JPH022907A - Optical pulse tester - Google Patents

Optical pulse tester

Info

Publication number
JPH022907A
JPH022907A JP14799588A JP14799588A JPH022907A JP H022907 A JPH022907 A JP H022907A JP 14799588 A JP14799588 A JP 14799588A JP 14799588 A JP14799588 A JP 14799588A JP H022907 A JPH022907 A JP H022907A
Authority
JP
Japan
Prior art keywords
light
optical fiber
coupling
reflected light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14799588A
Other languages
Japanese (ja)
Other versions
JP2676045B2 (en
Inventor
Hiroshi Nakamoto
博司 中本
Yahei Oyamada
弥平 小山田
Norihisa Ota
太田 紀久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14799588A priority Critical patent/JP2676045B2/en
Publication of JPH022907A publication Critical patent/JPH022907A/en
Application granted granted Critical
Publication of JP2676045B2 publication Critical patent/JP2676045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To separate reflected light and back scattering light and to make it possible to decrease a dead zone caused by the reflected light to the same degree of the distance resolution of the back scattering light by providing the difference in beat frequency between the reflected light and the back scattering light after light/electricity transducing action. CONSTITUTION:When emitted lights from a signal light source 1 and a local oscillating light source 11 are inputted into directional couplers 13 and 14, the difference in light paths of the propagating lights is corrected with a control system 12. It is considered that a light path in this apparatus is 0. The light sources 1 and 11 undergo frequency modulation and emit lights at constant amplitudes. The relationship among the light emitting frequencies is f3>f2>f4>f1. The beat frequency of the reflected light Lsb' at a connector 6 and the locally oscillated light Lo is f2-f1. In the beat frequency, the component of f3-f1 is not present. When only the component of f3-f1 is filtered through a BPF 15 for the beat frequency, the reflected light Lsb' can be completely blocked. The component part whose beat frequency is f3-f4 in the back scattering light Lsa' is blocked. Therefore, a dead zone can be drastically decreased.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は簡便にして被測定用光ファイバの人!)1端に
於ける反射光によって光学的または電気的に光パルス試
験器の回路が一時的に飽和する時間が極めて小さく低価
格化が可能な光パルス試験器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Purpose of the invention [Field of industrial application] The present invention is designed to simplify the measurement of optical fibers for people! ) The present invention relates to an optical pulse tester which can be manufactured at a low price because the time period during which the circuit of the optical pulse tester is temporarily saturated optically or electrically by the reflected light at one end is extremely short.

[従来の技術] 後方散乱光を使ってファイバ破断点の位置、ファイバロ
スを測定する光パルス試験器において、被測定用光ファ
イバの入射端(主に光パルス試験器と被測定用光ファイ
バとのコネクタ接続部)で生じる反射光によって光学的
または電気的に光パルス試験器の回路が一時的に飽和し
、被測定用光ファイバの入射端付近でデッドゾーンと呼
ばれる観測不能となる領域が生じ、このことが大きな問
題であった。このため、デッドゾーンを解消することを
目的とした光パルス処理系ALを備えた光パルス試験器
Aとしては、従来第7図に示すように光スイッチを使っ
たものがよく知られている。同図で1は信号光用光源、
2は光スィッチ、3は信号光用光源1と光スィッチ2の
動作タイミングを合わせる制御系、4は光/電気変換器
、5は電気信号処理系、6はコネクタ、7.8.9は結
合用単一モード光ファイバ、10は被測定用単一モード
光ファイバである。電気信号処理系5でメモリに蓄えら
れた波形はS/N比改善のため平均化処理される。
[Prior Art] In an optical pulse tester that uses backscattered light to measure the position of the fiber break point and fiber loss, the input end of the optical fiber under test (mainly between the optical pulse tester and the optical fiber under test) is used. The optical pulse tester circuit is temporarily saturated optically or electrically by the reflected light generated at the connector connection part of the optical fiber under test, creating an unobservable area called a dead zone near the input end of the optical fiber under test. , this was a big problem. Therefore, as an optical pulse tester A equipped with an optical pulse processing system AL for the purpose of eliminating the dead zone, one using an optical switch as shown in FIG. 7 is well known. In the figure, 1 is a light source for signal light;
2 is an optical switch, 3 is a control system that synchronizes the operation timing of the signal light source 1 and the optical switch 2, 4 is an optical/electrical converter, 5 is an electrical signal processing system, 6 is a connector, and 7.8.9 is a coupling. 10 is a single mode optical fiber to be measured. The waveforms stored in the memory by the electrical signal processing system 5 are averaged to improve the S/N ratio.

これはパルス強度変調による光源を用い後方散乱光が光
ファイバ人l)l端での反射光に対して時間的に遅れる
ことを利用し一定時間光路を切り換えることにより反射
光と後方散乱光とを分離することを狙っている。ここで
信号光用光源1の光の振幅は第8図に示すようにパルス
状に変化する。信号充用光f21により発せられた単一
光パルスl−pは、光スイッチ2を通過し、被測定用光
ファイバ10に励振され、光フアイバ10中を伝搬する
。光パルスl、pの伝搬中に発生した後方散乱光L p
a’や反射光L pb’は被測定用光ファイバ10の入
射端まで逆戻り伝搬し、光スィッチ2で後方散乱光L 
Oa’ は光/電気変換器4に分岐結合される。光/電
気変換器4で電気的信号ESに変換した後、電気信号処
理系5でS/N改善のための平均化処理が行なわれる。
This uses a light source that uses pulse intensity modulation, and takes advantage of the fact that the backscattered light is delayed in time relative to the reflected light at the end of the optical fiber.By switching the optical path for a certain period of time, the reflected light and the backscattered light are separated. aiming to separate. Here, the amplitude of the light from the signal light source 1 changes in a pulsed manner as shown in FIG. A single optical pulse l-p emitted by the signal filling light f21 passes through the optical switch 2, is excited to the optical fiber to be measured 10, and propagates through the optical fiber 10. Backscattered light L p generated during propagation of optical pulses l and p
a' and the reflected light Lpb' propagate back to the input end of the optical fiber 10 to be measured, and the optical switch 2 converts the backscattered light L
Oa' is branch-coupled to an optical/electrical converter 4. After the signal is converted into an electrical signal ES by the optical/electrical converter 4, the electrical signal processing system 5 performs averaging processing to improve the S/N.

光スイッチ2は電気的に光・の進路を切り換えることに
より戻り光を受光部たる光/N気変換器4に導くため、
戻り波形の任意の部分を抽出することができる。従って
光フアイバ10入射端で生じる過大な反射信号L pb
’をマスクすることができるため、受光部及び電気系の
飽和を防止でき、デッド、ゾーンを縮小することが可能
となる。
The optical switch 2 electrically switches the path of the light to guide the returned light to the light/N air converter 4 which is the light receiving section.
Any part of the returned waveform can be extracted. Therefore, an excessive reflected signal L pb generated at the input end of the optical fiber 10
' can be masked, so saturation of the light receiving section and electrical system can be prevented, and dead zones can be reduced.

しかしながら従来の光スィッチ2を使った光パルス試験
器Aに於ける光スイッチ2の切り換え時間は約1μsで
あり、光スィッチ2による光路の切り換えにより観測不
能となる被測定用光ファイバ10の領域は近端からおよ
そ100m以上となり被測定用光フアイバ10人g4端
での反射による影響を回避できたとしても光スィッチ2
の切替時間に基づくデッドゾーンは信号光用光源1の分
解能によらず存在してしまい、高精度な損失測定ができ
ないという欠点があった。
However, in the optical pulse tester A using the conventional optical switch 2, the switching time of the optical switch 2 is approximately 1 μs, and the area of the optical fiber 10 under test that becomes unobservable due to switching of the optical path by the optical switch 2 is Even if the distance from the near end of the optical fiber to be measured is approximately 100 m or more and the influence of reflection at the 4th end of the optical fiber to be measured can be avoided, the optical switch 2
A dead zone based on the switching time exists regardless of the resolution of the signal light source 1, which has the drawback that highly accurate loss measurement cannot be performed.

超音波を利用、した音響光学効果を用いた光スィッチよ
りも速い切り換え速度を持つ光スィッチとしては半導体
光スィッチがあるが、導波路ロスが大きく且つクロスト
ークが大きいため光パルス試験器に用いることは困難で
ある。
Semiconductor optical switches are optical switches that use ultrasonic waves and have faster switching speeds than optical switches that use acousto-optic effects, but they have large waveguide loss and crosstalk, so they cannot be used in optical pulse testers. It is difficult.

[発明が解決しようとする問題点] 本発明の反射光によるデッドゾーンを被測定用光ファイ
バでの後方散乱光の距離分解能と同程度に大幅に低減で
きる光パルス試験器を提供せんとするものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide an optical pulse tester that can significantly reduce the dead zone caused by reflected light to the same extent as the distance resolution of backscattered light in an optical fiber to be measured. It is.

(2)発明の構成 [問題点を解決するための手段] 本発明は光源の発光周波数をパルス状に変えるFSKヘ
テロダイン検波方式を取り入れ、反射光と後方散乱光で
光/電気変換後のビート周波数に差を設けることにより
、光スィッチを用いることなく反射光と後方散乱光の完
全な分離を図って光パルス試験器の距離分解能と同程度
にデッドゾーンを縮小することを主要な特徴とする。
(2) Structure of the invention [Means for solving the problems] The present invention incorporates an FSK heterodyne detection method that changes the emission frequency of a light source into a pulse, and uses reflected light and backscattered light to generate a beat frequency after optical/electrical conversion. The main feature is that the reflected light and backscattered light are completely separated without using an optical switch, and the dead zone is reduced to the same level as the distance resolution of the optical pulse tester.

し実 施 例1] 本発明の第1実施例を第1図について説明する。Implementation example 1] A first embodiment of the invention will be described with reference to FIG.

第1図は光パルス処理系B[をそなえた本発明Bの概略
構成図であって、第7図の前記従来例Aと同一素子は同
一符号を付した。
FIG. 1 is a schematic diagram of the present invention B, which is equipped with an optical pulse processing system B. The same elements as those of the conventional example A shown in FIG. 7 are given the same reference numerals.

図中11は局発光用光源、12は2個の光源1.11e
作の同期タイミングを合わせる制御系、13.14は方
向性結合器、15はバンドパスフィルタ、16.17は
結合用単一モード光ファイバである。
In the figure, 11 is a local light source, and 12 is two light sources 1.11e.
13.14 is a directional coupler, 15 is a bandpass filter, and 16.17 is a single mode optical fiber for coupling.

制御系12では、信号光用光源1と局発光用光源11の
それぞれの出射光が方向竹結合鼎14に入射される場合
のそれぞれの伝搬光の光路差が補正されるので、本実施
例では装置内部の光路は0と考える。
In the control system 12, the optical path difference between the respective propagation lights when the respective output lights of the signal light light source 1 and the local light source 11 are incident on the directional bamboo coupling 14 is corrected. The optical path inside the device is assumed to be 0.

一般にヘテロダイン検波に於て、局発光LOのパワーを
PL、信号光LSのパワーをP、。
Generally, in heterodyne detection, the power of the local light LO is PL, and the power of the signal light LS is P.

局発光LOの周波数をf4.信号光Lsの周波数をfS
1局発光しOと信号光l−sの位相差をφとすると、光
/電気変換後の出力電流i c(1)は次式で与えられ
る。
Set the frequency of the local light LO to f4. The frequency of the signal light Ls is fS
When one station emits light and the phase difference between O and the signal light ls is φ, the output current i c (1) after optical/electrical conversion is given by the following equation.

i (1)=aP1 p、cos (27r (fL−
f、)+φ)      ・・・・・・・・・・・・ 
(1)上式でaは光源素子に特有の比例定数、f。
i (1) = aP1 p, cos (27r (fL-
f,)+φ) ・・・・・・・・・・・・
(1) In the above equation, a is a proportionality constant specific to the light source element, and f.

fSはビート周波数である。fS is the beat frequency.

ここで、光11.11はそれぞれ第2図(a)。Here, the lights 11 and 11 are respectively shown in FIG. 2(a).

(b)に示すような周波数変調を受は一定振幅で発光す
る。同図で、相互にfS〉f2〉f4〉flの関係であ
る。本方式では周波数「3の成分に注目することで後方
散乱光L sa’を観測する。ここで、周波数f3の成
分のみを検波するなら、信号光用光源1による発光電力
は時刻t1からt2までの間でのみ振幅を持つ単一光パ
ルスと考えられる。ゆえに、11−12は通常の光パル
ス試験器Aでのパルス幅に相当するもので、光パルス試
験器Aの距離分解能を決定する。時刻t1以前では局発
光しOの周波数はflであり、信号光LSの周波数は反
射光L sb’後方散乱光L sa’共にf2である。
The receiver receives frequency modulation as shown in (b) and emits light with a constant amplitude. In the figure, the relationship is fS>f2>f4>fl. In this method, the backscattered light Lsa' is observed by focusing on the component of frequency "3".Here, if only the component of frequency f3 is detected, the light emitted by the signal light source 1 will emit light from time t1 to t2. Therefore, 11-12 corresponds to the pulse width in a normal optical pulse tester A, and determines the distance resolution of the optical pulse tester A. Before time t1, the frequency of the local light O is fl, and the frequency of the signal light LS is f2 for both the reflected light Lsb' and the backscattered light Lsa'.

従って第3図(a)に示すようにコネクタ6での反射光
LSb′及び後方散乱光L sa’のビート周波数はい
ずれもf2−flとなる。
Therefore, as shown in FIG. 3(a), the beat frequencies of the reflected light LSb' and the backscattered light Lsa' at the connector 6 are both f2-fl.

時刻t からt2までの間の局発光LOの周波数はf4
であり、信号光Isの周波数は反射光L sb’がf 
であり、時刻t1以前で発生しt1以後受光される反射
点以遠からの後方散乱光L sa’がf2であり、時刻
t11以後生し受光される後方散乱光L sa’ がf
Sである。第3図(b)に示すようにこのとき反射光L
 sb’ のビート周波数はf  −f4であり、後方
散乱光しsa’のビート周波数はf  −f  及びf
S−f4である。
The frequency of local light LO from time t to t2 is f4
The frequency of the signal light Is is that the reflected light L sb' is f
, the backscattered light L sa' from the reflection point that is generated before time t1 and received after t1 is f2, and the backscattered light L sa' that is generated and received after time t1 is f
It is S. At this time, as shown in FIG. 3(b), the reflected light L
The beat frequency of sb' is f - f4, and the beat frequency of backscattered light sa' is f - f and f
It is S-f4.

時刻t 以降の局発光しOの周波数はflであり、信号
光LSの周波数は反射光L sb’ がf2であり、時
刻t 以前に発生しt2以後に受光される反射点以遠か
らの後方散乱光L sa’ がf であり、時刻t か
ら12までの間に発生しt 以後受光される後方散乱光
L sa’ がf3であり、時刻t2以後に発生し受光
される後方散乱光1 sa’がflである。第3図(C
)に示すようにこのとぎ反射光L sb’のビート周波
数はfl−f、、後方散乱光L sa’のビート周波数
はf  −f  及びf3−flである。1受光成分の
うち、周波数f3の反射光L sb’の成分を含むビー
ト周波数はf3−f4であり、周波数f3の後方散乱光
L sa’の成分を含むビート周波数はf3−f4及び
f3−flであり、以上からいずれの時点においても反
射光L sb’と局発光しOとのビート周波数はf3−
f1成分は存在しないので、ビート周波数はf3−f1
成分のみをバンドパスフィルター5で濾波しておけば完
全に反射光L sb’を阻止することができる。前記で
後方散乱光L sa’のうちビート周波数がf3−f4
である成分を阻止することにより新たに生じるデッドゾ
ーンは、従来技術において反射光1sb’をマスクする
ために存在していたデッドゾーンに比べ大幅に低減する
ことが可能である。
The frequency of the local light beam O after time t is fl, the frequency of the signal light LS is f2, and the reflected light L sb' is f2, and the backscatter from the reflection point that occurs before time t and is received after t2 The light Lsa' is f, the backscattered light Lsa' generated between time t and 12 and received after t is f3, and the backscattered light 1sa' generated and received after time t2 is is fl. Figure 3 (C
), the beat frequency of the scraped reflected light L sb' is fl-f, and the beat frequencies of the backscattered light L sa' are f -f and f3-fl. Among the received light components, the beat frequency that includes the component of the reflected light L sb' with the frequency f3 is f3-f4, and the beat frequencies that include the component of the backscattered light L sa' with the frequency f3 are f3-f4 and f3-fl. From the above, at any point in time, the beat frequency between the reflected light L sb' and the local light O is f3-
Since there is no f1 component, the beat frequency is f3-f1
If only the component is filtered by the bandpass filter 5, the reflected light Lsb' can be completely blocked. In the above, the beat frequency of the backscattered light Lsa' is f3-f4
The dead zone newly created by blocking the component can be significantly reduced compared to the dead zone that existed in the prior art to mask the reflected light 1sb'.

ここでデッドゾーンdは次式で与えられる。Here, the dead zone d is given by the following equation.

(j=C,(t2−tl)     ・・・・・・(3
)法式でCfは光フアイバ中の光速である。なお、本方
式において分解能はデッドゾーンと同程度になる。
(j=C, (t2-tl)...(3
) where Cf is the speed of light in the optical fiber. Note that in this method, the resolution is comparable to that of the dead zone.

[実 施 例2] 本発明の第2実施例を第4図について説明する。[Implementation example 2] A second embodiment of the invention will be described with reference to FIG.

第4図は光パルス処理系C[を備えた本発明Cの概略構
成図であり、第1図の前記第1実施例と同一素子は同一
符号を付した。
FIG. 4 is a schematic diagram of the present invention C equipped with an optical pulse processing system C[, and the same elements as those in the first embodiment shown in FIG. 1 are given the same reference numerals.

図中信号用光源1はそれぞれ第5図に示すような周波数
変調を受は一定振幅で発光する。同図で相互にf’  
>fl>f、の関係がある。
Each of the signal light sources 1 in the figure receives frequency modulation as shown in FIG. 5 and emits light with a constant amplitude. In the same figure, mutually f'
There is a relationship of >fl>f.

本実施例では、被測定用光ファイバ10の入射端での反
射光L sb’の強度が後方散乱光1saの強度に比べ
きわめて大きいため、前記第1実施例の局発光用光源1
1を省略し反射光しsb’ を局発光しOと考える。
In this embodiment, since the intensity of the reflected light L sb' at the input end of the optical fiber 10 to be measured is extremely large compared to the intensity of the backscattered light 1sa, the local light source 1 of the first embodiment
1 is omitted, the reflected light is reflected, and sb' is considered to be the local light and O.

時刻t1以前では局発光である反射光L 31)’の周
波数はflであり、信号光Lsの周波数は後方散乱光I
 Sa’がflである。従って後方散乱光L sa’の
ビート周波数は0となる。
Before time t1, the frequency of the reflected light L31)' which is the local light is fl, and the frequency of the signal light Ls is the frequency of the backscattered light I.
Sa' is fl. Therefore, the beat frequency of the backscattered light L sa' becomes 0.

時刻t からt2までの間の局発光である反射光L s
b’の周波数はf3であり、信号光[Sの周波数は時刻
t1以前に発生しt1以復受光される後り散乱光L s
a’がflであり、時刻t1以後に発生し受光される後
方散乱光L sa’ はf3である。このとき後方散乱
光L sa’のビート周波数はf3−fl及びOである
Reflected light L s that is local light from time t to t2
The frequency of b' is f3, and the frequency of the signal light [S is the backscattered light Ls generated before time t1 and received after t1.
a' is fl, and backscattered light L sa' generated and received after time t1 is f3. At this time, the beat frequencies of the backscattered light Lsa' are f3-fl and O.

時刻t2以降の局発光である反射光L sb’の周波数
はflであり、信号光LSの周波数は時刻t、以前に発
生しt2以後に受光される後方散乱光L sa’がf 
であり、時刻t1からt2までの間に発生しt2以後に
受光される後方散乱光L sa’が局発光である反射光
L sb’の周波数はf3であり、時刻t2以降に発生
し受光される後方散乱光1 sa’がflである。この
とき後方散乱光1 sa’ のビート周波数はt’  
−r  、 t’  −f’1及ヒOrアi1ここでビ
ート周波数f  −flの成分のみをバンドパスフィル
タで濾波しておけば完全に反射光L sb’ を分離す
ることができ分解能力t2−t1と同程度に大幅にデッ
ドゾーンを狭くすることがnl能となる。
The frequency of the reflected light L sb' which is the local light after time t2 is fl, the frequency of the signal light LS is time t, and the frequency of the backscattered light L sa' generated previously and received after t2 is f.
The backscattered light Lsa' generated between time t1 and t2 and received after t2 is local light, and the frequency of the reflected light Lsb' is f3, and the frequency is f3, which is generated and received after time t2. The backscattered light 1 sa' is fl. At this time, the beat frequency of the backscattered light 1 sa' is t'
-r, t'-f'1 and i1 Here, if only the component of the beat frequency f -fl is filtered with a bandpass filter, the reflected light L sb' can be completely separated, and the resolution ability t2 It is possible to significantly narrow the dead zone to the same extent as -t1.

ここでデッドゾーンdは前記(3)式で与えられ分解能
はデッドゾーンと同程度になる。
Here, the dead zone d is given by the above equation (3), and the resolution is approximately the same as the dead zone.

[実 施 例3] 本発明の第3実施例を第6図について説明する。[Implementation Example 3] A third embodiment of the present invention will be described with reference to FIG.

第6図は光パルス処理系D[を備えた本発明りの概略構
成図であって、第4図の前記第2実施例と同一素子は同
一符号を付した。
FIG. 6 is a schematic configuration diagram of the present invention equipped with an optical pulse processing system D[, and the same elements as those in the second embodiment shown in FIG. 4 are given the same reference numerals.

図中18は反射板、19は結合用単一モードファイバで
ある。ここで反射板18は、前記第2実施例が反射光L
 sb’ を局発光と考えるものであるから一定レベル
以上の大きさの反射光L sb’ を必要不可欠とする
が、コネクタ6を取付けるために被測定用光ファイバ1
0の入射端をカッターで切断する際切口が鏡面状の切断
面に上手に可成されない場合には充分な反射光Lsb’
を確保出来ない欠点を解決するために方向性結合器13
から結合用ファイバ19を介して分岐し、常に反射板1
8から一定レベルの反射光L sb’ を導入するよう
に特設されたものである。
In the figure, 18 is a reflection plate, and 19 is a single mode fiber for coupling. Here, the reflection plate 18 has the reflected light L in the second embodiment.
Since sb' is considered to be local light, it is essential to have a reflected light L sb' with a magnitude above a certain level.
When cutting the incident end of 0 with a cutter, if the cut is not well made into a mirror-like cut surface, sufficient reflected light Lsb'
Directional coupler 13 to solve the problem of not being able to secure
branched from through the coupling fiber 19, and always connected to the reflection plate 1.
This is specially provided to introduce a certain level of reflected light L sb' from the light source 8.

ここで信号光用光源1はそれぞれ第5図に示すような周
波数変調を受は一定振幅で発光する。
Each of the signal light sources 1 receives frequency modulation as shown in FIG. 5 and emits light with a constant amplitude.

同図で相互にf3〉f2〉flの関係がある。In the figure, there is a mutual relationship of f3>f2>fl.

前記第2実施例と同様にデッドゾーンを分解能と同程度
に大幅に低減することが可能となる。
As in the second embodiment, it is possible to significantly reduce the dead zone to the same extent as the resolution.

(3)発明の効果 かくして本発明の光パルス試験器B、C,Dは光パルス
処理系B L、 CL、 OLの光学系に光スイッチを
用いずにヘテロダイン検波後のビート周波数が違うこと
により反射光L sb’ と接方散乱光L sa’が完
全に分離できるため、光学系の構成が簡便且つ低価格で
実現できデッドゾーンーンを分解能と同程度に大幅に低
減することが可能となる優れた効果を秦する。
(3) Effects of the invention Thus, the optical pulse testers B, C, and D of the present invention do not use optical switches in the optical systems of the optical pulse processing systems BL, CL, and OL, and the beat frequencies after heterodyne detection are different. Since the reflected light L sb' and the tangentially scattered light L sa' can be completely separated, the configuration of the optical system can be realized simply and at low cost, and the dead zone can be significantly reduced to the same level as the resolution. Qin effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示すブロックダイヤグラ
ムによる概略構成図、第2図(a)(b)は同・信号用
光源と局発用光源のそれぞれ変調特性図、第3図(a)
(bHc)は同・ヘテロゲイン検波後のそれぞれビート
周波数特性図、第4図は本発明の第2実施例を示すブロ
ックダイヤグラムによる概略構成図、第5図は同・信号
用光源の変調特性図、第6図は本発明の第3実施例を示
すブロックダイヤグラムによる概略構成図、第7図は光
パルス試験器の従来例を示すブロックダイヤグラムによ
る概略構成図および第8図は同・光源の変調特性図であ
る。 A、B、C,D・・・光パルス試験器 AL BL、CL、DL・・・光パルス処理系1・・・
信号用光源   3.12・・・制御系4・・・光/電
気変換器 5・・・電気信号処理系 6・・・コネクタ7.8.9
.16.17.19・・・結合用単一モード光ファイバ 10・・・被測定用光ファイバ 11・・・局発光用光源 13.14・・・方向性結合
器15・・・バンドパスフィルタ 18・・・反射板 第1図 / 第2図(α) 第2図(b) 時開(μS) 時間(Ps) 第8図(Q) 第3図(C) 第6図 第4図 第5図 第8図
FIG. 1 is a block diagram schematic diagram showing the first embodiment of the present invention, FIG. a)
(bHc) is a beat frequency characteristic diagram after the same hetero gain detection, FIG. 4 is a schematic block diagram showing the second embodiment of the present invention, and FIG. 5 is a modulation characteristic diagram of the signal light source. Fig. 6 is a schematic block diagram showing the third embodiment of the present invention, Fig. 7 is a block diagram showing a conventional example of an optical pulse tester, and Fig. 8 is the modulation characteristics of the light source. It is a diagram. A, B, C, D... Optical pulse tester AL BL, CL, DL... Optical pulse processing system 1...
Signal light source 3.12...Control system 4...Optical/electrical converter 5...Electrical signal processing system 6...Connector 7.8.9
.. 16.17.19...Single mode optical fiber for coupling 10...Optical fiber to be measured 11...Light source for local light 13.14...Directional coupler 15...Band pass filter 18 ... Reflector plate Fig. 1/ Fig. 2 (α) Fig. 2 (b) Time open (μS) Time (Ps) Fig. 8 (Q) Fig. 3 (C) Fig. 6 Fig. 4 Fig. 5 Figure 8

Claims (1)

【特許請求の範囲】 1、発光周波数がf_2、f_3、f_2の順で変わる
信号光用光源素子と第1の方向性結合器と被測定用光フ
ァイバの順に結合用単一モード光ファイバを介して光学
的に結合する一方、前記第1の方向性結合器の入射ポー
トの空きの一端から第2の方向性結合器と受光器の順に
結合用単一モード光ファイバを介して光学的に結合し、
他方前記信号光用光源素子に同期して発光周波数がf_
1、f_4、f_1の順で変わる局発光用光源素子と前
記第2の方向性結合器の入射ポートの空きの一端を結合
用単一モード光ファイバを介して光学的に結合した光パ
ルス処理系において、前記発光周波数相互の関係が |f_1−f_3|≠|f_1−f_2|、|f_1−
f_3|≠|f_2−f_3|、|f_1−f_3|≠
|f_3−f_4|、|f_1−f_3|≠|f_2−
f_4|、f_1≠f_3 であり、 かつ前記受光器とこれに電気的に結合する電気信号処理
系間に中心周波数が|f_1−f_3|であるバンドパ
スフィルターを挿入することを特徴とする光パルス試験
器2、発光周波数がf_2、f_3、f_1の順で変わ
る信号光用光源素子と方向性結合器と被測定用光ファイ
バの順に結合用単一モード光ファイバを介して光学的に
結合するとともに前記方向性結合器の入射ポートの空き
の一端を結合用単一モード光ファイバを介して受光器と
光学的に結合した光パルス処理系において、前記発光周
波数相互の関係が |f_1−f_3|≠|f_1−f_2|、|f_1−
f_3|≠|f_2−f_3|、f_1≠f_3 であり、 かつ前記受光器とこれに電気的に結合する電気信号処理
系間に中心周波数が |f_1−f_3|であるバンドパスフィルターを挿入
することを特徴とする光パルス試験器 3、発光周波数がf_2、f_3、f_1の順で変わる
信号光用光源素子と方向性結合器と被測定用光ファイバ
の順に結合用単一モード光ファイバを介して光学的に結
合する一方、前記方向性結合器の入射ポートの空きの一
端を結合用単一モード光ファイバを介してそれぞれ受光
器及び反射器と光学的に結合した光パルス処理系におい
て、前記発光周波数相互の関係が |f_1−f_3|≠|f_1−f_2|、|f_1−
f_3|≠|f_2−f_3|、f_1≠f_3 であり、かつ前記受光器とこれに電気的に結合する電気
信号処理系間に中心周波数が|f_1−f_3|である
バンドパスフィルターを挿入することを特徴とする光パ
ルス試験器
[Claims] 1. A signal light source element whose emission frequency changes in the order of f_2, f_3, f_2, a first directional coupler, and an optical fiber to be measured are connected in this order through a single mode optical fiber for coupling. while optically coupling from one free end of the input port of the first directional coupler to the second directional coupler and the light receiver via a coupling single mode optical fiber. death,
On the other hand, the light emission frequency is f_ in synchronization with the signal light light source element.
An optical pulse processing system in which a local light source element that changes in the order of 1, f_4, and f_1 and one free end of the input port of the second directional coupler are optically coupled via a single mode optical fiber for coupling. , the relationship between the emission frequencies is |f_1-f_3|≠|f_1-f_2|, |f_1-
f_3|≠|f_2−f_3|, |f_1−f_3|≠
|f_3-f_4|, |f_1-f_3|≠|f_2-
f_4|, f_1≠f_3, and a bandpass filter having a center frequency of |f_1-f_3| is inserted between the light receiver and an electrical signal processing system electrically coupled thereto. The tester 2 optically couples a signal light source element whose emission frequency changes in the order of f_2, f_3, f_1, a directional coupler, and an optical fiber to be measured via a single mode optical fiber for coupling. In an optical pulse processing system in which one free end of the input port of the directional coupler is optically coupled to a light receiver via a coupling single mode optical fiber, the relationship between the emission frequencies is |f_1−f_3|≠ |f_1−f_2|, |f_1−
f_3 | An optical pulse tester 3 characterized by the following: A signal light source element whose emission frequency changes in the order of f_2, f_3, f_1, a directional coupler, and an optical fiber to be measured are connected in this order through a single mode optical fiber for coupling. In a light pulse processing system, one free end of the input port of the directional coupler is optically coupled to a light receiver and a reflector, respectively, via a coupling single mode optical fiber. The relationship between frequencies is |f_1-f_3|≠|f_1-f_2|, |f_1-
f_3 | Optical pulse tester featuring
JP14799588A 1988-06-17 1988-06-17 Optical pulse tester Expired - Fee Related JP2676045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14799588A JP2676045B2 (en) 1988-06-17 1988-06-17 Optical pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14799588A JP2676045B2 (en) 1988-06-17 1988-06-17 Optical pulse tester

Publications (2)

Publication Number Publication Date
JPH022907A true JPH022907A (en) 1990-01-08
JP2676045B2 JP2676045B2 (en) 1997-11-12

Family

ID=15442768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14799588A Expired - Fee Related JP2676045B2 (en) 1988-06-17 1988-06-17 Optical pulse tester

Country Status (1)

Country Link
JP (1) JP2676045B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313835A (en) * 1989-06-12 1991-01-22 Kokusai Denshin Denwa Co Ltd <Kdd> Method and apparatus for measuring backward scattering light
JPH0472540A (en) * 1990-07-13 1992-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> Back scattering light measuring system
US6890378B2 (en) 2002-01-18 2005-05-10 Seiko Epson Corporation Inkjet ink
JP2012042231A (en) * 2010-08-13 2012-03-01 Anritsu Corp Optical pulse testing apparatus and method for testing optical transmission line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313835A (en) * 1989-06-12 1991-01-22 Kokusai Denshin Denwa Co Ltd <Kdd> Method and apparatus for measuring backward scattering light
JPH0472540A (en) * 1990-07-13 1992-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> Back scattering light measuring system
US6890378B2 (en) 2002-01-18 2005-05-10 Seiko Epson Corporation Inkjet ink
JP2012042231A (en) * 2010-08-13 2012-03-01 Anritsu Corp Optical pulse testing apparatus and method for testing optical transmission line
CN102374930A (en) * 2010-08-13 2012-03-14 安立股份有限公司 Optical pulse test apparatus and method of testing optical transmission path
US8781264B2 (en) 2010-08-13 2014-07-15 Anritsu Corporation Optical pulse test apparatus and method of testing optical transmission path

Also Published As

Publication number Publication date
JP2676045B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US4708471A (en) Optical time-domain reflectometer using heterodyne reception
CN110383009B (en) Optical sensing system and method for detecting stress in optical sensing optical fiber
GB2305795A (en) Optical fiber characteristic measuring device
JPH022907A (en) Optical pulse tester
JPH1090120A (en) Instrument for measuring distortion of optical fiber
JP2575794B2 (en) Optical fiber characteristics evaluation device
CN115839762A (en) Double-pulse long-distance distributed vibration detection device and detection method based on OFDR principle
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JPS5948668A (en) Optical fiber speedometer
GB2182223A (en) Optical fibre reflectometer
JP2515018B2 (en) Backscattered light measurement method and device
JPH11325815A (en) Interference length measuring apparatus
EP4116667A1 (en) Three- wavelengths interferometric measuring device and method
JPH09133585A (en) Optical pulse train measuring method
JP3358436B2 (en) Distributed waveguide sensor
JPS5837496B2 (en) Optical fiber length measurement method
JPS6150037A (en) Light splitting circuit
JP2507790B2 (en) Semiconductor laser FM modulation characteristic measuring device
JP2995078B2 (en) Laser Doppler speedometer
JP3453746B2 (en) Optical fiber inspection equipment
JP3422651B2 (en) Speed measuring device
JPH01145545A (en) Testing method of reflection with high resolution and apparatus therefor
JPS6246227A (en) Method for measuring reflective point of optical part
JPH07243939A (en) Low-coherent reflectometer and reflection measuring method
JPH01320488A (en) Method and instrument for measuring distance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees