JPH02292845A - Wiring path deciding device - Google Patents

Wiring path deciding device

Info

Publication number
JPH02292845A
JPH02292845A JP1113744A JP11374489A JPH02292845A JP H02292845 A JPH02292845 A JP H02292845A JP 1113744 A JP1113744 A JP 1113744A JP 11374489 A JP11374489 A JP 11374489A JP H02292845 A JPH02292845 A JP H02292845A
Authority
JP
Japan
Prior art keywords
wiring
find
determining
line segment
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1113744A
Other languages
Japanese (ja)
Inventor
Mitsuo Seki
関 光穂
Shunichi Kobayashi
俊一 小林
Shinichi Ariyoshi
有吉 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1113744A priority Critical patent/JPH02292845A/en
Publication of JPH02292845A publication Critical patent/JPH02292845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to average congestion of a wiring so as not to need the improvement of the passage of the wiring subsequently to the wiring while a wiring length is considered by a method wherein a means to find the evaluation values of candidate segments is provided with a means to find a number of expected passing wirings, a means to find an expected passing probability, a means to find an easy lead-out of the following segment and a means to find the wiring length. CONSTITUTION:When a schematic path, which consists of a plurality of terminals, of a signal is found within a wiring region, a wiring path deciding device is provided with a wiring capacitance control means, a candidate segment generating means, a means to find the evaluation values of candidate segments and a means to compare the evaluation values and the means 10 to find the evaluation values is provided with a means 1 to find a number of expected passing wirings, a means 2 to find an expected passing probability, a means 3 to find an easy lead-out of the following segment and a means 4 to find a wiring length. Thereby, the best segment among the candidate segments is selected, congestion of wiring in the whole region is averaged without lengthening the wiring length and an unwired wiring in the final result is eliminated. Moreover, for example, while a wiring lattice utilized at the time of wiring like the above is fractionized one after another, the schematic path is designed in detail to contrive to complete the whole wiring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積装置及びプリント基板装置に係り、
特に自動配線装置により設計されるものに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor integrated device and a printed circuit board device.
In particular, it relates to those designed by automatic wiring equipment.

〔従来の技術〕[Conventional technology]

従来の装置は迂回制御をしながら与えられた配線長を実
現する(特開昭61− 55780号)、経路が重複し
ないように仮想ラインを発生し、それを経由して配線す
る(特開昭61− 68672号)等の方法を用いてい
た。
Conventional equipment achieves a given wiring length while controlling detours (Japanese Patent Application Laid-Open No. 61-55780), or generates virtual lines to avoid overlapping routes and wires via them (Japanese Patent Application Laid-Open No. 61-55780). 61-68672) was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は,配線領域の配線混雑の点について配慮
がされておらず、局所的に配線が混雑した場合には、い
ったん配線した後,経路を改善して未配線をなくす必要
があった。
The above-mentioned conventional technology does not take into consideration the problem of wiring congestion in the wiring area, and when the wiring becomes locally crowded, it is necessary to once route the wiring and then improve the route to eliminate unwired lines.

本発明の目的は、あらかじめ予想通過本数や予想通過確
率を求めておき、配線長を考慮しながら配線後に経路改
善が必要ないように配線混雑を平均化することにある。
An object of the present invention is to obtain the expected number of lines passing through and the expected passage probability in advance, and to average wiring congestion so that route improvement is not necessary after wiring, while taking into account the wiring length.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は候補線分発生手段によって発生された候補
線分おのおのに対して、評価値を求める手段を構成する
4つの評価値を求める手段とそれを比較する手段とによ
って達成される。
The above object is achieved by means for calculating four evaluation values and means for comparing them, which constitute the means for calculating evaluation values, for each candidate line segment generated by the candidate line segment generation means.

〔作用】[Effect]

評価値を求める手段を構成する4つの手段それぞれにつ
いて説明する。
Each of the four means constituting the means for determining the evaluation value will be explained.

予想通過本数を求める手段はある領域もしくはある境界
線を通過すると予測される信号配線の本数を与え、複数
の信号配線を行っていく間に、既に何本の信号が通って
おり,あと何本通る可能性があるかを検出する。
The method of calculating the expected number of passing signals is to give the number of signal wires that are expected to pass through a certain area or a certain boundary line, and while performing multiple signal wires, calculate how many signals have already passed and how many more are left. Detect whether there is a possibility of passing.

予想通過確率を求める手段は予想通過本数に数えられた
信号それぞれの経路がどの程度の確率でその領域もしく
は境界線を通過するかを与え、予想通過本数とともに用
い、あと何本通るかの期待値を検出する. 次線分の出しやすさを求める手段は、現在決定しようと
している段階の線分では結線が終了しない場合、現在決
定しようとする線分に直交する方向に線分がどの程度発
生しやすいかを検出する。
The means to calculate the expected passage probability is to give the probability that each route of each signal counted in the expected number of passages will pass through that area or boundary line, and use this together with the expected number of passages to calculate the expected value of how many more signals will pass. Detect. The method for determining the ease of generating the next line segment is to calculate how easily a line segment will occur in the direction perpendicular to the line segment that is currently being determined, if the line segment that is currently being determined does not complete the connection. To detect.

配線長を求める手段は、1信号の配線において既に始点
・終点の決定した線分の和を検出し、最短と考えられる
配線長との差を検出する。
The means for determining the wiring length detects the sum of the line segments whose starting and ending points have already been determined in the wiring for one signal, and detects the difference from the wiring length that is considered to be the shortest.

予想通過本数と予想通過確率はあらかじめ信号が数多く
通過すると考えられる所は、配線時に通過しにくくなる
ように作用する。また、次線分の出しやすさは次の段階
で候補線分がたくさん発生でき、他の経路の障害となら
ないような線分を選ぶように作用する。配線長は、極端
な迂回を避けるように作用する. これら4つの評価値を求める手段を組み合わせることに
より、配線長を考慮しながら配線混雑を平均化し、未配
線をなくすことができる。
The expected number of passages and the expected passage probability work so that it is difficult for a signal to pass through a location where it is thought that a large number of signals will pass during wiring. Furthermore, the ease with which the next line segment can be drawn is determined so that a large number of candidate line segments can be generated in the next step, and a line segment that does not interfere with other routes is selected. The wire length works to avoid extreme detours. By combining these four means for determining evaluation values, it is possible to average wiring congestion and eliminate unwired lines while taking the wiring length into consideration.

(実施例〕 本発明の一実施例を第1図から第6図により説明する。(Example〕 An embodiment of the present invention will be described with reference to FIGS. 1 to 6.

第2図は概略経路を求める装置の構成を示す。FIG. 2 shows the configuration of a device for determining a rough route.

この装置は、候補線分発生手段,評価値を求める手段,
評価値を比較する手段及び容量管理手段から成る。候補
線分発生手段12は第6図に示すように、51.52で
示す端子間の経路決定において、既に決定した線分57
に直交する線分を求める時,境界線容量がゼロの部分を
検出し、その間の候補線分53〜56を求める。容量ゼ
ロの所は線分が通過できない。
This device includes a candidate line segment generating means, an evaluation value determining means,
It consists of means for comparing evaluation values and capacity management means. As shown in FIG. 6, the candidate line segment generating means 12 generates a line segment 57 that has already been determined in determining the route between the terminals indicated by 51 and 52.
When finding a line segment perpendicular to , a portion where the boundary line capacitance is zero is detected, and candidate line segments 53 to 56 between them are found. Line segments cannot pass through areas where the capacity is zero.

評価値を求める手段10は第1図に示すように4つの手
段から成る。予想通過本数を求める手段1は、第3図(
a)において、結線すべき端子の集合22.23を含む
最小の矩形を作成し、その矩形の内部(矩形外枠も含む
)が通過する境界線は端子間を結ぶ経路が通過すると仮
定して、その境界線に1を加える.したがって22と2
3の端子の集合によって作られた矩形が重複する部分は
第3図(b)のように2となる。まだ、矩形が通らない
所はゼロである. 予想通過確率を求める手段2は、予想通過本数を求める
手段と同様に第3図(a)に示す矩形を作成し、その矩
形が通過する境界線に対して、矩形の辺の長さの逆数を
通過確率として与える。第3図(c)のように、別えば
、端子集合22の矩形は横4,縦6であるから、横境界
線には1/4,縦境界線には1/6を与える。端子集合
23と重複した部分は確率の和となる。
The means 10 for determining the evaluation value consists of four means as shown in FIG. Means 1 for calculating the expected number of passing trains is as shown in Figure 3 (
In a), create the minimum rectangle that includes the set of terminals 22 and 23 to be connected, and assume that the boundary line that the inside of the rectangle (including the outer frame of the rectangle) passes through is the path that connects the terminals. , add 1 to the border. Therefore 22 and 2
The overlapping portion of the rectangles created by the set of 3 terminals is 2 as shown in FIG. 3(b). There are still zero points where the rectangle does not pass. Means 2 for calculating the expected passage probability is similar to the means for calculating the expected number of passages, by creating a rectangle shown in FIG. is given as the passing probability. As shown in FIG. 3(c), since the rectangle of the terminal set 22 is 4 in width and 6 in height, 1/4 is given to the horizontal boundary line and 1/6 to the vertical boundary line. The portion that overlaps with the terminal set 23 becomes the sum of probabilities.

次線分の出しやすさを求める手段3について第4図を用
いて説明する。端子31.32間の配線の一部に採用す
ることに既に決定されている前レベル線分33に対して
、直交する候補線分34〜36が求められているとする
。候補線分34〜36はまだ端子32に到達していない
ので、さらに34〜36に直交する線分を求める必要が
ある。
The means 3 for determining the ease of drawing the next line segment will be explained with reference to FIG. It is assumed that candidate line segments 34 to 36 orthogonal to the previous level line segment 33, which has already been determined to be adopted as part of the wiring between the terminals 31 and 32, have been found. Since the candidate line segments 34 to 36 have not yet reached the terminal 32, it is necessary to find further line segments perpendicular to 34 to 36.

そこで、34〜36に直交する線分が34〜36それぞ
れについてどの程度出しやすいかを評価する. 候補線分36を例にとって説明する。候補線分36と端
子32のy座標とで作られる矩形38の内部で、Δで示
す点37は境界線容量がゼロの点である.矩形の中にこ
のΔの点がどのぐらいあるかを評価することにより、候
補線分36から次に出す直交線分がどの程度出しやすい
かを決定する。
Therefore, the degree to which line segments orthogonal to 34 to 36 are easy to draw for each of 34 to 36 is evaluated. This will be explained by taking the candidate line segment 36 as an example. Inside the rectangle 38 created by the candidate line segment 36 and the y-coordinate of the terminal 32, a point 37 indicated by Δ is a point where the boundary line capacitance is zero. By evaluating how many points of Δ there are in the rectangle, it is determined how easy it is to generate the next orthogonal line segment from the candidate line segment 36.

同様の処理を候補線分34.35についても行う.配線
長を求める手段4について第5図により説明する。端子
41.42間の配線長は、既決定経路43.44の長さ
Q1+Ω2、前レベル線分50(候補線分を発生させる
元になった線分)と候補線分45〜49とによって決ま
る長さQB、及びその後の経路探索によって決定される
。Ω1,ρ2は既決定であるから、いま候補線分45〜
49のそれぞれについて、候補線分を選んだ時の配線長
Q3を評価する。このQ8を次のレベルの直交線分につ
いても同様に評価して全体の配線長を制御する。
Similar processing is performed for candidate line segments 34 and 35. The means 4 for determining the wiring length will be explained with reference to FIG. The wiring length between the terminals 41 and 42 is determined by the length Q1+Ω2 of the determined route 43.44, the previous level line segment 50 (the line segment that generated the candidate line segment), and the candidate line segments 45 to 49. The length QB is determined by the subsequent path search. Since Ω1 and ρ2 have already been determined, the candidate line segment 45~
49, the wiring length Q3 when the candidate line segment is selected is evaluated. This Q8 is similarly evaluated for the next level orthogonal line segment to control the overall wiring length.

これら4つの手段を組み合わせて評価値を求め比較手段
13によって評価する。評価値の最も良い候補線分を決
定経路とし、容易管理手段11に経路情報を送る。容量
管理手段11は経路が通過した境界について、あらかじ
め求めておいた境界線容量から1減じる。
An evaluation value is obtained by combining these four means and evaluated by the comparison means 13. The candidate line segment with the best evaluation value is set as the determined route, and the route information is sent to the easy management means 11. The capacity management means 11 subtracts 1 from the boundary line capacity determined in advance for the boundary through which the route has passed.

10〜13の4つの手段を各信号に対して繰り返し行う
ことにより、全信号の概略配線を完了する6本実施例に
よれば、配線領域の混雑及び配線長を考慮しながら配線
するので、経路改善を行うことなしに、配線混雑が局所
集中しない概略経路が得られる。
By repeating the four steps 10 to 13 for each signal, the rough wiring of all signals is completed.6 According to this embodiment, wiring is done while taking into consideration the congestion of the wiring area and the wiring length, so the route A rough route without local concentration of wiring congestion can be obtained without any improvement.

次に、上記で挙げた手段を他の手段と入れかえた場合の
実施例について述べる。
Next, an example will be described in which the above-mentioned means are replaced with other means.

まず、予想通過確率を求める手段を実際の混雑度に置き
かえる.実際の混雑度とは概略配線格子境界線上に定義
された初期配線容量に対して、現在までにどのぐらいの
配線がその境界線を通過したかの割合である。実混雑度
で評価することにより、ダイナミックに混雑を避けるこ
とができる。
First, we replace the means for calculating the expected passage probability with the actual degree of congestion. The actual degree of congestion is the ratio of how many wires have passed through the boundary line to the initial wiring capacity defined on the boundary line of the approximate wiring grid. By evaluating the actual congestion level, congestion can be dynamically avoided.

さらに、予想通過確率と実混雑度の差をとることにより
、今後どのくらいその境界線を配置が通過する可能性が
あるかを予測することができる。
Furthermore, by calculating the difference between the expected passage probability and the actual degree of congestion, it is possible to predict how often the arrangement is likely to pass through that boundary line in the future.

配線長を求める手段では、動的に配線長を計算するので
正確に配線を知ることができる。しかし、計算時間がか
かるので,配線長制約が厳しくない信号に対しては、経
路探索領域限定と折曲がり数制限によって配線長を管理
する(第7図参照)。
The means for determining the wiring length dynamically calculates the wiring length, so that the wiring can be accurately determined. However, since calculation time is required, for signals where the wiring length constraints are not strict, the wiring length is managed by limiting the route search area and limiting the number of bends (see FIG. 7).

経路探索領域は端子間で作られる矩形に対してある標準
的な倍率をかけた矩形とし、その中で配線する。折曲が
り数は許される迂回率から与えられるが、通常3〜4以
内がよいと考えられる。この手段を用いれば、高速に配
線できしかも探索のための情報を記憶する量が少なくて
済む。
The route search area is a rectangle created by multiplying the rectangle created between the terminals by a certain standard magnification, and wiring is performed within the rectangle. The number of bends is determined by the permissible detour rate, but it is generally considered to be within 3 to 4. If this means is used, wiring can be done at high speed, and the amount of information to be stored for searching can be reduced.

予想通過本数及び予想通過確率を求める時、1信号内端
子数が3以上であれば,端子対間に分解して、それぞれ
の端子対間で値を求めてもよい。
When calculating the expected number of passages and the expected passage probability, if the number of terminals in one signal is three or more, it may be divided into terminal pairs and values may be calculated between each terminal pair.

その際、端子対間への分解は、端子間距離の短い順に行
う。
At this time, the decomposition into terminal pairs is performed in order of shortest distance between the terminals.

以上、概略経路を求める場合の実施例を述べてきたが、
概略経路探索用格子を細分することにより、概略経路を
詳細経路になるまで配線することが可能である。第8図
を用いて説明する。まず、概略経路を求める、次に中間
レベルの概略,格子(4分割を行う。特に4分割である
必要はなく,等分割であればよい.)を作成し、その上
で中間レベルの経路を概略経路と同様の評価値を用いて
求める.中間レベルのレベル数は特に規定せず、配線領
域面積と最上位レベルの概略配線格子の大きさから決定
する。最後に、詳細格子に落とし,詳細経路を求める.
この方法によれば、配線領域全体の混雑を見ながらかつ
配線長を守れる詳細配線が可能である。
Above, we have described an example for finding a rough route.
By subdividing the rough route search grid, it is possible to route the rough route until it becomes a detailed route. This will be explained using FIG. First, find a rough route, then create a mid-level rough grid (divide it into 4 parts. It doesn't have to be 4 parts, just have to divide it equally.), and then create a mid-level route. It is calculated using the same evaluation value as the rough route. The number of intermediate levels is not particularly defined, and is determined based on the area of the wiring region and the approximate size of the wiring grid at the highest level. Finally, use a detailed grid to find detailed routes.
According to this method, it is possible to conduct detailed wiring that can maintain the wiring length while monitoring the congestion of the entire wiring area.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、論理回路間の配線が局所的に混雑する
ことなく,シかも配線長を制御できるので未配線のない
、迂回の少ない配線をすることができる。
According to the present invention, the wiring length between logic circuits can be controlled without locally congesting the wiring, so that wiring can be performed without unwired lines and with fewer detours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中心部分である評価値を求める手段の
構成図、第2図は概略配線全体の構成図、第3図(a)
(b)(Q)は予想通過本数と予想通過確率を求める手
段を示す図、第4図は次線分の出しやすさを求める手段
を示す図,第5図は配線長を求める手段の方法の概念図
、第6図は候補線分を求める手段の概念図、第7図およ
び第8図は他の実施例を示す図である. 1・・・予想通過本数を求める手段、2・・・予想通過
確率を求める手段、3・・・次線分の出しやすさを求め
る手段、4・・・配線長を求める手段,10・・・評価
値を求める手段、11・・・容量管理手段、12・・・
候補線分発生手段、13・・・比較手段。 Zj 第 ジ 口 一・4z 第 ロ 6l 茅 口 6l
Fig. 1 is a block diagram of a means for determining an evaluation value, which is the central part of the present invention, Fig. 2 is a schematic block diagram of the entire wiring, and Fig. 3 (a)
(b) (Q) is a diagram showing the means for determining the expected number of passing lines and the expected passing probability, Figure 4 is a diagram showing the means for determining the ease of drawing the next line segment, and Figure 5 is a method for determining the wiring length. FIG. 6 is a conceptual diagram of means for determining candidate line segments, and FIGS. 7 and 8 are diagrams showing other embodiments. 1... Means for obtaining the expected number of passing lines, 2... Means for obtaining the expected passage probability, 3... Means for obtaining the ease of drawing the next line segment, 4... Means for obtaining the wiring length, 10...・Means for determining evaluation values, 11...Capacity management means, 12...
Candidate line segment generation means, 13... comparison means. Zj No. 1/4z No. 6l Kayaguchi 6l

Claims (2)

【特許請求の範囲】[Claims] 1.配線領域の中で、複数の端子から成る信号の概略経
路を求める時、配線容量管理手段,候補線分発生手段,
候補線分の評価値を求める手段と評価値を比較する手段
をもつ装置において、評価値を求める手段に予想通過本
数を求める手段,予想通過確率を求める手段,次線分の
出しやすさを求める手段及び配線長を求める手段をもつ
ことにより、候補線分の中で最もよい線分を選んで、配
線長を長くすることなしに領域全体の配線混雑を平均化
して、最終結果の未配線をなくす配線経路決定装置。
1. When determining the approximate route of a signal consisting of a plurality of terminals in a wiring area, wiring capacity management means, candidate line segment generation means,
In a device having a means for determining the evaluation value of a candidate line segment and a means for comparing the evaluation values, the means for determining the evaluation value includes a means for determining the expected number of passages, a means for determining the expected passage probability, and a means for determining the ease of coming out of the next line segment. By having a method and a means for determining the wire length, it is possible to select the best line segment among the candidate line segments, average the wire congestion over the entire area without increasing the wire length, and reduce the final result of unwired lines. Eliminate wiring route determination device.
2.請求項1記載の配線時に利用した配線格子を次々と
細分しながら、概略経路を詳細化して全配線を完了する
配線経路決定装置。
2. 2. A wiring route determining device as claimed in claim 1, which completes all wiring by subdividing a wiring grid used in wiring one after another to refine a rough route into details.
JP1113744A 1989-05-08 1989-05-08 Wiring path deciding device Pending JPH02292845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113744A JPH02292845A (en) 1989-05-08 1989-05-08 Wiring path deciding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113744A JPH02292845A (en) 1989-05-08 1989-05-08 Wiring path deciding device

Publications (1)

Publication Number Publication Date
JPH02292845A true JPH02292845A (en) 1990-12-04

Family

ID=14620025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113744A Pending JPH02292845A (en) 1989-05-08 1989-05-08 Wiring path deciding device

Country Status (1)

Country Link
JP (1) JPH02292845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378121B2 (en) 1997-03-27 2002-04-23 Nec Corporation Automatic global routing device for efficiently determining optimum wiring route on integrated circuit and global routing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378121B2 (en) 1997-03-27 2002-04-23 Nec Corporation Automatic global routing device for efficiently determining optimum wiring route on integrated circuit and global routing method therefor

Similar Documents

Publication Publication Date Title
KR0153392B1 (en) Lsi connector design method
JP6090226B2 (en) Route generation apparatus and route generation method
US7356790B2 (en) Device, method and program for estimating the number of layers BGA component mounting substrate
JPH02292845A (en) Wiring path deciding device
JPH11250119A (en) Method and device for searching delay route of logical circuit and machine-readable recording medium recorded with program
JP3229235B2 (en) Wiring shaping method and apparatus, prohibited area radius determining method and apparatus
WO2004057273A1 (en) Route search apparatus, route search system, program, and route search method
JP3050906B2 (en) Automatic wiring method
JP2938431B1 (en) Wiring design device, wiring determination device, and methods thereof
JP4490006B2 (en) Automatic wiring method, automatic wiring processing device, and automatic wiring processing program
JP2000223578A (en) Interconnection of semiconductor circuit
JPH05159025A (en) Area division wiring system
US20240037311A1 (en) Multi-layer integrated circuit routing tool
JP3766278B2 (en) Automatic placement and routing equipment
JPH10253374A (en) Method and apparatus for search of going-around route
JPH05166929A (en) Method of arranging cell in lsi
JP2000331038A (en) Rough wiring route layer assignment system
JPH05326894A (en) Wiring device
JP3534619B2 (en) Traffic information prediction method and apparatus, recording medium recording traffic information prediction program, and link classification method, and recording medium recording link classification program
JPH0645443A (en) Hierarchical wiring method
JP2914025B2 (en) LSI automatic placement and routing processing method
JPH04259072A (en) Wiring design device
JPH04260965A (en) Method for searching route between two points
JPH02166750A (en) Rough wiring-path determining method of semiconductor integrated circuit
JPH0850608A (en) Wiring route display method