JPH022925A - チタン材中の水素吸蔵量検出法 - Google Patents

チタン材中の水素吸蔵量検出法

Info

Publication number
JPH022925A
JPH022925A JP63150008A JP15000888A JPH022925A JP H022925 A JPH022925 A JP H022925A JP 63150008 A JP63150008 A JP 63150008A JP 15000888 A JP15000888 A JP 15000888A JP H022925 A JPH022925 A JP H022925A
Authority
JP
Japan
Prior art keywords
titanium material
hydrogen
circuit
signal
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63150008A
Other languages
English (en)
Inventor
Michio Matsushita
松下 道雄
Akio Saito
彰夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63150008A priority Critical patent/JPH022925A/ja
Publication of JPH022925A publication Critical patent/JPH022925A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン材中に吸蔵されている水素量を非破壊
で検出し得る水素吸蔵量検出方法に関するものである。
(従来の技術) チタン材料は、鋼材、ステンレス鋼のような金属材料に
比べて耐食性、耐熱性に冨むと共に軽量で優れた機械的
強度特性を有しており、各種プランI・装置や航空機を
はじめとする各種用途に広(用いられている。一方各種
プラント装置等の安全性を確保するためには各種チタン
製部材の経時的変化を正確に検出し、適切な保守点検を
行なう必要がある。
純チタン、チタン合金のような各種チタン材の経時的変
化の主たる要因は水素吸蔵量に起因するものと考えられ
ており、例えば水素吸蔵量が増大すると伸び特性や絞り
特性が低下し、さらに大量の水素を吸蔵するとクランク
発生の原因となることが知られている。従って、チタン
材中に吸蔵されている水素量を非破壊試験で検出するこ
とができ、チタン材の経時的変化を判断することができ
る水素吸蔵量検出方法の開発が強く要請されている。
従来、チタン材中の水素吸蔵量を測定する方法は、破壊
試験が主流であり、金属組織試験法やX線回折による測
定方法が採用されていた。また、非破壊試験方法として
、水素吸蔵量が増加すると硬さが高くなる性質を利用し
た硬さ測定法も行なわれていた。
(発明が解決しようとする課題) 上述した金属組織試験法やX線回折を利用した測定方法
では、現実に稼働しているプラント装置からチタン製部
材を取はずし、研究所等に設置されている測定装置を用
いて測定しなければならず、現場で簡易に測定すべきと
する要請に反することになる。また、硬さ測定法は非破
壊で測定できる利点があるが、チタン製部材は厚さが薄
いため市販の硬さ計を用いて測定したのでは誤差が大き
すぎ、しかも再現性が劣り、チタン材料の経時的変化を
正確に判断できない不都合があった。
従って、本発明の目的は上述した欠点を解消し、現場に
おいて非破壊で水素吸蔵量を正確に検出し得るチタン材
の水素吸蔵量検出方法を提供するものである。
(課題を解決するための手段) 本発明によるチタン材中の水素吸蔵量検出方法は、検査
すべきチタン材に超音波を投射し、1回底面エコーと2
回底面エコーとの間の時間間隔を検出し、検出した時間
間隔から超音波の音速を求め、求めた音速に基づいて吸
蔵されている水素濃度を求めることを特徴とする。
(作 用) 純チタンやチタン合金のようなチタン材においては、水
素吸蔵量が増加すると応力はさほど変化しないが、伸び
特性及び絞り特性が低下することが知られている。この
ような現象に基づけば、水素吸蔵量に応じて弾性率が変
化していることが考えられる。さらに、チタン材の弾性
率が変化すれば、超音波の伝播速度もこれに応じて変化
することが考えれる。このような認識に基づき、本発明
者が種々の実験検討を行った結果、チタン材の水素吸蔵
量に応じて超音波の伝播速度が変化することを見出した
。従って、チタン材の水素吸蔵量と超音波の伝播速度と
の関係を予め求めておけば、伝播速度を検出することに
よって水素吸蔵量を求めることができ、チタン材の寿命
判断の目安とすることができる。特に、超音波の音速測
定には、大掛かりな装置が不要であり、現場において非
破壊で測定できるから、チタン材が用いられている各種
装置類の保守点検作業を一層効率よく行うことができる
(実施例) 第1図は本発明によるチタン材の水素吸蔵量検出方法を
実施するための装置の一例の構成を示す線図である。同
期回路lから高周波パルスを発生し、送波器2で超音波
探触子駆動信号を発生する。
この駆動信号を、コネクター3を介して縦波発生用探触
子4及び横波発生用探触子5に供給して超音波を発生さ
せる。発生する超音波は5〜10 MHz程度に設定す
る。探触子4及び5を、油、グリセリン又、水ガラスの
ような接触媒質を介して検査すべきチタン材の表面に押
し当てる。探触子で発生した超音波は接触媒質及びチタ
ン材6中を伝播し、チタン材の底面で反射する。そして
、底面で反射した1回底面エコー及び2回底面エコーを
探触子4及び5で受波し、受波信号を受渡器7に送出す
る。受波器7からの1回底面エコー信号及び2回底面エ
コー信号を増幅した増幅器8で増幅した後、ピーク検出
回路9を経てゲート回路10に供給する。ゲート回路1
0は、同期回路lから送出されてくる同時信号に基づい
てゲートを開き、1回底面エコー信号及び2回底面エコ
ー信号を通過させ計数回路11用の駆動信号を発生させ
る。クロック信号発生回路12から発生したクロック信
号を計数回路11に供給し、ゲート回路10からの駆動
信号に基づいて1回底面エコー信号と2回底面エコー信
号との間の時間間隔に相当する信号を発生して信号処理
回路13に出力する。1回底面エコー信号と2回底面エ
コー信号との間の時間間隔は、超音波がチタン材6の厚
さ方向に沿って往復伝播するのに要した時間に相当する
。従って、チタン材6の厚さが既知の場合、計測した時
間間隔から超音波の伝播速度を求めることができる。こ
れらの信号処理を信号処理回路13で行なう。さらに、
信号処理回路13には、標準試料を用いて予め求めた水
素吸蔵量と伝播速度との関係を記憶しておき、演算処理
によって求めた伝播速度から水素吸蔵量を求め表示装置
14に表示する。表示装置14はデジタル表示又はアナ
ログ表示とすることができ、成る限界値を超えた場合に
警報信号を発生するように構成することもできる。
次に実験結果について説明する。5価厚さの純チタン板
を用い、500°Cに加熱して水素を吸蔵させた後、7
00°Cで1時間拡散処理を行って標準試料を得た。標
準試料の水素吸蔵量は、27.318゜1200、14
00.3800.20100 ppmの6種類である。
また使用した超音波の周波数は10MIIzである。こ
の測定結果を第2図に示す。第2図において横軸はチタ
ン材中に吸蔵されている水素量を示し、縦軸は超音波の
音速を示す。第2図から明らかなように、約1000 
ppra以上の水素吸蔵量を正確に検知できることが分
かる。
次に、厚さが未知のチタン材の水素吸蔵量を検出する例
について説明する。プラント装置類に使用されているチ
タン材は厚さが未知の場合も多いため、厚さが知られて
いない場合にも正確に水素吸蔵量を検出する必要がある
。検査すべきチタン材の厚さをWとし、縦波の超音波の
音速をν1、横波超音波の音速をV、とする。また、縦
波及び横波超音波の検査すべきチタン材における往復伝
播時間をそれぞれLL及びt、とすると次式が成立する
ハ LL = L W ts  = S t、      Vt tt      vs 上式より明らかなように、縦波に対する横波の往復伝播
時間の比、すなわち音速比を求めれば、チタン材の厚さ
の項に依存しない値が得られる。従って、標準試料を用
いて水素吸蔵量と音速比との関係を予め求め、この関係
を信号処理回路に記憶しておけば厚さが未知のチタン材
の水素吸蔵量も容易に求めることができる。この検出作
業を第1図を参照しながら説明する。はじめに、縦波用
超音波探触子4を用いて1次底面エコーと2次底面エコ
ーとの間の時間差LLを検出し、その値を信号処理回路
13に記憶する。次に、スイッチ4を切り換えて横波用
の探触子5を用いて1次底面エコーと2次底面エコーと
の間の時間差t、を求め信号処理回路13に記憶する。
求めた値tL及びt。
を用いて音速比を求める。そして、標準試料を用いて得
た水素吸蔵量と音速比との関係から水素吸蔵量を求め表
示装置14に表示する。
第3図は水素吸蔵量と音速比との関係を示すグラフであ
る。第3図において横軸は水素吸蔵量を示し、縦軸は音
速比を示す。標準試料は第2図に示す実験で用いた標準
試料と同一のものを用いた。
このように音速比は、水素吸蔵量が増大するに従って減
少しており、音速比と水素吸蔵量との間に一定の関係が
あることが見出せる。
(発明の効果) 以上説明したように、本発明によればチタン材に投射し
た超音波の音速又は音速比から水素吸蔵量を検出してい
るから、チタン材中の吸蔵水素量を非破壊で、しかも簡
単な作業で検出することができる。しかも、本検出方法
の実施に用いる検出装置は、ポータプル型の検出装置と
することができるので、プラント装置類が設置されてい
る現場においてチタン材の水素吸蔵量を直接検出するこ
とができるから、保守点検作業を一層効率よく行なうこ
とができる。
【図面の簡単な説明】
第1図は本発明による水素吸蔵量検出方法を実施するた
めの装置の一例の構成を示す線図、第2図は超音波の音
速と水素吸蔵量との関係を示すグラフ、 第3図は音速比と水素吸蔵量との関係を示すグラフであ
る。 ■・・・同期回路     2・・・送波器3・・・コ
ネクター    4・・・縦波用探触子5・・・横波用
探触子   6・・・チタン材7・・・受波器    
  8・・・増幅器9・・・ピーク検出回路  10・
・・ゲート回路11・・・計数回路 I2・・・クロック信号発生回路

Claims (1)

  1. 【特許請求の範囲】 1、チタン材中の水素吸蔵量を検出するにあたり、検査
    すべきチタン材に超音波を投射し、1回底面エコーと2
    回底面エコーとの間の時間間隔を検出し、検出した時間
    間隔から超音波の音速を求め、求めた音速に基づいて吸
    蔵されている水素濃度を求めることを特徴とするチタン
    材中の水素吸蔵量検出法。 2、チタン材中の水素吸蔵量を検出するにあたり、検査
    すべきチタン材に縦波超音波及び横波超音波をそれぞれ
    投射し、縦波超音波及び横波超音波の1回底面エコーと
    2回底面エコーとの間の時間間隔をそれぞれ検出し、検
    出した時間間隔から音速比を求め、音速比に基づいて吸
    蔵されている水素濃度を求めることを特徴とするチタン
    材中の水素吸蔵量検出法。
JP63150008A 1988-06-20 1988-06-20 チタン材中の水素吸蔵量検出法 Pending JPH022925A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150008A JPH022925A (ja) 1988-06-20 1988-06-20 チタン材中の水素吸蔵量検出法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150008A JPH022925A (ja) 1988-06-20 1988-06-20 チタン材中の水素吸蔵量検出法

Publications (1)

Publication Number Publication Date
JPH022925A true JPH022925A (ja) 1990-01-08

Family

ID=15487458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150008A Pending JPH022925A (ja) 1988-06-20 1988-06-20 チタン材中の水素吸蔵量検出法

Country Status (1)

Country Link
JP (1) JPH022925A (ja)

Similar Documents

Publication Publication Date Title
JPH0352908B2 (ja)
CN101490543A (zh) 超声波探伤装置和方法
US3486368A (en) Ultrasonic inspection apparatus
CN105044215A (zh) 一种非破坏性的材料声速现场测量方法
Gajdacsi et al. High accuracy wall thickness loss monitoring
JP2002277448A (ja) スケール厚さ測定装置および方法
US3339403A (en) Non-destructive thickness measuring device
JPS6282350A (ja) 超音波探傷装置
JPH022925A (ja) チタン材中の水素吸蔵量検出法
Zhang et al. Ultrasonic time-of-flight diffraction crack size identification based on cross-correlation
KR100258747B1 (ko) 고체재료의 두께 및 초음파 속도를 동시에 측정하는 장치 및 방법
JP2000221076A (ja) 超音波音速測定方法
US3186216A (en) Method and apparatus for generating and receiving ultrasonic helical waves
Gushchina et al. Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy
JPS60205254A (ja) 管の超音波探傷方法
RU2596242C1 (ru) Способ ультразвукового контроля
JPS61114160A (ja) 超音波計測装置
JPS6128841A (ja) 腐食試験装置
SU1728658A1 (ru) Способ ультразвукового контрол толщины плоскопараллельного образца
JPS6491055A (en) Measurement of gel physical property
GB778166A (en) Improvements in ultrasonic testing apparatus
Silk The role of ultrasonic diffraction in NDT
JPH06258297A (ja) 超音波材料試験装置および超音波を用いた材料の試験方法
GB1589731A (en) Method for determining the thickness of a material between two boundary surfaces thereof
Patankar et al. Design and development of instrumentation for air-coupled ultrasonics