JP2676045B2 - Optical pulse tester - Google Patents

Optical pulse tester

Info

Publication number
JP2676045B2
JP2676045B2 JP14799588A JP14799588A JP2676045B2 JP 2676045 B2 JP2676045 B2 JP 2676045B2 JP 14799588 A JP14799588 A JP 14799588A JP 14799588 A JP14799588 A JP 14799588A JP 2676045 B2 JP2676045 B2 JP 2676045B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
directional coupler
optical pulse
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14799588A
Other languages
Japanese (ja)
Other versions
JPH022907A (en
Inventor
博司 中本
弥平 小山田
紀久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14799588A priority Critical patent/JP2676045B2/en
Publication of JPH022907A publication Critical patent/JPH022907A/en
Application granted granted Critical
Publication of JP2676045B2 publication Critical patent/JP2676045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は簡便にして被測定用光ファイバの入射端に於
ける反射光によって光学的または電気的に光パルス試験
器の回路が一時的に飽和する時間が極めて小さく低価格
化が可能な光パルス試験器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Object of the Invention [Industrial field of application] The present invention is a simple optical pulse tester that is optically or electrically driven by reflected light at the incident end of an optical fiber to be measured. The present invention relates to an optical pulse tester that can be manufactured at a low cost with a very short time in which the circuit is temporarily saturated.

[従来の技術] 後方散乱光を使ってファイバ破断点の位置、ファイバ
ロスを測定する光パルス試験器において、被測定用光フ
ァイバの入射端(主に光パルス試験器と被測定用光ファ
イバとのコネクタ接続部)で生じる反射光によって光学
的または電気的に光パルス試験器の回路が一時的に飽和
し、被測定用光ファイバの入射端付近でデッドゾーンと
呼ばれる観測不能となる領域が生じ、このことが大きな
問題であった。このため、デッドゾーンを解消すること
を目的とした光パルス処理系ALを備えた光パルス試験器
Aとしては、従来第7図に示すように光スィッチ使った
ものがよく知られている。同図で1は信号光用光源、2
は光スィッチ、3は信号光用光源1と光スィッチ2の動
作タイミングを合わせる制御系、4は光/電気変換器、
5は電気信号処理系、6はコネクタ、7,8,9は結合用単
一モード光ファイバ、10は被測定用単一モード光ファイ
バである。電気信号処理系5でメモリ蓄えられた波形は
S/N比改善のため平均化処理される。
[Prior Art] In an optical pulse tester that measures the position of a fiber break point and fiber loss using backscattered light, an incident end of an optical fiber to be measured (mainly an optical pulse tester and an optical fiber to be measured is used). Optically or electrically the circuit of the optical pulse tester is temporarily saturated by the reflected light generated at the connector connection part of the optical fiber, and a dead zone called an unobservable area is created near the incident end of the optical fiber under test. This was a big problem. For this reason, as the optical pulse tester A provided with the optical pulse processing system AL for eliminating the dead zone, one using an optical switch as shown in FIG. 7 is well known in the related art. In the figure, 1 is a signal light source, 2
Is an optical switch, 3 is a control system for adjusting the operation timings of the signal light source 1 and the optical switch 2, 4 is an optical / electrical converter,
Reference numeral 5 is an electric signal processing system, 6 is a connector, 7, 8 and 9 are coupling single-mode optical fibers, and 10 is a measured single-mode optical fiber. The waveform stored in the memory by the electric signal processing system 5 is
Averaged to improve S / N ratio.

これはパルス強度変調による光源を用い後方散乱光が
光ファイバ入射端での反射光に対して時間的に遅れるこ
とを利用し一定時間光路を切り換えることにより反射光
と後方散乱光とを分離することを狙っている。ここで信
号光用光源1の光の振幅は第8図に示すようにパルス状
に変化する。信号光用光源1により発せられた単一光パ
ルスLpは、光スィッチ2を通過し、被測定用光ファイバ
10に励振され、光ファイバ10中を伝搬する。光パルスLp
の伝搬中に発生した後方散乱光Lpa′や反射光Lpb′は被
測定用光ファイバ10の入射端まで逆戻り伝搬し、光スィ
ッチ2で後方散乱光Lpa′は光/電気変換器4に分岐結
合される、光/電気変換器4で電気的信号Esに変換した
後、電気信号処理系5でS/N改善のための平均化処理が
行なわれる。光スィッチ2は電気的に光の進路を切り換
えることにより戻り光を受光部たる光/電気変換器4に
導くため、戻り波形の任意の部分を抽出することができ
る。従って光ファイバ10入射端で生じる過大な反射信号
Lpb′をマスクすることができるため、受光部及び電気
系の飽和を防止でき、デッドゾーンを縮小することが可
能となる。
This is to separate the reflected light and the backscattered light by switching the optical path for a certain time by utilizing the fact that the backscattered light is delayed with respect to the reflected light at the incident end of the optical fiber using a light source by pulse intensity modulation. I am aiming for. Here, the light amplitude of the signal light source 1 changes in a pulse shape as shown in FIG. The single optical pulse Lp emitted by the signal light source 1 passes through the optical switch 2 and is fed to the optical fiber under test.
It is excited by 10 and propagates in the optical fiber 10. Light pulse Lp
The backscattered light Lpa 'and the reflected light Lpb' generated during the propagation of the light propagate backward to the incident end of the optical fiber 10 to be measured, and the backscattered light Lpa 'is branched and coupled to the optical / electrical converter 4 by the optical switch 2. After being converted into the electrical signal Es by the optical / electrical converter 4, the electrical signal processing system 5 performs averaging processing for improving S / N. The optical switch 2 guides the return light to the optical / electrical converter 4, which is a light receiving section, by electrically switching the path of the light, so that an arbitrary portion of the return waveform can be extracted. Therefore, the excessive reflection signal generated at the incident end of the optical fiber 10
Since Lpb ′ can be masked, saturation of the light receiving part and the electric system can be prevented, and the dead zone can be reduced.

しかしながら従来の光スイッチ2を使った光パルス試
験器Aに於ける光スイッチ2の切り換え時間は約1μs
であり、光スイッチ2による光路の切り換えにより観測
不測となる被測定用光ファイバ10の領域は近端からおよ
そ100m以上となり被測定用光ファイバ10入射端での反射
による影響を回避できたとしても光スイッチ2の切替時
間に基づくデッドゾーンは信号光用光源1の分解能によ
らず存在してしまい、高精度な損失測定ができないとい
う欠点があった。超音波を利用した音響光学効果を用い
た光スイッチよりも速い切り換え速度を持つ光スィッチ
としては半導体光スィッチがあるが、導波路ロスが大き
く且つクロストークが大きいため光パルス試験器に用い
ることは困難である。
However, the switching time of the optical switch 2 in the optical pulse tester A using the conventional optical switch 2 is about 1 μs.
Therefore, the area of the measured optical fiber 10 which is unobservable due to the switching of the optical path by the optical switch 2 is about 100 m or more from the near end, and even if the influence of the reflection at the incident end of the measured optical fiber 10 can be avoided. The dead zone based on the switching time of the optical switch 2 exists regardless of the resolution of the signal light source 1, and there is a drawback that highly accurate loss measurement cannot be performed. There is a semiconductor optical switch as an optical switch that has a switching speed higher than that of an optical switch using an acousto-optic effect using ultrasonic waves, but since it has a large waveguide loss and a large crosstalk, it cannot be used in an optical pulse tester. Have difficulty.

[発明が解決しようとする問題点] 本発明の反射光によるデッドゾーンを被測定用光ファ
イバでの後方散乱光の距離分解能と同程度に大幅に低減
できる光パルス試験器を提供せんとするものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide an optical pulse tester capable of significantly reducing the dead zone due to the reflected light of the present invention to the same extent as the distance resolution of the backscattered light in the optical fiber under test. Is.

(2)発明の構成 [問題点を解決するための手段] 本発明は光源の発光周波数をパルス状に変えるFSKヘ
テロダイン検波方式を取り入れ、反射光と後方散乱光で
光/電気変換後のビート周波数に差を設けることによ
り、光スイッチを用いることなく反射光と後方散乱光の
完全な分離を図って光パルス試験器の距離分離能と同程
度にデッドゾーンを縮小することを主要な特徴とする。
(2) Configuration of the Invention [Means for Solving the Problems] The present invention adopts an FSK heterodyne detection method that changes the light emission frequency of the light source in a pulsed manner, and the beat frequency after optical / electrical conversion by reflected light and backscattered light. The main feature is that the dead zone is reduced to the same level as the distance resolution of the optical pulse tester by providing a difference between the two and achieving complete separation of reflected light and backscattered light without using an optical switch. .

[実 施 例1] 本発明の第1実施例を第1図について説明する。Example 1 A first example of the present invention will be described with reference to FIG.

第1図は光パルス処理系BLをそなえた本発明Bの概
略構成図であって、第7図の前記従来例Aと同一素子は
同一符号を付した。
FIG. 1 is a schematic configuration diagram of the present invention B having an optical pulse processing system BL, and the same elements as those in the conventional example A of FIG.

図中11は局発光用光源、12は2個の光源1,11動作の同
期タイミングを合わせる制御系、13,14は方向性結合
器、15はバンドパスフィルタ、16,17は結合用単一モー
ド光ファイバである。
In the figure, 11 is a light source for local light, 12 is a control system for synchronizing the operation timing of the two light sources 1 and 11, 13 and 14 are directional couplers, 15 is a bandpass filter, and 16 and 17 are single couplings. It is a mode optical fiber.

制御系12では、信号光用光源1と局発光用光源11のそ
れぞれの出射光が方向制御結合器14に入射される場合の
それぞれの伝搬光の光路差が補正されるので、本実施例
では装置内部の光路は0と考える。
Since the control system 12 corrects the optical path difference of the respective propagating lights when the outgoing lights of the signal light source 1 and the local light source 11 are incident on the direction control coupler 14, in the present embodiment, The optical path inside the device is considered to be zero.

一般にヘテロダイン検波に於て、局発光L0のパワーを
PL,信号光LsのパワーをPS,局発光L0の周波数をfL,信号
光Lsの周波数をfS,局発光L0と信号光Lsの位相差をφと
すると、光/電気変換後の出力電流iC(t)は次式で与
えられる。
Generally, in heterodyne detection, the power of the local light L0 is
P L , the power of the signal light Ls is P S , the frequency of the local light L0 is f L , the frequency of the signal light Ls is f S , and the phase difference between the local light L0 and the signal light Ls is φ. The output current i C (t) of is given by the following equation.

iC(t)=aPLPScos{2π(fL−fS)+φ}……(1) 上式でaは光源素子に特有の比例定数、fL−fSはビー
ト周波数である。
i C (t) = aP L P S cos {2π (f L −f S ) + φ} (1) In the above equation, a is a proportional constant peculiar to the light source element, and f L −f S is a beat frequency. .

ここで、光源1,11はそれぞれ第2図(a),(b)に
示すような周波数変調を受け一定振幅で発光する。同図
で、相互にf3>f2>f4>f1の関係である。本方式では周
波数f3の成分に注目することで後方散乱光Lsa′を観測
する。ここで、周波数f3の成分のみを検波するなら、信
号光用光源1による発光電力は時刻t1からt2までの間で
のみ振幅を持つ単一光パルスと考えられる。ゆえに、t1
−t2は通常の光パルス試験器Aでのパルス幅に相当する
もので、光パルス試験器Aの距離分解能の決定する。時
刻t1以前では局発光L0の周波数はf1であり、信号光Lsの
周波数は反射光Lsb′、後方散乱光Lsa′共にf2である。
従って第3図(a)に示すようにコネクタ6での反射光
Lsb′及び後方散乱光Lsa′のビート周波数はいずれもf1
−f1となる。
Here, the light sources 1 and 11 undergo frequency modulation as shown in FIGS. 2A and 2B, and emit light with a constant amplitude. In the figure, there is a mutual relationship of f 3 > f 2 > f 4 > f 1 . In this method, the backscattered light Lsa ′ is observed by paying attention to the component of the frequency f 3 . Here, if only the component of the frequency f 3 is detected, it can be considered that the light emission power from the signal light source 1 is a single optical pulse having an amplitude only from time t 1 to t 2 . Therefore, t 1
-T 2 corresponds to the pulse width in the normal optical pulse tester A, and determines the distance resolution of the optical pulse tester A. Before time t 1 , the frequency of the local light L 0 is f 1 , and the frequency of the signal light Ls is f 2 for both the reflected light Lsb ′ and the backscattered light Lsa ′.
Therefore, as shown in FIG. 3 (a), the reflected light from the connector 6
The beat frequencies of Lsb ′ and backscattered light Lsa ′ are both f 1
It becomes −f 1 .

時刻t1からt2までの間の局発光L0の周波数はf4であ
り、信号光Lsの周波数は反射光Lsb′がf3であり、時刻t
1以前で発生しt1以後受光される反射点以遠からの後方
散乱光Lsa′がf1であり、時刻t1以後発生し受光される
後方散乱光Lsa′がf3である。第3図(b)に示すよう
にこのとき反射光Lsb′のビート周波数はf3−f4であ
り、後方散乱光Lsa′のビート周波数はf2−f4及びf3−f
4である。
The frequency of the local light L0 between times t 1 and t 2 is f 4 , the frequency of the signal light Ls is f 3 of the reflected light Lsb ′, and the time t
The backscattered light Lsa 'from before the reflection point generated before 1 and received after t 1 is f 1 , and the backscattered light Lsa' generated after time t 1 and received is f 3 . As shown in FIG. 3B, at this time, the beat frequency of the reflected light Lsb ′ is f 3 −f 4 , and the beat frequencies of the back scattered light Lsa ′ are f 2 −f 4 and f 3 −f.
4

時刻t2以降の局発光L0の周波数はf1であり、信号光Ls
の周波数は反射光Lsb′がf2であり、時刻t1以前に発生
しt2以後に受光される反射点以遠からの後方散乱光Ls
a′がf2であり、時刻t1からt2までの間に発生しt2以後
受光される後方散乱光Lsa′がf3であり、時刻t2以後に
発生し受光される後方散乱光Lsa′がf2である。第3図
(c)に示すようにこのとき反射光Lsb′のビート周波
数はf2−f1、後方散乱光Lsa′のビート周波数はf2−f1
及びf3−f1である。
Frequency of time t 2 after the local light L0 is f 1, the signal light Ls
The reflected light Lsb ′ is f 2 and the backscattered light Ls from the point beyond the reflection point that is generated before time t 1 and received after time t 2
a ′ is f 2 and the backscattered light Lsa ′ generated between time t 1 and t 2 and received after t 2 is f 3 and the backscattered light generated after time t 2 and received Lsa ′ is f 2 . As shown in FIG. 3C, at this time, the beat frequency of the reflected light Lsb ′ is f 2 −f 1 and the beat frequency of the back scattered light Lsa ′ is f 2 −f 1
And f 3 −f 1 .

受光成分のうち、周波数f3の反射光Lsb′の成分を含
むビート周波数はf3−f4であり、周波数f3の後方散乱光
Lsa′の成分を含むビート周波数はf3−f4及びf3−f1
あり、以上からいずれの時点においても反射光Lsb′と
局発光L0とのビート周波数はf3−f1成分は存在しないの
で、ビート周波数はf3−f1成分のみをバンドパスフィル
タ15で濾波しておけば完全に反射光Lsb′を阻止するこ
とができる。前記で後方散乱光Lsa′のうちビート周波
数がf3−f4である成分を阻止することにより新たに生じ
るデッドゾーンは、従来技術において反射光Lsb′をマ
スクするために存在していたデッドゾーンに比べ大幅に
低減することが可能である。
Among the light-receiving component, the beat frequencies including components of the reflected light Lsb 'frequency f 3 is f 3 -f 4, backscattered light frequency f 3
Lsa 'beat frequency comprising components of an f 3 -f 4 and f 3 -f 1, also the reflected light Lsb at any time from above' beat frequency between the local light L0 and the f 3 -f 1 component Since the beat frequency does not exist, the reflected light Lsb ′ can be completely blocked by filtering only the f 3 −f 1 component by the bandpass filter 15. The dead zone newly generated by blocking the component of the backscattered light Lsa ′ whose beat frequency is f 3 −f 4 is the dead zone existing in the prior art for masking the reflected light Lsb ′. It can be significantly reduced compared to.

ここでデッドゾーンdは次式で与えられる。 Here, the dead zone d is given by the following equation.

d=cf(t2−t1) ……(3) 該式でcfは光ファイバ中の光速である。なお、本方式
において分解能はデッドゾーンと同程度になる。
d = c f (t 2 −t 1 ) (3) In the equation, c f is the speed of light in the optical fiber. In this method, the resolution is almost the same as the dead zone.

[実 施 例2] 本発明の第2実施例を第4図について説明する。Example 2 A second example of the present invention will be described with reference to FIG.

第4図は光パルス処理系CLを備えた本発明Cの概略
構成図であり、第1図の前記第1実施例と同一素子は同
一符号を付した。
FIG. 4 is a schematic configuration diagram of the present invention C provided with an optical pulse processing system CL, and the same elements as those in the first embodiment of FIG. 1 are designated by the same reference numerals.

図中信号用光源1はそれぞれ第5図に示すような周波
数変調を受け一定振幅で発光する。同図で相互にf3>f2
>f1の関係がある。
The signal light sources 1 in the figure each undergo frequency modulation as shown in FIG. 5 and emit light with a constant amplitude. In the figure, mutual f 3 > f 2
There is a relation of> f 1 .

本実施例では、被測定用光ファイバ10の入射端での反
射光Lsb′の強度が後方散乱光Lsa′の強度に比べきわめ
て大きいため、前記第1実施例の局発光用光源11を省略
し反射光Lsb′を局発光L0と考える。
In this embodiment, since the intensity of the reflected light Lsb 'at the incident end of the optical fiber 10 to be measured is much higher than the intensity of the backscattered light Lsa', the local light source 11 of the first embodiment is omitted. Consider the reflected light Lsb ′ as the local light L0.

時刻t1以前では局発光である反射光Lsb′の周波数はf
2であり、信号光Lsの周波数は後方散乱光Lsa′がf2であ
る。従って後方散乱光Lsa′のビート周波数は0とな
る。
Before time t 1 , the frequency of the reflected light Lsb ′, which is local light, is f
2, the frequency of the signal light Ls is backscattered light Lsa 'is f 2. Therefore, the beat frequency of the backscattered light Lsa 'becomes zero.

時刻t1からt2までの間の局発光である反射光Lsb′の
周波数はf3であり、信号光Lsの周波数は時刻t1以前に発
生しt1以後受光される後方散乱光Lsa′がf2であり、時
刻t1以後に発生し受光される後方散乱光Lsa′はf3であ
る。このとき後方散乱光Lsa′のビート周波数はf3−f2
及び0である。
The frequency of the reflected light Lsb ′, which is the local light between time t 1 and t 2, is f 3 , and the frequency of the signal light Ls is the backscattered light Lsa ′ generated before time t 1 and received after t 1. Is f 2 , and the backscattered light Lsa ′ generated and received after time t 1 is f 3 . At this time, the beat frequency of the backscattered light Lsa ′ is f 3 −f 2
And 0.

時刻t2以降の局発光である反射光Lsb′の周波数はf1
であり、信号光Lsの周波数は時刻t1以前に発生しt2以後
に受光される後方散乱光Lsa′がf2であり、時刻t1からt
2までの間に発生しt2以後に受光される後方散乱光Lsa′
が局発光である反射光Lsb′の周波数はf3であり、時刻t
2以後に発生し受光されれる後方散乱光Lsa′がf1であ
る。このとき後方散乱光Lsa′のビート周波数はf2−f1,
f3−f1及び0である。
The frequency of the reflected light Lsb ′, which is the local light after time t 2, is f 1
, And the signal light frequency of Ls are backscattered light Lsa received by the light generated at time t 1 before t 2 after 'is f 2, t from time t 1
Backscattered light Lsa received by the light generated by t 2 after until 2 '
The frequency of the reflected light Lsb ′ that is the local light is f 3 and
The backscattered light Lsa ′ generated after 2 and received is f 1 . At this time, the beat frequency of the backscattered light Lsa ′ is f 2 −f 1 ,
f 3 −f 1 and 0.

ここでビート周波数f3−f1の成分のみをバンドパスフ
ィルタで濾波しておけば完全に反射光Lsb′を分離する
ことができ分離能力t2−t1と同程度に大幅にデッドゾー
ンを狭くすることが可能となる。
Here, if only the component with the beat frequency f 3 −f 1 is filtered by a bandpass filter, the reflected light Lsb ′ can be completely separated, and the dead zone will be as large as the separation ability t 2 −t 1. It is possible to narrow it.

ここでデッドゾーンdは前記(3)式で与えられ分離
能はデッドゾーンと同程度になる。
Here, the dead zone d is given by the equation (3), and the separability is approximately the same as the dead zone.

[実 施 例3] 本発明の第3実施例を第6図について説明する。Example 3 A third example of the present invention will be described with reference to FIG.

第6図は光パルス処理系DLを備えた本発明Dの概略
構成図であって、第4図の前記第2実施例と同一素子は
同一符号を付した。
FIG. 6 is a schematic configuration diagram of the present invention D provided with an optical pulse processing system DL, and the same elements as those in the second embodiment of FIG. 4 are designated by the same reference numerals.

図中18は反射板、19は結合用単一モードファイバであ
る、ここで反射板18は、前記第2実施例が反射光Lsb′
を局発光と考えるものであるから一定レベル以上の大き
さの反射光Lsb′を必要不可欠するが、コネクタ6を取
付けるために被測定用光ファイバ10の入射端をカッター
で切断する際切口が鏡面状の切断面に上手に切成されな
い場合には充分な反射光Lsb′を確保出来ない欠点を解
決するために方向性結合器13から結合用ファイバ19を介
して分岐し、常に反射板18から一定レベルの反射光Ls
b′を導入するように特設されたものである。
In the figure, reference numeral 18 is a reflector, and 19 is a coupling single mode fiber. Here, the reflector 18 is the reflected light Lsb 'in the second embodiment.
Since the reflected light Lsb ′ having a certain level or more is indispensable because it is considered to be local light, when the incident end of the optical fiber 10 to be measured is cut with a cutter to attach the connector 6, the cut end is a mirror surface. In order to solve the drawback that sufficient reflected light Lsb ′ cannot be secured if it is not cut well on the cut surface of the shape, it is branched from the directional coupler 13 via the coupling fiber 19 and always from the reflection plate 18. Reflected light Ls of a certain level
It is specially designed to introduce b '.

ここで信号光用光源1はそれぞれ第5図に示すような
周波数変調を受け一定振幅で発光する。同図で相互にf3
>f2>f1の関係がある。前記第2実施例と同様にデッド
ゾーンを分解能と同程度に大幅に低減することが可能と
なる。
Here, each of the signal light sources 1 undergoes frequency modulation as shown in FIG. 5 and emits light with a constant amplitude. In the figure, mutual f 3
There is a relation of> f 2 > f 1 . As in the second embodiment, the dead zone can be significantly reduced to the same level as the resolution.

(3)発明の効果 かくして本発明の光パルス試験器B,C,Dは光パルス処
理系BL,CL,DLの光学系に光スィッチを用いずにヘテロ
ダイン検波後のビート周波数が違うことにより反射光Ls
b′と後方散乱光Lsa′が完全に分離できるため、光学系
の構成が簡便且つ低価格で実現できデッドゾーンーンを
分解能と同程度に大幅に低減することが可能となる優れ
た効果を奏する。
(3) Effect of the Invention Thus, the optical pulse testers B, C and D of the present invention are reflected because the beat frequency after heterodyne detection is different without using an optical switch in the optical system of the optical pulse processing systems BL, CL and DL. Light Ls
Since b ′ and the backscattered light Lsa ′ can be completely separated, the optical system can be simply constructed at low cost, and the dead zone can be significantly reduced to the same extent as the resolution.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示すブロックダイヤグラ
ムによる概略構成図、第2図(a)(b)は同・信号用
光源と局発用光源のそれぞれ変調特性図、第3図(a)
(b)(c)は同・ヘテロダイン検波後のそれぞれビー
ト周波数特性図、第4図は本発明の第2実施例を示すブ
ロックダイヤグラムによる概略構成図、第5図は同・信
号用光源の変調特性図、第6図は本発明の第3実施例を
示すブロックダイヤグラムによる概略構成図、第7図は
光パルス試験器の従来例を示すブロックダイヤグラムに
よる概略構成図および第8図は同・光源の変調特性図で
ある。 A,B,C,D……光パルス試験器 AL,BL,CL,DL……光パルス処理系 1……信号用光源、3,12……制御系 4……光/電気変換器 5……電気信号処理系、6……コネクタ 7,8,9,16,17,19……結合用単一モード光ファイバ 10……被測定用光ファイバ 11……局発光用光源、13,14……方向性結合器 15……バンドパスフィルタ 18……反射板
FIG. 1 is a schematic configuration diagram according to a block diagram showing a first embodiment of the present invention, FIGS. 2 (a) and 2 (b) are modulation characteristic diagrams of the signal light source and the local light source, respectively, and FIG. a)
(B) and (c) are beat frequency characteristic diagrams after the same / heterodyne detection respectively, FIG. 4 is a schematic configuration diagram by a block diagram showing a second embodiment of the present invention, and FIG. 5 is the same / signal light source modulation FIG. 6 is a characteristic diagram, FIG. 6 is a schematic configuration diagram by a block diagram showing a third embodiment of the present invention, FIG. 7 is a schematic configuration diagram by a block diagram showing a conventional example of an optical pulse tester, and FIG. 8 is the same light source. 6 is a modulation characteristic diagram of FIG. A, B, C, D …… Optical pulse tester AL, BL, CL, DL …… Optical pulse processing system 1 …… Signal light source, 3,12 …… Control system 4 …… Optical / electrical converter 5… … Electrical signal processing system, 6 …… Connectors 7,8,9,16,17,19 …… Coupling single-mode optical fiber 10 …… Measured optical fiber 11 …… Local light source, 13,14… … Directional coupler 15 …… Bandpass filter 18 …… Reflector

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発光周波数がf2,f3,f2の順で変わる信号光
用光源素子と第1の方向性結合器と被測定用光ファイバ
の順に結合用単一モード光ファイバを介して光学的に結
合する一方、前記第1の方向性結合器の入射ポートの空
きの一端から第2の方向性結合器と受光器の順に結合用
単一モード光ファイバを介して光学的に結合し、他方前
記信号光用光源素子に同期して発光周波数がf1,f4,f1
順で変わる局発光用光源素子と前記第2の方向性結合器
の入射ポートの空きの一端を結合用単一モード光ファイ
バを介して光学的に結合した光パルス処理系において、
前記発光周波数相互の関係が |f1−f3|≠|f1−f2|, |f1−f3|≠|f2−f3|, |f1−f3|≠|f3−f4|, |f1−f3|≠|f2−f4|, f1≠f3 であり、かつ前記受光器とこれに電気的に結合する電気
信号処理系間に中心周波数が|f1−f3|であるバンドパス
フィルターを挿入することを特徴とする光パルス試験器
1. A light source element for signal light whose emission frequency changes in the order of f 2 , f 3 , and f 2, a first directional coupler, and an optical fiber to be measured in order through a coupling single-mode optical fiber. While optically coupling with the first directional coupler, the second directional coupler and the optical receiver are optically coupled in this order from a free end of the incident port of the first directional coupler through a coupling single-mode optical fiber. On the other hand, the light source element for local light emission whose light emission frequency changes in the order of f 1 , f 4 , and f 1 in synchronization with the light source element for signal light, and the free end of the incident port of the second directional coupler are connected to each other. In an optical pulse processing system optically coupled through a coupling single mode optical fiber,
The relationship between the emission frequencies is | f 1 −f 3 | ≠ | f 1 −f 2 |, | f 1 −f 3 | ≠ | f 2 −f 3 |, | f 1 −f 3 | ≠ | f 3 −f 4 |, | f 1 −f 3 | ≠ | f 2 −f 4 |, f 1 ≠ f 3 , and the center frequency is between the photoreceiver and the electrical signal processing system electrically coupled to it. Optical pulse tester characterized by inserting a bandpass filter of | f 1 −f 3 |
【請求項2】発光周波数がf2,f3,f1の順で変わる信号光
用光源素子と方向性結合器と被測定用光ファイバの順に
結合用単一モード光ファイバを介して光学的に結合する
とともに前記方向性結合器の入射ポートの空きの一端を
結合用単一モード光ファイバを介して受光器と光学的に
結合した光パルス処理系において、前記発光周波数相互
の関係が |f1−f3|≠|f1−f2|, |f1−f3|≠|f2−f3|, f1≠f3 であり、かつ前記受光器とこれに電気的に結合する電気
信号処理系間に中心周波数が|f1−f3|であるバンドパス
フィルターを挿入することを特徴とする光パルス試験器
2. A light source element for signal light, a directional coupler, and an optical fiber for measurement, whose emission frequencies change in the order of f 2 , f 3 , and f 1 , are optically transmitted through a coupling single-mode optical fiber. In the optical pulse processing system in which the free end of the incident port of the directional coupler is optically coupled to the photodetector through the coupling single mode optical fiber, the relationship between the emission frequencies is | f. 1 −f 3 | ≠ | f 1 −f 2 |, | f 1 −f 3 | ≠ | f 2 −f 3 |, f 1 ≠ f 3 and is electrically coupled to the photoreceiver An optical pulse tester characterized by inserting a bandpass filter having a center frequency of | f 1 −f 3 | between electrical signal processing systems.
【請求項3】発光周波数がf2,f3,f1の順で変わる信号光
用光源素子と方向性結合器と被測定用光ファイバの順に
結合用単一モード光ファイバを介して光学的に結合する
一方、前記方向性結合器の入射ポートの空きの一端を結
合用単一モード光ファイバを介してそれぞれ受光器及び
反射器と光学的に結合した光パルス処理系において、前
記発光周波数相互の関係が |f1−f3|≠|f1−f2|, |f1−f3|≠|f2−f3|, f1≠f3 であり、かつ前記受光器とこれに電気的に結合する電気
信号処理系間に中心周波数が|f1−f3|であるバンドパス
フィルターを挿入することを特徴とする光パルス試験器
3. A light source element for signal light, a directional coupler, and an optical fiber to be measured, in which the emission frequency changes in the order of f 2 , f 3 , and f 1 , are optically transmitted through a coupling single-mode optical fiber. On the other hand, in the optical pulse processing system in which one end of the incident port of the directional coupler is optically coupled to the receiver and the reflector through the coupling single mode optical fiber, Is | f 1 −f 3 | ≠ | f 1 −f 2 |, | f 1 −f 3 | ≠ | f 2 −f 3 |, f 1 ≠ f 3 , and An optical pulse tester characterized by inserting a bandpass filter having a center frequency of | f 1 −f 3 | between electrically coupled electrical signal processing systems.
JP14799588A 1988-06-17 1988-06-17 Optical pulse tester Expired - Fee Related JP2676045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14799588A JP2676045B2 (en) 1988-06-17 1988-06-17 Optical pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14799588A JP2676045B2 (en) 1988-06-17 1988-06-17 Optical pulse tester

Publications (2)

Publication Number Publication Date
JPH022907A JPH022907A (en) 1990-01-08
JP2676045B2 true JP2676045B2 (en) 1997-11-12

Family

ID=15442768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14799588A Expired - Fee Related JP2676045B2 (en) 1988-06-17 1988-06-17 Optical pulse tester

Country Status (1)

Country Link
JP (1) JP2676045B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515018B2 (en) * 1989-06-12 1996-07-10 国際電信電話株式会社 Backscattered light measurement method and device
JP2711013B2 (en) * 1990-07-13 1998-02-10 国際電信電話株式会社 Backscattered light measurement method
US6890378B2 (en) 2002-01-18 2005-05-10 Seiko Epson Corporation Inkjet ink
JP5325848B2 (en) * 2010-08-13 2013-10-23 アンリツ株式会社 Optical pulse test apparatus and optical transmission line test method

Also Published As

Publication number Publication date
JPH022907A (en) 1990-01-08

Similar Documents

Publication Publication Date Title
US4708471A (en) Optical time-domain reflectometer using heterodyne reception
US6700655B2 (en) Optical fiber characteristic measuring device
EP0183502B1 (en) Improvements relating to optical pulse generating arrangements
JP2676045B2 (en) Optical pulse tester
CN115839762A (en) Double-pulse long-distance distributed vibration detection device and detection method based on OFDR principle
EP0219127A2 (en) Method of and apparatus for optically measuring displacement
JPS5948668A (en) Optical fiber speedometer
JPH11325815A (en) Interference length measuring apparatus
JP3358436B2 (en) Distributed waveguide sensor
JP3385521B2 (en) Frequency Division Multiplexing Optical Fiber Sensor System
GB2182223A (en) Optical fibre reflectometer
JPS63313030A (en) Optical fiber testing device
GB2157842A (en) Optical fibre sensing apparatus
JPS61196103A (en) Displacement meter
JPH0543050B2 (en)
JPS6322694B2 (en)
JP2995078B2 (en) Laser Doppler speedometer
SU1227948A1 (en) Interferometer for measuring displacements
GB2215549A (en) Optical fibre sensor
JPS5837496B2 (en) Optical fiber length measurement method
JPH05157637A (en) Optical fiber type physical quantity measuring instrument
JPH01320488A (en) Method and instrument for measuring distance
JPH0733146Y2 (en) OTDR self-calibration circuit
JPS6154421A (en) Light pulse testing instrument
JPH0749289A (en) Reflection decay quantity measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees