JPH01145545A - Testing method of reflection with high resolution and apparatus therefor - Google Patents

Testing method of reflection with high resolution and apparatus therefor

Info

Publication number
JPH01145545A
JPH01145545A JP30154787A JP30154787A JPH01145545A JP H01145545 A JPH01145545 A JP H01145545A JP 30154787 A JP30154787 A JP 30154787A JP 30154787 A JP30154787 A JP 30154787A JP H01145545 A JPH01145545 A JP H01145545A
Authority
JP
Japan
Prior art keywords
light
optical
reflected
light source
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30154787A
Other languages
Japanese (ja)
Inventor
Tsuneo Horiguchi
常雄 堀口
Noburu Shibata
宣 柴田
Mitsuhiro Tatsuta
立田 光廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30154787A priority Critical patent/JPH01145545A/en
Publication of JPH01145545A publication Critical patent/JPH01145545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection

Abstract

PURPOSE:To realize a testing method of reflection with high distance resolution, by a method wherein a difference between the delay times of a reflected light signal from an optical fiber and a reference light from their emission to reception is adjusted to be zero or a value close thereto. CONSTITUTION:An optical wave divider 2 divides an emission light from a light source 1 into a probing light and a reference light. A light frequency shifter 3 shifts the frequency of the probing light by DELTAf from a frequency (f) of the light source 1, and the probing light is made to enter an optical fiber 5 through an optical directional coupler 4. In this constitution, an optical delay circuit 9 is adjusted so that a beat electric signal by a composite wave formed of the probing light reflected or back- scattered at some point in the fiber 5 and of the reference light be the maximum, and then the optical delay circuit 9 is adjusted so that a belt due to reflection or the like at another point in the fiber 5 be the maximum. When a difference between a delay time for one point and a delay time for another point is denoted by DELTAT and a light velocity in the fiber 5 by V, on the occasion, a distance between one point and another point can be determined by V.DELTAT/2, and a high distance resolution is obtained even by using a light source of which a coherence time is short.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被測定物からの反射光あるいは後方散乱光を
ヘテロダイン法により検出し、被試験物の特性を測定す
る反射試験方法および装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a reflection test method and apparatus for detecting reflected light or backscattered light from a test object by a heterodyne method and measuring the characteristics of the test object. It is something.

[従来の技術] 本発明における被試験物は、探査光源の光が透過および
反射する物であれば特に限定する必要はない。しかし以
後の説明では最も応用範囲の広い光ファイバについて説
明する。
[Prior Art] The object to be tested in the present invention is not particularly limited as long as it transmits and reflects the light from the exploration light source. However, in the following explanation, the optical fiber that has the widest range of applications will be explained.

光ファイバからのフレネル反射や後方レーリー散乱光を
測定することにより、光ファイバの光損失分布測定や光
フアイバ中の障害点探索を行う反射試験装置として、0
TDR(例えば、M、に、Barnoski 。
By measuring Fresnel reflection and backward Rayleigh scattered light from optical fibers, it can be used as a reflection test device to measure optical loss distribution of optical fibers and search for fault points in optical fibers.
TDR (e.g., M., Barnoski.

et al、、 ”0ptical time dom
ain reflectometer”。
et al,, ”0ptical time dom
ain reflectometer”.

Appl、 Opt、 Vol、16 (1977)、
pp、2375〜2379参照)が良く知られている。
Appl, Opt, Vol. 16 (1977),
pp. 2375-2379) is well known.

しかし、フレネル反射や後方レーリー散乱光は非常に微
弱なためその検出は極めて難しい。さらに0TDHの距
離の分解能を高めるには、光ファイバに入射させる光パ
ルス幅を狭める必要があるが、そのときには、後方レー
リー散乱光のレベルは光パルス幅に比例して減少してし
まう。また、受信帯域は光パルス幅の逆数に比例して広
げる必要があるため雑音が増大し、後方レーリー散乱光
信号のSN比は非常に劣化する。最小検出可能光パワー
レベルを下げることにより、SN比を向上させる方法と
して、ヘテロダイン検波方式を採用したヘテロダイン0
TDRが報告されている。
However, Fresnel reflection and backward Rayleigh scattered light are very weak and therefore extremely difficult to detect. Furthermore, in order to improve the resolution of the 0TDH distance, it is necessary to narrow the width of the optical pulse input to the optical fiber, but in this case, the level of the backward Rayleigh scattered light decreases in proportion to the optical pulse width. Further, since the reception band needs to be widened in proportion to the reciprocal of the optical pulse width, noise increases and the S/N ratio of the backscattered Rayleigh optical signal deteriorates significantly. Heterodyne 0, which uses a heterodyne detection method, is a method to improve the S/N ratio by lowering the minimum detectable optical power level.
TDR has been reported.

■発明が解決しようとする問題点] しかし、ヘテロダイン検波によるビート電気信号の検出
を行うためには、可干渉性の良い狭スペクトル発振線幅
を有する単一縦モード発振光源(例えばDFBレーザ、
 He−Neレーザ)が必要であり、そのような光源か
ら光パルス幅の狭い光パルスを得ることは非常に難しい
。何故なら、半導体レーザ等を直接変調することにより
光パルスを得た場合には、チャーピングによる発振波長
の変化が生じてしまうからである。また、LiNbO3
等の高速外部変調器を使用したときは、その挿入損失が
極めて大きいからである。以上説明したように、従来の
反射試験方法および装置において距離分解能を高めるこ
とは大変困難である。
■Problems to be Solved by the Invention] However, in order to detect beat electrical signals by heterodyne detection, a single longitudinal mode oscillation light source (such as a DFB laser,
It is very difficult to obtain an optical pulse with a narrow optical pulse width from such a light source. This is because if an optical pulse is obtained by directly modulating a semiconductor laser or the like, the oscillation wavelength will change due to chirping. Also, LiNbO3
This is because when using a high-speed external modulator such as, the insertion loss is extremely large. As explained above, it is very difficult to increase distance resolution in conventional reflection testing methods and devices.

本発明の目的は、距離分解能の高い反射試験方法および
その方法を簡便に実現し得る装置を提供することにある
An object of the present invention is to provide a reflection testing method with high distance resolution and an apparatus that can easily implement the method.

[問題点を解決するための手段] このような目的を達成するために、本発明方法は光源か
らの出射光をΔfの光周波数差をもつ探査光と参照光に
分け、被試験物の一端から探査光を入射し、被試験物の
中で探査光の反射光あるいは後方散乱光として生じる逆
方向の光と参照光を合波して光検出器により受光し、受
光により生じる周波数Δfのビート電気信号を解析する
ことにより、被試験物からの逆方向の光の強度、あるい
は反射・散乱の位置を知る試験を行う方法において、探
査光が光源から出射してから、被試験物中で反射されあ
るいは後方に散乱されて、光検出器により受光されるま
での遅延時間と、参照光が光源から出射してから、光検
出器により受光されるまでの遅延時間との差を零または
それに近い値に調整可能な光遅延回路を設け、探査光が
被試験物中のある点で、反射あるいは後方散乱を受けた
光と、参照光の合波により生じるビート電気信号が最大
となるように、光遅延回路を調整し、次に、被試験物中
の他の点で、反射あるいは後方散乱を受けた光と、参照
光の合波により生じるビート電気信号が最大となるよう
に、光遅延回路を調整したとき、ある点と他の点の間の
距離を、ある点に対する遅延回路の遅延時間と他の点に
対する遅延回路の遅延時間との差をΔT、被試験物中の
光速をVとして、■・ΔT/2より求めることを特徴と
する。
[Means for Solving the Problems] In order to achieve such an object, the method of the present invention divides the emitted light from the light source into an exploration light and a reference light having an optical frequency difference of Δf. The probe light is input from the test object, and the reference light is combined with the reference light that is generated as reflected light or backscattered light of the probe light in the test object and is received by a photodetector.The beat of frequency Δf generated by the light reception is In a test method that determines the intensity of light in the opposite direction from the test object or the location of reflection and scattering by analyzing electrical signals, the probe light is emitted from the light source and then reflected inside the test object. The difference between the delay time from when the reference light is emitted from the light source until it is received by the photodetector after being scattered or backwards is zero or close to zero. An optical delay circuit that can be adjusted to a value is provided so that the beat electrical signal generated by combining the probe light, reflected or backscattered light, and the reference light at a certain point in the test object is maximized. Adjust the optical delay circuit, and then adjust the optical delay circuit so that the beat electrical signal generated by combining the reference beam with the light that has been reflected or backscattered at other points in the test object is maximized. When adjusting the distance between one point and another point, the difference between the delay time of the delay circuit for one point and the delay time of the delay circuit for another point is ΔT, and the speed of light in the object under test is V. , ■·ΔT/2.

本発明装置は光源と、光源からの出射光を探査光と参照
光に分岐する分岐手段と、探査光と参照光の光周波数に
Δfの周波数差を設ける手段と、探査光を被試験物に結
合させ、探査光が被試験物中で反射あるいは散乱して後
方に進む反射光信号と、被試験物中を前方に進む光信号
とを分離する光方向性結合器と、反射光信号と参照光を
合波する合波手段と、合波手段により合波された光を受
光する光検出手段と、受光により発生する周波数Δfの
ビート電気信号を処理する手段と、反射信号と参照光が
、それぞれ、光源から出射されてから光検出手段により
受光されるまでの遅延時間差を零またはそれに近い値に
調整するための光遅延回路とを具備したことを特徴とす
る。
The apparatus of the present invention includes a light source, a branching means for branching the emitted light from the light source into an exploration light and a reference light, a means for providing a frequency difference of Δf between the optical frequencies of the exploration light and the reference light, and a means for providing a frequency difference of Δf between the optical frequencies of the exploration light and the reference light. An optical directional coupler that combines and separates the reflected light signal, in which the probe light is reflected or scattered in the test object and travels backward, and the light signal that travels forward in the test object, and the reflected light signal and the reference light signal. A multiplexing means for multiplexing light, a light detection means for receiving the light multiplexed by the multiplexing means, a means for processing a beat electric signal of frequency Δf generated by the light reception, and a reflected signal and a reference light. Each of them is characterized by being equipped with an optical delay circuit for adjusting the delay time difference between the light emitted from the light source and the time when the light is received by the light detection means to zero or a value close to zero.

[作 用] 従来技術では、距離分解能を高めるために、光ファイバ
に入射させる光パルス幅の逆数以上の広い受信帯域を必
要とし、また反射光信号の反射位置は、反射光信号の遅
延時間を直接実時間で測定することにより求めていた。
[Function] In order to improve the distance resolution, the conventional technology requires a wide reception band that is equal to or larger than the reciprocal of the optical pulse width incident on the optical fiber, and the reflection position of the reflected optical signal depends on the delay time of the reflected optical signal. It was determined by direct measurement in real time.

しかし、本発明は、光ファイバからの反射光信号を検出
するにあたり、光源からの出射光を光周波数差がある探
査光と参照光(ヘテロダイン検波における局発光に相当
)に分け、光ファイバからの反射光信号と参照光が、そ
れぞれ、光源から出射されてから光検出器により受光さ
れるまでの遅延時間差をτまたはそれに近い値に調整す
るための光遅延回路を設けることにより、受信SN比を
高めるために受信帯域幅を狭めても、光ファイバからの
反射光信号と参照光を合波して受光するこ、とにより生
じるビート電気信号を常に受信することができる。また
、反射光信号の反射位置は、ビート電気信号が受信可能
となるように前記光遅延回路の遅延時間を変化。
However, in detecting the reflected light signal from the optical fiber, the present invention separates the emitted light from the light source into an exploration light and a reference light (corresponding to the local light in heterodyne detection), which have different optical frequencies, and detects the reflected light signal from the optical fiber. By providing an optical delay circuit to adjust the delay time difference between the reflected light signal and the reference light from when they are emitted from the light source to when they are received by the photodetector to τ or a value close to it, the reception S/N ratio can be improved. Even if the reception bandwidth is narrowed in order to increase the frequency, it is possible to always receive the beat electrical signal generated by combining and receiving the reflected optical signal from the optical fiber and the reference light. Further, the reflection position of the reflected optical signal changes the delay time of the optical delay circuit so that the beat electric signal can be received.

させた値から求めることがてきる。It can be found from the value given.

[実施例1 以下、図面を参照して木発明の実施例を詳細に説明する
[Embodiment 1] Hereinafter, embodiments of the wooden invention will be described in detail with reference to the drawings.

第1図は木発明の一実施例を示す。1は光源、2は光源
1からの出射光を探査光と参照光に分ける光分岐器、3
は光方向性結合器2から出射される探査光の光周波数を
、光源1の光周波数fからΔfだけシフトした光周波数
にする周波数シフタである。周波数シフタ3には、例え
ばTaO2゜PbMoO4,テルライトガラス等の音音
光学周波数変調器等が使用できる。4は探査光を被測定
光ファイバ5に入射し、探査光により被測定光ファイバ
5中で発生し、被測定光ファイバ5を後方に進むフレネ
ル反射あるいは後方レーリー散乱光の反射光信号と、被
測定光ファイバ5を前方に進む探査光とを分離する光方
向性結合器、6は反射光信号と参照光とを合波する合波
器、7は合波された光を受光し電気信号に変換する光検
出器、8は合波された光を光検出器7により受光するこ
とにより生じる周波数Δfのビート電気信号を処理する
信号処理装置、9は探査光が光源1から出射してから、
被測定光ファイバ5で反射あるいは散乱を受け、光検出
器7により受光されるまでの遅延時間と、参照光が光源
1から出射してから、光検出器7により受光されるまで
の遅延時間との差をτまたはそれに近い値に調整可能な
光遅延回路である。光遅延回路9は、第2図〜第4図に
示すように各種の方法で実現できる。すなわち、第2図
においてはプリズム10を、第3図においてはハーフミ
ラ−11と対向するミラー12を、また第4図において
は光ファイバ13.レンズ14およびレンズ15゜光フ
ァイバ16からなる平行ビーム系におけるコリメート用
レンズ15と光ファイバ16を、それぞれ各図における
破線の位置(2=0)から実線の位置(z =zo)ま
で動かし、光路長を変化させることにより実現できる。
FIG. 1 shows an embodiment of the wooden invention. 1 is a light source, 2 is a light splitter that divides the emitted light from light source 1 into exploration light and reference light, 3
is a frequency shifter that changes the optical frequency of the exploration light emitted from the optical directional coupler 2 to an optical frequency shifted from the optical frequency f of the light source 1 by Δf. For the frequency shifter 3, an acousto-optical frequency modulator such as TaO2°PbMoO4 or tellurite glass can be used. Reference numeral 4 inputs the probe light into the optical fiber 5 to be measured, and generates a reflected optical signal of the Fresnel reflection or backward Rayleigh scattering light generated in the optical fiber 5 by the probe light and propagates backward through the optical fiber 5 to be measured, and the reflected light signal to be measured. An optical directional coupler separates the probe light traveling forward through the measurement optical fiber 5, a multiplexer 6 combines the reflected optical signal and the reference light, and 7 receives the combined light and converts it into an electrical signal. 8 is a signal processing device for processing a beat electric signal of frequency Δf generated by receiving the combined light by photodetector 7;
The delay time from when the reference light is reflected or scattered by the optical fiber 5 to be measured until it is received by the photodetector 7, and the delay time from when the reference light is emitted from the light source 1 until it is received by the photodetector 7. This is an optical delay circuit that can adjust the difference between τ to τ or a value close to it. The optical delay circuit 9 can be realized by various methods as shown in FIGS. 2 to 4. That is, FIG. 2 shows the prism 10, FIG. 3 shows the mirror 12 facing the half mirror 11, and FIG. 4 shows the optical fiber 13. The collimating lens 15 and optical fiber 16 in the parallel beam system consisting of lens 14 and lens 15° optical fiber 16 are moved from the dashed line position (2 = 0) to the solid line position (z = zo) in each figure, respectively, to change the optical path. This can be achieved by changing the length.

そのとき、真空中の光速をCとすると、遅延時間の変化
量ではそれぞれ、第2図および第3図においては220
/C、第4図においては2゜/Cである。
At that time, if the speed of light in vacuum is C, then the amount of change in delay time is 220 in Figures 2 and 3, respectively.
/C, and in FIG. 4 it is 2°/C.

さて次に、本発明により高分解能で反°射信号が測定可
能であることを説明する。
Next, it will be explained that the reflected signal can be measured with high resolution according to the present invention.

第5図は同一光源から出射した2つの光波の遅延時間差
に対する規格化した光波の干渉信号の振幅、すなわちビ
ート’2ft気信号の振幅を示す図である。一般に、同
一光源から出た光でも、ある遅延時間以上離れた光は干
渉しなくなる。この時間をコヒーレンス時間Tcと呼ぶ
。以下の本発明の説明においては、第5図に示すように
ビート電気信号の半値幅をもってコヒーレンス時間と約
束する。
FIG. 5 is a diagram showing the amplitude of a normalized light wave interference signal with respect to the delay time difference between two light waves emitted from the same light source, that is, the amplitude of a beat '2ft signal. Generally, even if light is emitted from the same light source, light that is separated by a certain delay time will no longer interfere. This time is called coherence time Tc. In the following description of the present invention, the half-width of the beat electric signal is assumed to be the coherence time, as shown in FIG.

また、TCNλ2/cΔλである(λは光源の中心発振
波長、Δλは発振波長幅)。従って、第1図において、
まず、被測定光ファイバ中のある1点(A点とする)か
らの反射光信号と参照光信号が干渉するように、すなわ
ち、周波数Δfのビート電気信号が最大となるように光
遅延回路9を調整し、次に、同様に被測定光ファイバ中
の他の1点(B点とする)からの反射光信号と参照光信
号が干渉するように光遅延回路9を再調整すると、第6
図に示したようなビート電気信号の振幅と遅延時間との
関係が得られる。このとき、A点およびB点を測定した
ときの光遅延回路の遅延時間をτAおよびτbとし、そ
の差をΔT(=τ8−でA)とすると、A点とB点の距
離は、■・ΔT/2より求めることができる。ここで、
■は被測定光ファイバ中での光速である。また2で除し
ている理由は、ΔTは光がA点とB点を往復する時間で
あるからである。さて、上記ΔTが2Tc以下となった
時、第6図から分かるように、A点とB点は識別不可能
となる。従って、本発明の試験方法および試験装置の距
離分解能はV−Tcである。
Further, TCNλ2/cΔλ (λ is the center oscillation wavelength of the light source, Δλ is the oscillation wavelength width). Therefore, in Figure 1,
First, the optical delay circuit 9 is configured so that the reflected optical signal from a certain point (point A) in the optical fiber to be measured and the reference optical signal interfere with each other, that is, so that the beat electric signal of frequency Δf is maximized. , and then readjust the optical delay circuit 9 so that the reference optical signal interferes with the reflected optical signal from another point (point B) in the optical fiber under test.
The relationship between the amplitude of the beat electrical signal and the delay time as shown in the figure is obtained. At this time, if the delay times of the optical delay circuit when measuring points A and B are τA and τb, and the difference between them is ΔT (=A at τ8−), then the distance between points A and B is It can be determined from ΔT/2. here,
(2) is the speed of light in the optical fiber to be measured. The reason for dividing by 2 is that ΔT is the time required for light to travel back and forth between point A and point B. Now, when the above ΔT becomes 2Tc or less, as can be seen from FIG. 6, point A and point B become indistinguishable. Therefore, the distance resolution of the test method and test device of the present invention is V-Tc.

次に具体的に数値をあ、げて説明する。Next, we will explain with specific numerical values.

今、光源に発振波長(λ)1.3μm、発振波長幅(Δ
λ)100nmの発光ダイオード(LED)を考える。
Now, the light source has an oscillation wavelength (λ) of 1.3 μm and an oscillation wavelength width (Δ
λ) Consider a 100 nm light emitting diode (LED).

このとき、7(yλ2/cΔλ= 56fsであるから
、光フアイバ中での光速を2 x lo’+n/sとす
ると距離分解能は約lOμmとなる。このような高分解
能を従来技術で実現するには、探査光には光パルス幅0
.1psの光パルスが必要であり、なおかつその受信帯
域幅は光パルス幅の最低107Hzが必要とされ、実質
不可能である。上記LEDよりも高出力が期待できる半
導体レーザ(LD)を使用したときの距離分解能は、L
Dの発振波長幅がおおよそΔλ=0.1nmであるから
、同様の計算により1cmと求まる。この場合において
も、受信帯域幅として10GH2が必要とされ、従来技
術で同一の性能を得ることはかなり困難である。
At this time, since 7(yλ2/cΔλ = 56 fs, if the speed of light in the optical fiber is 2 x lo' + n/s, the distance resolution is about 10 μm. To achieve such high resolution using conventional technology, The exploration light has an optical pulse width of 0.
.. An optical pulse of 1 ps is required, and the reception bandwidth thereof requires a minimum optical pulse width of 107 Hz, which is practically impossible. The distance resolution when using a semiconductor laser (LD), which is expected to have higher output than the above LED, is L
Since the oscillation wavelength width of D is approximately Δλ=0.1 nm, it is determined to be 1 cm by a similar calculation. Even in this case, 10 GH2 is required as a reception bandwidth, and it is quite difficult to obtain the same performance with the conventional technology.

以上距離測定および距離分解能について説明したが、当
然のことながら、本発明により反射光信号のレベルも測
定できる。本発明で測定する信号は、反射光イ3号と参
照光を合波した光を受光することにより発生するビート
電気信号であるから、ヘテロダイン受信の原理により、
ビート電気信号の振幅は反射光信号の光強度と参照光の
光強度の積の平行板に比例する。従って、ビート電気信
号の振幅から反射光信号のレベルを測定可能である。ま
た、参照光の光強度を強めることにより、ビート電気4
8号も増大し、ショット雑音限界に近いSN比が達成可
能である。さらに、本発明ではビート電気信号を受信す
るときの帯域幅は、光周波数シフタおよび受信帯域フィ
ルタの安定性で決定される帯域幅まで狭めることが可能
である。ビート電気信号の周波数Δfが100MHzと
しても、これを受信帯域幅1k112以下で受信するこ
とは容易である。
Although distance measurement and distance resolution have been described above, it goes without saying that the level of a reflected light signal can also be measured by the present invention. Since the signal measured in the present invention is a beat electric signal generated by receiving light that is a combination of reflected light No. 3 and reference light, based on the principle of heterodyne reception,
The amplitude of the beat electrical signal is proportional to the parallel plate product of the optical intensity of the reflected optical signal and the optical intensity of the reference beam. Therefore, the level of the reflected optical signal can be measured from the amplitude of the beat electrical signal. In addition, by increasing the light intensity of the reference light, Beat Electric 4
No. 8 is also increased, and an SN ratio close to the shot noise limit can be achieved. Furthermore, in the present invention, the bandwidth when receiving the beat electrical signal can be narrowed to a bandwidth determined by the stability of the optical frequency shifter and the receiving band filter. Even if the frequency Δf of the beat electric signal is 100 MHz, it is easy to receive it with a reception bandwidth of 1k112 or less.

一方、これまでのヘテロダイン0TDRも含めた従来技
術では、上記LDを使用した場合に相当する1cmの距
離分解能を得るには、帯域幅をl0GH2としなければ
ならない。従って、本発明では、受信帯域を狭めること
により、従来技術よりもSN比を70dB以上改善する
ことができる。
On the other hand, in the conventional technology including the conventional heterodyne 0TDR, the bandwidth must be 10GH2 in order to obtain a distance resolution of 1 cm, which corresponds to the case where the above-mentioned LD is used. Therefore, in the present invention, by narrowing the receiving band, the S/N ratio can be improved by 70 dB or more compared to the conventional technology.

以上、本発明で使用する光源の変調方法については触れ
なかったが、本発明の木質は光源のコヒ−レンス時間に
より距離分解能が決定されるということであり、従来の
0TDnのように光源を必ずしもパルス駆動する必要は
ない。また、以上では、A点およびB点というディスク
リートな点からの反射光信号について考えたが、光ファ
イバからの後方レーリー散乱光のように連続して分布す
る反射点からの反射光信号も受信できる。このとき、光
遅延回路の遅延時間を僅かずつずらしてビート電気信号
の振幅を測定することにより、第7図に黒丸で示すよう
な光ファイバからの後方レーリー散乱光信号が得られる
。この波形は従来のヘテロダイン0TDRで測定される
ものと全く同一である。
Although the modulation method of the light source used in the present invention has not been mentioned above, the distance resolution of the wood of the present invention is determined by the coherence time of the light source, and unlike the conventional 0TDn, the light source is not necessarily There is no need to pulse drive. In addition, although we have considered reflected light signals from discrete points such as point A and point B above, it is also possible to receive reflected light signals from continuously distributed reflection points, such as back Rayleigh scattered light from an optical fiber. . At this time, by slightly shifting the delay time of the optical delay circuit and measuring the amplitude of the beat electric signal, a backward Rayleigh scattered light signal from the optical fiber as shown by the black circles in FIG. 7 can be obtained. This waveform is exactly the same as that measured with a conventional heterodyne 0TDR.

第8図は本発明の他の実施例を示すものである。図にお
いて17は音響光学周波数変調器(超音波光変調器)で
ある。本実施例における音響光学周波数変調器17は第
1図に示した光分岐器2と光周波数シフタ3を兼ねてい
る。すなわち、光源1からの出射光は音響光学周波数変
調器17に入射し、そのO次回折光(透過光)は光遅延
回路9に導かれる。また、光周波数がΔfたけシフトし
た1次回折光は光方向性結合器4に導かれる。0次およ
び1次回折光の光パワー分岐比は、音響光学周波数変調
器17の駆動電力を調節することにより変化させること
ができる。本実施例における他の動作は、第1図に示し
た実施例と同様である。本実施例では、第1図に示した
実施例に比べ、部品点数を減らすことがてき、また光分
岐器2または光周波数シフタ3における過剰損失を省く
ことができる。
FIG. 8 shows another embodiment of the invention. In the figure, 17 is an acousto-optic frequency modulator (ultrasonic light modulator). The acousto-optic frequency modulator 17 in this embodiment serves both as the optical splitter 2 and the optical frequency shifter 3 shown in FIG. That is, the light emitted from the light source 1 enters the acousto-optic frequency modulator 17, and its O-th order diffracted light (transmitted light) is guided to the optical delay circuit 9. Further, the first-order diffracted light whose optical frequency has been shifted by Δf is guided to the optical directional coupler 4. The optical power branching ratio of the 0th-order and 1st-order diffracted lights can be changed by adjusting the driving power of the acousto-optic frequency modulator 17. Other operations in this embodiment are similar to those in the embodiment shown in FIG. In this embodiment, the number of parts can be reduced compared to the embodiment shown in FIG. 1, and excessive loss in the optical splitter 2 or the optical frequency shifter 3 can be eliminated.

第9図は本発明の他の実施例を示すものである。図にお
いて18は光遅延回路9からの参照光を光方向性結合器
4へ通過させるが、その反対方向に進む光方向性結合器
4からの光は通過させない光アイソレータである。本実
施例では、光方向性結合器4は第1図における゛光合波
器6の役割りも兼ねている。すなわち、探査光は光方向
性結合器4を通して被測定光ファイバ5に入射し、被測
定光ファイバ5中で反射あるいは散乱された反射光信号
は再び光方向性結合器4を通して光検出器7に導かれる
。そのとき同時に、反射光信号と参照光は光方向性結合
器4により合波される。光アイソレータ18を使用する
目的は、探査光が光方向性結合器4を通して参照光が伝
搬する光路に進入することにより、その光路を構成する
光部品からの反射光あるいは後方散乱光が発生し、それ
らの反射光信号が被測定光ファイバ5からの反射光信号
に対する雑音となることを防ぐものである。光アイソレ
ータ18の透過損失−はほぼ無視できるので、本実施例
は、第1図に示した実施例に比べ、反射光信号に対する
挿入損失を光方向性結合器6の分だけ低減できる。
FIG. 9 shows another embodiment of the invention. In the figure, reference numeral 18 denotes an optical isolator that allows the reference light from the optical delay circuit 9 to pass through to the optical directional coupler 4, but does not allow the light from the optical directional coupler 4 traveling in the opposite direction to pass through. In this embodiment, the optical directional coupler 4 also serves as the optical multiplexer 6 in FIG. That is, the probe light enters the optical fiber 5 to be measured through the optical directional coupler 4, and the reflected optical signal reflected or scattered in the optical fiber 5 to be measured passes through the optical directional coupler 4 again to the photodetector 7. be guided. At the same time, the reflected light signal and the reference light are combined by the optical directional coupler 4. The purpose of using the optical isolator 18 is that when the exploration light enters the optical path through which the reference light propagates through the optical directional coupler 4, reflected light or backscattered light is generated from the optical components that make up the optical path. This is to prevent those reflected light signals from becoming noise to the reflected light signal from the optical fiber 5 to be measured. Since the transmission loss of the optical isolator 18 is almost negligible, this embodiment can reduce the insertion loss for the reflected optical signal by the amount of the optical directional coupler 6 compared to the embodiment shown in FIG.

[発明の効果] 以上説明したように、本発明によれば、探査光が光源か
ら出射してから、被試験物中で反射あるいは後方に散乱
され、光検出器により受光されるまでの遅延時間と、参
照光が探査光源と同一の光源から出射してから、光検出
器により受光されるまでの遅延時間の差をTまたはそれ
に近い値に調整可能な光遅延回路を設けることにより、
コヒーレンス時間が短い光源を使用する場合においても
、探査光と参照光の干渉成分に対応するビート電気信号
を得ることができる。反射位置の測定分解能は、光源の
コヒーレンス時間に比例するので、コヒーレンス時間が
短い光源が使用可能な本発明により距離分解能の高い反
射試験方法および装置が実現できる。さらに本発明は、
信号の受信方法としてヘテロダイン検波を採用しており
、なおかつ本発明では狭帯域受信が可能なため、SN比
に優れた信号の受信が可能である。
[Effects of the Invention] As explained above, according to the present invention, the delay time from when the exploration light is emitted from the light source until it is reflected or scattered backwards in the test object and received by the photodetector is By providing an optical delay circuit that can adjust the difference in delay time from when the reference light is emitted from the same light source as the exploration light source until it is received by the photodetector to T or a value close to it,
Even when using a light source with a short coherence time, it is possible to obtain a beat electrical signal corresponding to the interference component between the probe light and the reference light. Since the measurement resolution of the reflection position is proportional to the coherence time of the light source, the present invention, which allows the use of a light source with a short coherence time, makes it possible to realize a reflection testing method and apparatus with high distance resolution. Furthermore, the present invention
Since heterodyne detection is adopted as a signal reception method, and narrow band reception is possible in the present invention, it is possible to receive signals with an excellent S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、 第2図〜第4図はそれぞれ光遅延回路の構成を示す図、 第5図は光源の時間的可干渉性を示す図、第6図は2点
(A、B点)からの反射信号があるときのビート電気信
号の振幅と遅延時間の関係を示す図、 第7図は光ファイバからの後方レーリー散乱光を測定し
たときのビート電気信号の振幅と遅延時間との関係を示
す図、 第8図は本発明の他の実施例の構成を示すブロック図、 第9図は本発明のさらに他の実施例の構成を示すブロッ
ク図である。 1・・・光掠、 2・・・光分岐器、 3・・・光周波数シフタ、 4・・・光方向性結合器、 5・・・被測定光ファイバ、 6・・・光合波器、 7・・・光検出器、 8・・・信号処理装置、 9・・・光遅延回路、 17・・・超音波光変調器、 18・・・光アイソレータ。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIGS. 2 to 4 are diagrams each showing the configuration of an optical delay circuit, and FIG. 5 is a diagram showing the temporal coherence of the light source. Figure 6 is a diagram showing the relationship between the amplitude and delay time of the beat electrical signal when there are reflected signals from two points (points A and B), and Figure 7 is when back Rayleigh scattered light from an optical fiber is measured. FIG. 8 is a block diagram showing the configuration of another embodiment of the present invention. FIG. 9 is a diagram showing the configuration of still another embodiment of the present invention. It is a block diagram. DESCRIPTION OF SYMBOLS 1... Optical beam, 2... Optical splitter, 3... Optical frequency shifter, 4... Optical directional coupler, 5... Optical fiber to be measured, 6... Optical multiplexer, 7... Photodetector, 8... Signal processing device, 9... Optical delay circuit, 17... Ultrasonic optical modulator, 18... Optical isolator.

Claims (1)

【特許請求の範囲】 1)光源からの出射光をΔfの光周波数差をもつ探査光
と参照光に分け、被試験物の一端から前記探査光を入射
し、前記被試験物の中で前記探査光の反射光あるいは後
方散乱光として生じる逆方向の光と前記参照光を合波し
て光検出器により受光し、前記受光により生じる周波数
Δfのビート電気信号を解析することにより、前記被試
験物からの前記逆方向の光の強度、あるいは反射・散乱
の位置を知る試験を行う方法において、 前記探査光が前記光源から出射してから、前記被試験物
中で反射されあるいは後方に散乱されて、前記光検出器
により受光されるまでの遅延時間と、前記参照光が前記
光源から出射してから、前記光検出器により受光される
までの遅延時間との差を零またはそれに近い値に調整可
能な光遅延回路を設け、 前記探査光が前記被試験物中のある点で、反射あるいは
後方散乱を受けた光と、前記参照光の合波により生じる
前記ビート電気信号が最大となるように、前記光遅延回
路を調整し、次に、前記被試験物中の他の点で、反射あ
るいは後方散乱を受けた光と、前記参照光の合波により
生じる前記ビート電気信号が最大となるように、前記光
遅延回路を調整したとき、前記ある点と他の点の間の距
離を、前記ある点に対する前記遅延回路の遅延時間と前
記他の点に対する前記遅延回路の遅延時間との差をΔT
、被試験物中の光速をVとして、V・ΔT/2より求め
ることを特徴とする高分解能反射試験方法。 2)光源と、 前記光源からの出射光を探査光と参照光に分岐する分岐
手段と、 前記探査光と参照光の光周波数にΔfの周波数差を設け
る手段と、 前記探査光を被試験物に結合させ、前記探査光が前記被
試験物中で反射あるいは散乱して後方に進む反射光信号
と、前記被試験物中を前方に進む光信号とを分離する光
方向性結合器と、 前記反射光信号と前記参照光を合波する合波手段と、 前記合波手段により合波された光を受光する光検出手段
と、 前記受光により発生する周波数Δfのビート電気信号を
処理する手段と、 前記反射信号と前記参照光が、それぞれ、前記光源から
出射されてから前記光検出手段により受光されるまでの
遅延時間差を零またはそれに近い値に調整するための光
遅延回路と を具備したことを特徴とする高分解能反射試験装置。
[Claims] 1) Separate the emitted light from the light source into exploration light and reference light having an optical frequency difference of Δf, enter the exploration light from one end of the test object, and The light in the opposite direction generated as reflected light or backscattered light of the probe light and the reference light are combined and received by a photodetector, and the beat electric signal of frequency Δf generated by the received light is analyzed, thereby detecting the In a method for conducting a test to determine the intensity of light in the opposite direction from an object or the position of reflection/scattering, the probe light is emitted from the light source and then reflected or scattered backward in the object under test. The difference between the delay time until the light is received by the photodetector and the delay time from when the reference light is emitted from the light source until it is received by the photodetector is set to zero or a value close to it. An adjustable optical delay circuit is provided so that the beat electric signal generated by combining the reference light and the light that has been reflected or backscattered at a certain point in the test object by the probe light is maximized. Then, the optical delay circuit is adjusted, and the beat electric signal generated by combining the reference light and the light reflected or backscattered at other points in the test object is maximized. When adjusting the optical delay circuit, the distance between the certain point and another point is determined by the difference between the delay time of the delay circuit for the certain point and the delay time of the delay circuit for the other point. ΔT
, a high-resolution reflection test method characterized in that the speed of light in the test object is determined from V·ΔT/2. 2) a light source; branching means for branching the light emitted from the light source into an exploration light and a reference light; means for providing a frequency difference of Δf between the optical frequencies of the exploration light and the reference light; an optical directional coupler that separates a reflected optical signal in which the probe light is reflected or scattered in the object under test and travels backward, and an optical signal that travels forward in the object under test; a combining means for combining the reflected light signal and the reference light; a light detecting means for receiving the light multiplexed by the combining means; and a means for processing a beat electric signal of frequency Δf generated by the received light. , comprising an optical delay circuit for adjusting a delay time difference between the reflected signal and the reference light, from when they are emitted from the light source until they are received by the photodetecting means, to zero or a value close to it. A high-resolution reflection testing device featuring:
JP30154787A 1987-12-01 1987-12-01 Testing method of reflection with high resolution and apparatus therefor Pending JPH01145545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30154787A JPH01145545A (en) 1987-12-01 1987-12-01 Testing method of reflection with high resolution and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30154787A JPH01145545A (en) 1987-12-01 1987-12-01 Testing method of reflection with high resolution and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH01145545A true JPH01145545A (en) 1989-06-07

Family

ID=17898253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30154787A Pending JPH01145545A (en) 1987-12-01 1987-12-01 Testing method of reflection with high resolution and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH01145545A (en)

Similar Documents

Publication Publication Date Title
JP3279116B2 (en) Laser Doppler velocimeter
CN110383009B (en) Optical sensing system and method for detecting stress in optical sensing optical fiber
US5686986A (en) Optical fiber characteristic measuring device
US5844235A (en) Optical frequency domain reflectometer for use as an optical fiber testing device
JP2954871B2 (en) Optical fiber sensor
US6008487A (en) Optical-fiber inspection device
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
EP0183502B1 (en) Improvements relating to optical pulse generating arrangements
JP5148420B2 (en) Optical fiber testing equipment
KR100483147B1 (en) System and method for measuring length of optical fiber
JP3282135B2 (en) Optical frequency domain reflectometer
JP2575794B2 (en) Optical fiber characteristics evaluation device
JP3408789B2 (en) Method and apparatus for measuring backscattered light
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JPH067071B2 (en) Optical spectrum measuring device
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JPH01145545A (en) Testing method of reflection with high resolution and apparatus therefor
JPH03175333A (en) Light transmission line measuring device
JPH05322695A (en) Light pulse tester
JPH0658291B2 (en) Optical transmission loss measuring method and apparatus
JP2002509612A (en) Wavelength measurement system
JP3231117B2 (en) Measurement method of nonlinear refractive index of optical fiber
JPS5837496B2 (en) Optical fiber length measurement method
JP3453746B2 (en) Optical fiber inspection equipment
JPH0682086B2 (en) Mode coupling evaluation device