアの間の領域内において(
元の金属マスクの開口で)のみ起こる。
(発明の効果) 本発明の効果には次のようなものがある。
元の金属マスク内に含まれるピンホールは、空乏エリア
内でふさがれる。これは、電界を使用した長いイオン交
換工程において非常に重要である。
金属マスクとは異なっているので、イオン交換マスクで
ある空乏エリアのマスクは、長い工程でさえも熔融塩溶
液によって疲労しないし、腐食されない。
空乏エリアのマスクは、ガラス基板内に比較的深く侵入
出来、これにより、基板の表面の方向での側方のイオン
交換を制限する。これは、非常に対称的な一様な光導波
路の生産を可能にする。さラニ、元の金属マスクの開口
よりさらに狭い光チャネルを提供することが可能になり
、これは、適用されるリングラフィ技術から要求される
標準を減少する。
この発明は、市販のCrマスクガラスの使用を可能にす
る。
完全な平面の表面が得られ、厚い銀膜からの長いイオン
交換を利用出来る。もしイオン交換が銀膜の蒸着中に真
空中で実行されるならば、銀膜は、表面にパターンが形
成されたマスクを使用する場合よりも、ガラスに良く付
着する。
(実施例) 本発明は、以下で、添付の図面を参照して、実施例によ
りさらに詳細に説明される。第1図から第5図までは、
本発明の製造法の異なった操作ステップを示す。
本発明に係る光導波路の製造法において、金属の薄膜2
が、たとえばスパッタリングによって、好ましくはシー
ト状のガラス基板lの1つの平らな表面に付着される。
開口4は、第1図に示すように、リングラフィ技法によ
って、金属の膜2の中にパターンが形成される。本発明
で使用される薄膜マスクは、いわゆるポジティブマスク
パターンを形成する。ここで、開口4は、所望の光導波
路に対応し、マスク膜2Aと2Bからなる薄膜エリア2
は、イオン交換とその結果生じる光導波路の形成とが起
こるエリアに対応する。さらに、金属膜3が、ガラス基
板Iの反対側に形成される。
別の方法として、文献[5]に記載されたような市販の
マスク板、すなわちガラス基板に蒸着されたクロムの薄
膜のマスクを使用してもよい。
本実施例の方法の第2の操作ステップでは、ガラス基板
lの温度が(たとえば350’Cに)上昇され、電源の
正側の端子をマスク膜2A,2Bに、i側の端子を金属
膜3に結合することにより、マスク膜2A,2Bと金属
膜3との間に電界が印加される。電界の作用の下でマス
ク膜2A,2Bの下方のガラス基板lの表面内のナトリ
ウムイオンNa’は、表面近くから離れて金属膜3(カ
ソード)の方へ動《。第2図に示すように、ナトリウム
イオンをたとえあるとしてもほとんど含まないいわゆる
空乏エリア5A,5Bが、マスク膜2A,2B(アノー
ド)の下に、ガラス基板1内に所定の深さまで侵入して
、形成される。マスク膜の開口4では、ナトリウムイオ
ンの空乏(デブリーション)は生じないので、ナトリウ
ムイオンの量は、基板lの表面内において開口4に残る
エリア6内で正常である。
続いて、金属膜2A,2Bと3は、第3A図に示される
ように除かれる。これにより、上に説明したように形成
された空乏エリア5Aと5Bは、ガラス基板1の表面内
に永久的に残り、元のマスクパターンの「コピー」を形
成する。ここで、空乏エリア5A,5Bは、前に金属マ
スク2A,2Bで覆われたエリアに対応する。
生成された空乏エリア5Aと5Bの間のエリア6は、好
ましくは、金属膜2内の元の開口4よりわずかに狭くさ
れる。これは、リングラフィ技法から要求される標準を
低くする。
この発明により空乏エリアでマスクされたガラス基板l
は、通常のイオン交換技法と結合して,そういうものと
して使用できる。
第4A図において、例えば、イオン源として作用する熔
融塩溶液(AgN○3など)は、上昇した温度(たとえ
ば250゜C)でガラス基板lのマスクされた表面に影
響することか可能になる。実際、ガラス基仮lは熔融塩
の中に浸される。塩溶l夜A g N O 3とガラス
基板Iとの間のイオン交換は、ナトリウムイオンを含む
マスクされていないエリア6内でだけ起こり、マスクさ
れた空乏エリア5Aと5B内では、ナトリウムイオンは
Ag゛イオンとの置換により含まれないので、イオン交
換は起こらない。イオン交換が十分長時間続くと、大量
のAg゜イオンがエリア6内に集まる。Δg゜イオンは
、この特定のエリア6内でガラス屈折率を増加して、第
5図に示すような光導波路6、8を形成する。池の広く
使用されている熔融塩溶液には、KNO3、C s N
 O 3、TIN○3、NaNo3がある。
側方のイオン交換は、エリア6と空乏エリア5Δ 5B
との間で可能でなく、これは、より対称的な一様な光導
波路の製造を可能にする。
他の方法では、第3B図に示すように、元のマスク膜2
A,2Bは、空乏エリア5A,5Bの形成の後で除去で
き、イオン源として作用する銀膜7は、第4B図に示す
ように、ガラス基板1の表面の上に直接に形成出来る。
電界は、上昇された温度で、銀膜7と金属膜3(基板の
反対側に設けられる)との間で結合される。こうして、
イオン交換は、第4A図を用いて説明されたのと同様に
、前にマスクされていないエリア6内でだけ起こる。
その結果、第5図の光導波路が得られる。
なお、上記の説明と図面は、本発明を説明するためにの
み用いられた。しかし、本発明に係る方法は、特許請求
の範囲の記載事項内で変更してもよい。
【図面の簡単な説明】
第1図、第2図、第3A図、第3B図、第4A図、第4
B図および第5図は、光導波路の製造法の操作ステノブ
を順次示す断面図である。 1・・ガラス基板、 2・・・金属膜(マスク膜)、 3 ・金属膜、 4・・・開口 5A,5B・・・空乏エリア、 7・銀膜、 8・・・光導波路。 特許出願人 オイ・ノ牛ア・アクチポラゲノト代理人 
弁理士 青山 葆 はか1名

Claims (6)

    【特許請求の範囲】
  1. (1)イオン交換マスクを備えないガラス基板表面エリ
    ア内でイオン源とガラス基板との間のイオン交換が生じ
    る、ガラス基板内でのイオン交換技術による光導波路の
    製造法において、 上記のイオン交換マスクがガラス基板の表面に形成され
    る空乏エリアによって形成されることを特徴とする光導
    波路の製造法。
  2. (2)ガラス基板の表面に第1の金属膜を蒸着する工程
    と、 光導波路を形成するためのエリアから第1金属膜を除去
    する工程と、 ガラス基板の反対側に第2の金属膜を蒸着する工程と、 第1金属膜の下のガラス基板の表面内のイオンが表面の
    近くから移動して、空乏エリアが表面内に形成されるよ
    うに、第1と第2の金属膜の間に電界を結合する工程と
    、 上記の両金属膜を除去する工程と によって上記の空乏エリアが形成されることを特徴とす
    る請求項1に記載された製造法。
  3. (3)上記のイオンがナトリウムイオンであることを特
    徴とする請求項1又は請求項2に記載された製造法。
  4. (4)上記のイオン源が熔融塩溶液からなることを特徴
    とする請求項1、請求項2または請求項3に記載された
    製造法。
  5. (5)上記のイオン源がガラス基板の表面の上に直接形
    成された銀の膜からなることを特徴とする請求項1、請
    求項2または請求項3に記載された製造法。
  6. (6)ガラス基板内でのイオン交換技術による光導波路
    の製造法のために使用するイオン交換マスクであって、
    イオン交換マスクがガラス基板の表面に形成される空乏
    エリアからなることを特徴とするイオン交換マスク。
JP2094900A 1989-04-13 1990-04-10 光導波路の製造法とそれに使用するイオン交換マスク Pending JPH02293351A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI891767 1989-04-13
FI891767A FI82989C (fi) 1989-04-13 1989-04-13 Foerfarande foer framstaellning av en ljusvaogledare.

Publications (1)

Publication Number Publication Date
JPH02293351A true JPH02293351A (ja) 1990-12-04

Family

ID=8528244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094900A Pending JPH02293351A (ja) 1989-04-13 1990-04-10 光導波路の製造法とそれに使用するイオン交換マスク

Country Status (6)

Country Link
US (1) US5035734A (ja)
EP (1) EP0392375B1 (ja)
JP (1) JPH02293351A (ja)
DE (1) DE69010249T2 (ja)
ES (1) ES2055820T3 (ja)
FI (1) FI82989C (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034108A (ja) * 2013-08-08 2015-02-19 国立大学法人東京工業大学 両面化学強化ガラスおよびその製造方法
JP2020200208A (ja) * 2019-06-07 2020-12-17 国立大学法人東京工業大学 両面化学強化ガラス板、その製造方法、並びに両面化学強化ガラス板を含む製品

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1240198B (it) * 1990-04-19 1993-11-27 Cselt Centro Studi Lab Telecom Metodo per la realizzazione di dispositivi ottici integrati ottenuti per scambio ionico favorito da campo elettrico.
FI86226C (fi) * 1990-07-10 1992-07-27 Nokia Oy Ab Foerfarande foer framstaellning av ljusvaogsledare medelst jonbytesteknik pao ett glassubstrat.
IT1245420B (it) * 1991-02-27 1994-09-20 Cselt Centro Studi Lab Telecom Procedimento per la fabbricazione di guide ottiche integrate in vetro
DE4427523C1 (de) * 1994-08-03 1996-01-11 Iot Integrierte Optik Gmbh Asymmetrisches integriert-optisches Mach-Zehnder-Interferometer
US6947651B2 (en) * 2001-05-10 2005-09-20 Georgia Tech Research Corporation Optical waveguides formed from nano air-gap inter-layer dielectric materials and methods of fabrication thereof
KR100415625B1 (ko) * 2001-08-06 2004-01-24 한국전자통신연구원 이온 교환법을 이용한 평면형 광도파로 제조 방법
FR2836558B1 (fr) * 2002-02-22 2004-10-29 Teem Photonics Masque permettant la fabrication d'un guide optique a enterrage variable et procede d'utilisation dudit masque pour obtenir le guide a enterrage variable
DE10339837B4 (de) * 2003-08-29 2008-10-02 Schott Ag Feldunterstützter Ionenaustausch aus kontinuierlich aufgebrachten Metallfilmen auf Glassubstraten
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
CN100412583C (zh) * 2006-05-08 2008-08-20 浙江南方通信集团股份有限公司 单侧熔盐电场辅助离子交换制备掩埋式玻璃光波导的方法
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US8659826B1 (en) 2010-02-04 2014-02-25 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
WO2013027004A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
US9952719B2 (en) 2012-05-24 2018-04-24 Corning Incorporated Waveguide-based touch system employing interference effects
US9134842B2 (en) * 2012-10-04 2015-09-15 Corning Incorporated Pressure sensing touch systems and methods
US20140210770A1 (en) 2012-10-04 2014-07-31 Corning Incorporated Pressure sensing touch systems and methods
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
WO2015015138A1 (en) 2013-07-31 2015-02-05 Milan Momcilo Popovich Method and apparatus for contact image sensing
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US10732407B1 (en) 2014-01-10 2020-08-04 Rockwell Collins, Inc. Near eye head up display system and method with fixed combiner
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
CN107873086B (zh) 2015-01-12 2020-03-20 迪吉伦斯公司 环境隔离的波导显示器
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
CN106291816B (zh) * 2015-05-12 2019-07-26 中兴通讯股份有限公司 一种提高玻璃基光波导芯片均匀性的方法
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
WO2017060665A1 (en) 2015-10-05 2017-04-13 Milan Momcilo Popovich Waveguide display
US10598932B1 (en) 2016-01-06 2020-03-24 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
EP3433659A1 (en) 2016-03-24 2019-01-30 DigiLens, Inc. Method and apparatus for providing a polarization selective holographic waveguide device
WO2017178781A1 (en) 2016-04-11 2017-10-19 GRANT, Alastair, John Holographic waveguide apparatus for structured light projection
EP3548939A4 (en) 2016-12-02 2020-11-25 DigiLens Inc. UNIFORM OUTPUT LIGHTING WAVEGUIDE DEVICE
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
CN111386495B (zh) 2017-10-16 2022-12-09 迪吉伦斯公司 用于倍增像素化显示器的图像分辨率的系统和方法
JP7404243B2 (ja) 2018-01-08 2023-12-25 ディジレンズ インコーポレイテッド 導波管セル内のホログラフィック格子の高スループット記録のためのシステムおよび方法
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10690858B2 (en) 2018-02-28 2020-06-23 Corning Incorporated Evanescent optical couplers employing polymer-clad fibers and tapered ion-exchanged optical waveguides
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US10585242B1 (en) 2018-09-28 2020-03-10 Corning Research & Development Corporation Channel waveguides with bend compensation for low-loss optical transmission
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
CN113728258A (zh) 2019-03-12 2021-11-30 迪吉伦斯公司 全息波导背光及相关制造方法
KR20220016990A (ko) 2019-06-07 2022-02-10 디지렌즈 인코포레이티드. 투과 및 반사 격자를 통합하는 도파관 및 관련 제조 방법
CN114341729A (zh) 2019-07-29 2022-04-12 迪吉伦斯公司 用于使像素化显示器的图像分辨率和视场倍增的方法和设备
WO2021041949A1 (en) 2019-08-29 2021-03-04 Digilens Inc. Evacuating bragg gratings and methods of manufacturing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038342B2 (ja) * 1971-12-01 1975-12-09
US3879183A (en) * 1973-08-15 1975-04-22 Rca Corp Corona discharge method of depleting mobile ions from a glass region
JPS58118610A (ja) * 1982-01-08 1983-07-14 Nec Corp テ−パ状光導波路の製造方法
JPS6066210A (ja) * 1983-09-20 1985-04-16 Shimadzu Corp 光導波路の製造方法
US4711514A (en) * 1985-01-11 1987-12-08 Hughes Aircraft Company Product of and process for forming tapered waveguides
US4842629A (en) * 1986-12-01 1989-06-27 Siemens Aktiengesellschaft Method for producing buried regions of raised refractive index in a glass member by ion exchange

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034108A (ja) * 2013-08-08 2015-02-19 国立大学法人東京工業大学 両面化学強化ガラスおよびその製造方法
JP2020200208A (ja) * 2019-06-07 2020-12-17 国立大学法人東京工業大学 両面化学強化ガラス板、その製造方法、並びに両面化学強化ガラス板を含む製品

Also Published As

Publication number Publication date
US5035734A (en) 1991-07-30
FI82989C (fi) 1991-05-10
FI82989B (fi) 1991-01-31
EP0392375B1 (en) 1994-06-29
DE69010249D1 (de) 1994-08-04
FI891767A0 (fi) 1989-04-13
EP0392375A3 (en) 1991-10-23
EP0392375A2 (en) 1990-10-17
ES2055820T3 (es) 1994-09-01
DE69010249T2 (de) 1994-10-20
FI891767A (fi) 1990-10-14

Similar Documents

Publication Publication Date Title
JPH02293351A (ja) 光導波路の製造法とそれに使用するイオン交換マスク
FI86226C (fi) Foerfarande foer framstaellning av ljusvaogsledare medelst jonbytesteknik pao ett glassubstrat.
US3880630A (en) Method for forming optical waveguides
US6769274B2 (en) Method of manufacturing a planar waveguide using ion exchange method
JP2988916B2 (ja) 光導波路の作製方法
RU2151412C1 (ru) Способ изготовления оптического волноводного устройства
US4155735A (en) Electromigration method for making stained glass photomasks
CN109690373B (zh) 具有层叠结构的光波导制品及其形成方法
US4144066A (en) Electron bombardment method for making stained glass photomasks
USRE31220E (en) Electromigration method for making stained glass photomasks
JPH0462644B2 (ja)
JPH05307125A (ja) 光導波路の製造方法
JPS62133402A (ja) ホログラムレンズの製造方法
JPS6066210A (ja) 光導波路の製造方法
JPH02262110A (ja) 埋込型光導波路の製造方法
CN1206841A (zh) 光波导器件的生产方法
KR0172235B1 (ko) 반도체 소자의 미세패턴 제조방법
JPS60145935A (ja) 光導波路の製造方法
JPH0216484B2 (ja)
JPH01187507A (ja) 光導波路型光デバイスの製造方法
JPH01261243A (ja) 光導波路製造方法
JPS63250608A (ja) 埋込み型光導波路の製造方法
JPS62212605A (ja) 光導波路の作製方法
JPS6064309A (ja) 光導波路端レンズの作成方法
JPS6114488B2 (ja)