JPH03175333A - Light transmission line measuring device - Google Patents

Light transmission line measuring device

Info

Publication number
JPH03175333A
JPH03175333A JP32308589A JP32308589A JPH03175333A JP H03175333 A JPH03175333 A JP H03175333A JP 32308589 A JP32308589 A JP 32308589A JP 32308589 A JP32308589 A JP 32308589A JP H03175333 A JPH03175333 A JP H03175333A
Authority
JP
Japan
Prior art keywords
light
optical
output
transmission line
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32308589A
Other languages
Japanese (ja)
Other versions
JP2626099B2 (en
Inventor
Kiyoshi Takai
潔 高井
Sunao Sugiyama
直 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP32308589A priority Critical patent/JP2626099B2/en
Publication of JPH03175333A publication Critical patent/JPH03175333A/en
Application granted granted Critical
Publication of JP2626099B2 publication Critical patent/JP2626099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To effect operation for the position of a trouble point at a short distance by measuring the interval of interference frequency changing corresponding to the distance between a mirror and the trouble point. CONSTITUTION:When a semiconductor laser driving power supply 11 drives a DFB semiconductor laser 1, the beam emitted from the laser 1 becomes parallel beam by a collimator lens 2 to be incident to a fiber 7 to be measure through a beam isolator 3, a beam splitter 4, a lens 5 and a half mirror 6. Herein, when an operation display part 10 indicates the current value of the power supply 11 to sweep the output frequency of the light source, the mirror 6 and the breaking point A of the fiber 7 form a resonator and the beam returning to the beam splitter 4 from the mirror 6 generates an interference peak at the frequency interval corresponding to the length of the resonator. Therefore, by counting the beam incident to a photodetector 8 through the beam splitter 4 by a counter 9 equipped with a filter, the position from the breaking point A is calculated and displayed by the operation display part 10.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光伝送線路の障害点測定装置で特に近距離の
障害点を測定するものに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fault point measuring device for an optical transmission line, particularly one that measures short-distance fault points.

〈従来の技術〉 光ファイバの破断点等を検出するために、光ファイバの
一端から光パルスを送り、後方散乱光を観測する0TD
R(Optical Tine Donain Ref
lectar )が従来から用いられている。
<Prior art> 0TD, which sends a light pulse from one end of an optical fiber and observes the backscattered light in order to detect the break point of the optical fiber.
R (Optical Tine Donain Ref
lectar) has been used conventionally.

〈発明が解決しようとする課題〉 しかしながら、0TDRは破断点からの後方散乱光の時
間遅れを測定しているため、短距離(5m以下)の測定
は不可能である。
<Problems to be Solved by the Invention> However, since 0TDR measures the time delay of backscattered light from the breaking point, short-distance measurement (5 m or less) is impossible.

本発明は上記のような課題を解決するためになされたも
ので、光伝送線路の短距離の破断点の位置を測定可能な
破断点測定装置を実現することを目的とする。
The present invention was made in order to solve the above problems, and an object of the present invention is to realize a break point measuring device that can measure the position of a short distance break point of an optical transmission line.

〈課題を解決するための手段〉 本発明の#1は入射光の少なくとも一部を反射するミラ
ーと光伝送線路の障害点との間で光源からの光を干渉さ
せ、光源の光周波数を掃引したときの干渉光出力から前
記ミラーと前記障害点との間の共振器長を演算すること
により、障害点位置を測定するように構成したことを特
徴とする光伝送線路測定器に関する。
<Means for Solving the Problems> The first aspect of the present invention is to interfere the light from the light source between a mirror that reflects at least a portion of the incident light and a failure point of the optical transmission line, and sweep the optical frequency of the light source. The present invention relates to an optical transmission line measuring instrument characterized in that the position of the fault point is measured by calculating the resonator length between the mirror and the fault point from the output of interference light when the interference occurs.

本発明の第2は光源と、この光源の出力波長を掃引する
掃引手段と、前記光源の出力光を入射する光分岐手段と
、この光分岐手段の出力光を入射してその透過光を光伝
送線路に導くハーフミラ−と、このハーフミラ−と前記
光伝送線路の障害点との間で干渉した光が前記ハーフミ
ラ−を介して前記分岐手段に戻り前記光源からの光と分
離された後入射する受光素子と、この受光素子の出力が
示す干渉ピーク同士の間隔から前記障害点の位置を演算
する演算手段とを備えたことを特徴とする光伝送線路測
定器に存する。
A second aspect of the present invention is a light source, a sweeping means for sweeping the output wavelength of the light source, a light branching means for inputting the output light of the light source, and a light branching means for inputting the output light of the light branching means and transmitting the transmitted light. A half mirror guided to a transmission line, and the light interfered between this half mirror and a failure point of the optical transmission line returns to the branching means via the half mirror and enters after being separated from the light from the light source. An optical transmission line measuring instrument characterized by comprising a light receiving element and a calculation means for calculating the position of the fault point from the interval between interference peaks indicated by the output of the light receiving element.

本発明の第3は後面に反射ミラーを有する半導体レーザ
と、この半導体レーザの出力周波数を掃引する掃引手段
と、前記半導体レーザの前面からの出射光を2つに分岐
して一方の出力光を前記光伝送線路に導く光分岐手段と
、この光分岐手段の他方の出力光を入射する光スペクト
ル線幅測定装置と、前記反射ミラーと前記障害点との間
の干渉により生ずる前記光スペクトル線幅測定装置の出
力変化から前記障害点の位置を演算する演算手段とを備
えたことを特徴とする光伝送線路測定器に間する。
A third aspect of the present invention includes a semiconductor laser having a reflection mirror on the rear surface, a sweeping means for sweeping the output frequency of the semiconductor laser, and a device that splits the light emitted from the front surface of the semiconductor laser into two and outputs one of the output lights. the optical spectrum linewidth caused by interference between the optical branching means guiding the optical transmission line to the optical transmission line, the optical spectrum linewidth measurement device into which the other output light of the optical branching means is incident, and the reflecting mirror and the failure point; The present invention provides an optical transmission line measuring instrument characterized by comprising: computing means for computing the position of the fault point from changes in the output of the measuring device.

く作用〉 本発明によれば、ミラーと障害点との間の距離に対応し
て干渉周波数の間隔が変化するので、この間隔から障害
点の位置を演算することができる。
Effects> According to the present invention, since the interval between interference frequencies changes in accordance with the distance between the mirror and the failure point, the position of the failure point can be calculated from this interval.

〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.

第1図は本発明に係る光伝送線路測定器の第1の実施例
を示す構成ブロック図である。半導体レーザ駆動電′a
11は光源を構成するDFB半導体レーザ1の注入th
 mを駆動する。半導体レーザ1を出射した光はコリメ
ートレンズ2で平行光にされ、戻り光防止用の光アイソ
レータ3を通って、光分岐手段を構成するビームスプリ
ッタ4に入射する。ビームスプリッタ4を透過した光は
レンズ5で絞られ、ハーフミラ−6を介して被測定ファ
イバ7に入射する。被測定ファイバ7の破断点Aからの
後方散乱光は干渉後ハーフミラ−6を透過し、レンズ5
で平行光となり、ビームスプリッタ4で反射し、受光素
子を構成するフォトダイオード8に入射する。フォトダ
イオード8の出力はフィルタ付カウンタ9で計数され、
さらに演算表示部10で破断点Aの位置が演算され、表
示される。
FIG. 1 is a block diagram showing a first embodiment of an optical transmission line measuring instrument according to the present invention. Semiconductor laser drive electric 'a'
11 is the injection th of the DFB semiconductor laser 1 constituting the light source.
Drive m. The light emitted from the semiconductor laser 1 is made into parallel light by a collimating lens 2, passes through an optical isolator 3 for preventing return light, and enters a beam splitter 4 constituting a light branching means. The light transmitted through the beam splitter 4 is condensed by a lens 5 and enters a fiber to be measured 7 via a half mirror 6. The backscattered light from the break point A of the fiber to be measured 7 is transmitted through the half mirror 6 after interference, and then passes through the lens 5.
The light becomes parallel light, is reflected by the beam splitter 4, and enters the photodiode 8 that constitutes the light receiving element. The output of the photodiode 8 is counted by a counter 9 with a filter,
Furthermore, the position of the breaking point A is calculated and displayed on the calculation display section 10.

また演算表示部10は半導体レーザ駆動電源11に電流
値の指示を与えることにより、光源の出力周波数を掃引
する掃引手段をも構成する。
The calculation display section 10 also constitutes a sweeping means for sweeping the output frequency of the light source by giving a current value instruction to the semiconductor laser drive power supply 11.

上記の構成の光伝送線路測定器の動作を次に説明する。The operation of the optical transmission line measuring instrument having the above configuration will be explained next.

この光伝送線路測定器は、半導体レーザ1の駆動電流を
変えることにより、発振波長を変化させ、ハーフミラ−
6と被測定ファイバ7の破断点Aとで形成される共振器
の共振器長を測定することにより、短距離の破断点位置
を正確に測定するものである0周波数が掃引された光が
ハーフミラ−6を介して被測定ファイバ7に入射すると
、破断点Aとハーフミラ−6との間における干渉により
、ハーフミラ−6からビームスプリッタ4へ戻る光は上
記共振器長に対応した周波数間隔で干渉ピークを生じる
。被測定ファイバ7の直前に配!したハーフミラ−6と
破断点Aとの間で形成される共振器の出力が強められる
条件は、共振器長すなわちハーフミラ−6と破断点Aと
の間の距離を2、光速をC2半導体レーザ1の発振周波
数をf、光ファイバ7の屈折率をnとすると、次式で表
される。
This optical transmission line measuring instrument changes the oscillation wavelength by changing the drive current of the semiconductor laser 1, and
By measuring the resonator length of the resonator formed by 6 and the break point A of the fiber to be measured 7, the 0 frequency swept light is used to accurately measure the short distance break point position. -6, the light returns to the beam splitter 4 from the half mirror 6 due to interference between the break point A and the half mirror 6, and the interference peaks at a frequency interval corresponding to the resonator length. occurs. Placed just before the fiber under test 7! The conditions for intensifying the output of the resonator formed between the half mirror 6 and the breaking point A are as follows: the resonator length, that is, the distance between the half mirror 6 and the breaking point A, is 2, the speed of light is C2, the semiconductor laser is 1 When the oscillation frequency of is f and the refractive index of the optical fiber 7 is n, it is expressed by the following equation.

g=m(c/2f)(1/n)     =11)ただ
しm=1.2.3・・・ ここで半導体レーザ1の発振周波数を変化させ、次に出
力が強められるときの発振周波数をf−とすると、 R=c/2n (f−f −)      −(2>と
なる、したがって第3図に示すように、半導体レーザ1
の注入電流と中心波長の関係が分かっていれば、f−f
−の値を知ることができ、共振器長2を測定することが
できる0、tた半一体レーザ1の中心波長が分かってい
なくても、第3図の傾き(ここでは約1.3GHz/m
A)が分かっていれば測定可能である。
g=m(c/2f)(1/n) =11) However, m=1.2.3... Here, change the oscillation frequency of the semiconductor laser 1, and then calculate the oscillation frequency when the output is increased. f-, then R=c/2n (f-f-)-(2>, so as shown in FIG. 3, the semiconductor laser 1
If the relationship between the injection current and the center wavelength is known, f−f
- can be known and the cavity length 2 can be measured. Even if the center wavelength of the semi-integral laser 1 is not known, the slope of Fig. 3 (here approximately 1.3 GHz/ m
If A) is known, it can be measured.

ここで実際の動作例を以下に示す。An example of actual operation is shown below.

(イ)半導体レーザ1の注入電流を例えば30mAから
10mA/秒で上げてゆき、このときのフォトダイオー
ド8の出力が第2図の12のようになっなとする。
(a) Suppose that the injection current of the semiconductor laser 1 is increased, for example, from 30 mA to 10 mA/sec, and the output of the photodiode 8 at this time becomes as shown in 12 in FIG.

(ロ)この出力はフィルタ付カウンタ9においてフィル
タでスロープ成分13を取除さ、カウンタで計数され2
力ウント/秒となる。
(b) This output is filtered in a filter equipped counter 9 to remove the slope component 13, and then counted by the counter 2.
The force is expressed in units of force per second.

(ハ>SX表示部10で(イ)および(ロ)の数値を用
いてピークからピーク迄の電流fii 5 m Aを求
め、レーザ発振周波数差 1.3GHz/mAx5mA より、共振器長Pは g=3x108/2x1.3x5G 0.02m となる、なお半導体レーザ1に電流が流れ過ぎないよう
に、演算表示部10より駆動電源11にリミッタをかけ
ている。
(C> Find the current fii 5 mA from peak to peak using the values in (a) and (b) on the SX display unit 10, and from the laser oscillation frequency difference of 1.3 GHz/mA x 5 mA, the resonator length P is g =3x108/2x1.3x5G 0.02m.A limiter is applied to the drive power source 11 from the arithmetic display section 10 to prevent too much current from flowing through the semiconductor laser 1.

上記の手順により、半導体レーザ1の電流掃引幅を30
〜160mA(周波数差で180GHz)、レーザ線幅
をIMHzとしたとき、最短測定距離(OTDRでデッ
ドゾーン)は掃引幅で決まり、0.5mm、最長測定距
離は線幅で決まり、100mとなる。ただし最長測定距
離は、現在数も線幅の狭い(1kHz )半導体レーザ
を用いれば、1100k迄測定可能となる。
By the above procedure, the current sweep width of the semiconductor laser 1 is set to 30
~160 mA (180 GHz in frequency difference) and when the laser line width is IMHz, the shortest measurement distance (dead zone in OTDR) is determined by the sweep width and is 0.5 mm, and the longest measurement distance is determined by the line width and is 100 m. However, the longest measurement distance can be measured up to 1100 km if a semiconductor laser with a narrow linewidth (1 kHz) is used.

このような構成の光伝送線路測定器によれば、光源の波
長を変えて、干渉法を用いることにより、被測定ファイ
バの短距離の破断点の位置を高精度で測定することがで
きる。
According to the optical transmission line measuring instrument having such a configuration, by changing the wavelength of the light source and using interferometry, it is possible to measure the position of a short-distance break point of the fiber under test with high precision.

また光分岐手段として、ビームスプリッタの代りに超音
波光変調器を用いて出射光に変関をかけ、受光素子の出
力をロックインアンプで同期検波すれば、S/N比が向
上する。
Furthermore, the S/N ratio can be improved by using an ultrasonic optical modulator instead of a beam splitter as the optical branching means to transform the emitted light, and by synchronously detecting the output of the light receiving element with a lock-in amplifier.

またフィルタ付きカウンタの代りにA/D変換器を用い
てコンピュータで演算処理してもよい。
Further, instead of a counter with a filter, an A/D converter may be used to perform arithmetic processing on a computer.

また破断点が多数個ある場合にも、FFTアナライザを
用いて破断点の分布を知ることができる。
Furthermore, even when there are many breaking points, the distribution of the breaking points can be determined using an FFT analyzer.

第4図は本発明に係る光伝送線路測定器の第2の実施例
を示す構成ブロック図である。第1図と同じ部分は同一
の記号を付しである。半導体レーザ駆動電源11は演算
表示部20の指示に基づいて、DFB半導体レーザ1を
ある電流で発振させる。ここでDF8半導体レーザ1は
少なくともレーザ光の一部を反射する後面のミラーと反
射を抑えな前面の端面を備えている。DFB半導体レー
ザ1の前面の端面から出射された光はレンズ2で平行光
にされ、光アイソレータ13に入射する。
FIG. 4 is a block diagram showing a second embodiment of the optical transmission line measuring instrument according to the present invention. The same parts as in FIG. 1 are given the same symbols. The semiconductor laser drive power supply 11 causes the DFB semiconductor laser 1 to oscillate with a certain current based on instructions from the calculation display section 20 . Here, the DF8 semiconductor laser 1 includes a rear mirror that reflects at least a portion of the laser beam and a front end surface that suppresses reflection. Light emitted from the front end face of the DFB semiconductor laser 1 is converted into parallel light by a lens 2 and enters an optical isolator 13.

ここで光アイソレータ13はアイソレーション比が20
〜30dB程度で、DFB半導体レーザ1に戻り光を与
えて半導体レーザ1の後面のミラーと被測定光ファイバ
破断点との間で共振器を形成するとともに、半導体し〜
ザ1の破損あるいは劣化を防止するためのものである。
Here, the optical isolator 13 has an isolation ratio of 20
Return light is given to the DFB semiconductor laser 1 at about ~30 dB to form a resonator between the mirror on the rear surface of the semiconductor laser 1 and the break point of the optical fiber to be measured, and the semiconductor
This is to prevent damage or deterioration of the housing 1.

光アイソレータ13を通過した光はビームスグリツタ1
4で2つに分岐され、一方の出射光(透過光)はレンズ
5で絞られ、被測定光ファイバ7に入射する。被測定光
ファイバ7の破断点Aで生じた後方散乱光は元の経路を
たどってDFB半導体レーザ1に戻る。
The light that has passed through the optical isolator 13 is sent to the beam sinter 1
4, the emitted light (transmitted light) is divided into two parts, and one of the emitted lights (transmitted light) is condensed by a lens 5 and enters an optical fiber 7 to be measured. The backscattered light generated at the break point A of the optical fiber 7 to be measured returns to the DFB semiconductor laser 1 following the original path.

ビームスプリッタ14の他方の分岐光(反射光)はアイ
ソレーション比が30〜60dBの光アイソレータ23
を通り、レンズ15で絞られ、光ファイバ21を介して
光スペクトル線幅測定装置22に入射する。光スペクト
ル線幅測定装置22はこの入射光の光スペクトル線幅を
測定し、その出力に基づいて演算表示部20が破断点A
の位置を演算する。
The other branched light (reflected light) of the beam splitter 14 is passed through an optical isolator 23 with an isolation ratio of 30 to 60 dB.
The light is condensed by a lens 15 and enters an optical spectrum linewidth measuring device 22 via an optical fiber 21 . The optical spectrum linewidth measurement device 22 measures the optical spectrum linewidth of this incident light, and based on the output, the calculation display unit 20 determines the breaking point A.
Calculate the position of.

上記のような構成の光伝送線路測定器の動作を次に説明
する。演算表示部20は特定のレーザ周波数における光
スペクトル線幅出力を入力した後、半導体レーザ駆動電
源11に指示を出して半導体レーザ1の駆動電流を変化
させ、異なったレーザ周波数における光スペクトル線幅
を入力する。以下同様に半導体レーザ駆動電源11に順
次指示を出して、半導体レーザ1の駆動電流値を変化さ
せ、変化するレーザ周波数に対応する各周波数光スペク
トル線幅を入力する。スペクトル線幅はレーザの発振周
波数に対して一定周波数て変化するので、この周期を演
算表示部20で測定し、(2)式を用いて半導体レーザ
1(の後面の端面)と被測定ファイバ7中の破断点Aの
間の距IIQを測定することができる。この距離eから
半導体レーザ1と光ファイバ7入射口との間の距離を引
算すれば、被測定光ファイバ7における破断点距離を求
めることかできる。g/Jえば第5図のようなスペクト
ル線幅データが得られた場合、(2)式に代入すると、 g=(3X10β)/(2X10.8X1.5)=9.
 3mm となる、なお第5図において、半導体レーザ1への戻り
光が無い場合を比較のために示している。
The operation of the optical transmission line measuring instrument configured as described above will be explained next. After inputting the optical spectrum linewidth output at a specific laser frequency, the calculation display section 20 issues an instruction to the semiconductor laser drive power supply 11 to change the driving current of the semiconductor laser 1, thereby changing the optical spectrum linewidth at different laser frequencies. input. Thereafter, instructions are sequentially issued to the semiconductor laser drive power supply 11 in the same manner to change the drive current value of the semiconductor laser 1, and input the optical spectrum linewidth of each frequency corresponding to the changing laser frequency. Since the spectral linewidth changes at a constant frequency with respect to the oscillation frequency of the laser, this period is measured on the calculation display section 20, and using equation (2), the semiconductor laser 1 (rear end face) and the fiber under test 7 are measured. The distance IIQ between the breaking points A in the middle can be measured. By subtracting the distance between the semiconductor laser 1 and the entrance of the optical fiber 7 from this distance e, the distance at the break point in the optical fiber 7 to be measured can be determined. If spectral linewidth data such as g/J is obtained as shown in FIG. 5, substituting it into equation (2) yields g=(3X10β)/(2X10.8X1.5)=9.
In FIG. 5, the case where there is no return light to the semiconductor laser 1 is shown for comparison.

第4図のような構成の場合、DFB半導体レーザ1から
被測定光ファイバ7迄の距離を1mm以上とすれば、ス
ペクトル線幅IMHz、電流変化による周波数掃引幅1
80GHzの一般的なりFBレーザでも、理論的にデヅ
ドゾーンOmm、Ik長測定距離! OOmの性能を得
ることができる。
In the case of the configuration shown in FIG. 4, if the distance from the DFB semiconductor laser 1 to the optical fiber 7 to be measured is 1 mm or more, the spectral line width IMHz and the frequency sweep width due to current change 1
Even with a general 80GHz FB laser, theoretically the dedu zone Omm and Ik long measurement distance! Performance of OOm can be obtained.

このような構成の光伝送線路測定器によれば、半導体レ
ーザと破断点の間で共振器を構成し、光スペクトル幅変
化を観測することにより、光ファイバの極短距離の破断
点の位置が高分解能で測定可能となる。特に破断点の位
置が短距離の場合には干渉光の明暗が低周波になるので
、スペクトル幅の方が測定が容易である。
According to an optical transmission line measuring instrument with such a configuration, a resonator is configured between the semiconductor laser and the break point, and by observing changes in the optical spectrum width, the position of the break point over an extremely short distance in the optical fiber can be determined. It becomes possible to measure with high resolution. In particular, when the break point is located over a short distance, the brightness and darkness of the interference light will be at a low frequency, so it is easier to measure the spectral width.

なお上記の実施例においてDFB半導体レーザの波長掃
引は、電流でなく温度で行ってもよい。
Note that in the above embodiments, the wavelength sweeping of the DFB semiconductor laser may be performed using temperature instead of current.

またDFB半導体レーザ1の代りにシングルモードで発
振する任意の半導体レーザを用いることができる。
Further, instead of the DFB semiconductor laser 1, any semiconductor laser that oscillates in a single mode can be used.

まな破断点が多数ある場合でも、線幅−電流の関係をフ
ーリエ変換すれば、破断点の分布を測定することができ
る。
Even if there are many breaking points, the distribution of the breaking points can be measured by Fourier transforming the relationship between line width and current.

またビームスプリヅタ14からの分岐光を光スペクトル
線幅装置22に入射する代りに、半導体レーザ1の側面
光(モニタ側出射光)を光スペクトル線幅装置22に入
射してもよい。
Further, instead of inputting the branched light from the beam splitter 14 into the optical spectrum linewidth device 22, the side light of the semiconductor laser 1 (light emitted from the monitor side) may be inputted into the optical spectrum linewidth device 22.

なお上記の各実施例において、被測定光伝送線路として
光ファイバを用いたが、光導波路等能の光伝送線路にも
同様に適用することができる。
In each of the above embodiments, an optical fiber was used as the optical transmission line to be measured, but the present invention can be similarly applied to an optical transmission line having the function of an optical waveguide or the like.

また上記の各実施例において、破断点以外の短距離の障
害点位置を測定することもできる。
Furthermore, in each of the embodiments described above, it is also possible to measure the position of a fault point over a short distance other than the breaking point.

〈発明の効果〉 以上述べたように本発明によれば、光伝送線路の短距離
の障害点の位置を測定可能な光伝送線路測定器を簡単な
構成で実現することができる。
<Effects of the Invention> As described above, according to the present invention, an optical transmission line measuring instrument capable of measuring the position of a short distance fault point on an optical transmission line can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光伝送線路測定器の第1の実施例
を示す構成ブロック図、第2図および第3図は第1図装
置の特性曲線図、第4図は本発明に係る光伝送線路測定
器の第2の実施例を示す構成ブロック図、第5図は類4
図装置の特性曲線図である。 1・・・光源または半導体レーザ、4,14・・・光分
岐手段、6・・・ハーフミラ−17・・・光伝送線路、
8・・・受光素子、10.20・・・演算表示部、11
・・・掃引手段、22・・・光スペクトル線幅測定装置
、A・・・←瞥旨+L’s運、−勾一一 Δ−′V蟹廖歪
FIG. 1 is a block diagram showing the configuration of a first embodiment of the optical transmission line measuring device according to the present invention, FIGS. 2 and 3 are characteristic curve diagrams of the device shown in FIG. A configuration block diagram showing the second embodiment of the optical transmission line measuring instrument, FIG. 5 is a class 4
FIG. 3 is a characteristic curve diagram of the device. DESCRIPTION OF SYMBOLS 1... Light source or semiconductor laser, 4, 14... Optical branching means, 6... Half mirror 17... Optical transmission line,
8... Light receiving element, 10.20... Calculation display section, 11
. . . Sweeping means, 22 . . . Optical spectrum linewidth measurement device, A .

Claims (3)

【特許請求の範囲】[Claims] (1)入射光の少なくとも一部を反射するミラーと光伝
送線路の障害点との間で光源からの光を干渉させ、光源
の光周波数を掃引したときの干渉光出力から前記ミラー
と前記障害点との間の共振器長を演算することにより、
障害点位置を測定するように構成したことを特徴とする
光伝送線路測定器。
(1) Light from a light source is caused to interfere between a mirror that reflects at least a part of the incident light and a fault point of the optical transmission line, and the interference light output when the optical frequency of the light source is swept is determined from the interference light output between the mirror and the fault point. By calculating the resonator length between the points,
An optical transmission line measuring device characterized in that it is configured to measure the position of a fault point.
(2)光源と、この光源の出力波長を掃引する掃引手段
と、前記光源の出力光を入射する光分岐手段と、この光
分岐手段の出力光を入射してその透過光を光伝送線路に
導くハーフミラーと、このハーフミラーと前記光伝送線
路の障害点との間で干渉した光が前記ハーフミラーを介
して前記分岐手段に戻り前記光源からの光と分離された
後入射する受光素子と、この受光素子の出力が示す干渉
ピーク同士の間隔から前記障害点の位置を演算する演算
手段とを備えたことを特徴とする光伝送線路測定器。
(2) A light source, a sweeping means for sweeping the output wavelength of the light source, an optical branching means for inputting the output light of the light source, and an optical branching means for inputting the output light of the optical branching means and transmitting the transmitted light to an optical transmission line. a half mirror that guides the light; and a light receiving element on which the light that has interfered between the half mirror and the failure point of the optical transmission line returns to the branching means through the half mirror and is separated from the light from the light source. An optical transmission line measuring instrument comprising: a calculation means for calculating the position of the fault point from the interval between interference peaks indicated by the output of the light receiving element.
(3)後面に反射ミラーを有する半導体レーザと、この
半導体レーザの出力周波数を掃引する掃引手段と、前記
半導体レーザの前面からの出射光を2つに分岐して一方
の出力光を前記光伝送線路に導く光分岐手段と、この光
分岐手段の他方の出力光を入射する光スペクトル線幅測
定装置と、前記反射ミラーと前記障害点との間の干渉に
より生ずる前記光スペクトル線幅測定装置の出力変化か
ら前記障害点の位置を演算する演算手段とを備えたこと
を特徴とする光伝送線路測定器。
(3) a semiconductor laser having a reflection mirror on its rear surface; a sweeping means for sweeping the output frequency of the semiconductor laser; and a device that splits the light emitted from the front surface of the semiconductor laser into two and transmits one output light to the optical transmission. An optical branching means that guides the light to the line, an optical spectrum linewidth measuring device into which the other output light of the optical branching means is incident, and an optical spectrum linewidth measuring device that causes interference between the reflecting mirror and the failure point. 1. An optical transmission line measuring instrument comprising: calculation means for calculating the position of the fault point from a change in output.
JP32308589A 1989-09-26 1989-12-13 Optical transmission line measuring instrument Expired - Fee Related JP2626099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32308589A JP2626099B2 (en) 1989-09-26 1989-12-13 Optical transmission line measuring instrument

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-249926 1989-09-26
JP24992689 1989-09-26
JP32308589A JP2626099B2 (en) 1989-09-26 1989-12-13 Optical transmission line measuring instrument

Publications (2)

Publication Number Publication Date
JPH03175333A true JPH03175333A (en) 1991-07-30
JP2626099B2 JP2626099B2 (en) 1997-07-02

Family

ID=26539555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32308589A Expired - Fee Related JP2626099B2 (en) 1989-09-26 1989-12-13 Optical transmission line measuring instrument

Country Status (1)

Country Link
JP (1) JP2626099B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210944A (en) * 1995-02-02 1996-08-20 Yokogawa Electric Corp Optical fiber inspection device
JPH08219947A (en) * 1995-02-09 1996-08-30 Yokogawa Electric Corp Inspection apparatus for optical fiber
JP2007175433A (en) * 2005-12-28 2007-07-12 Olympus Corp Endoscopic apparatus and lighting system for endoscope
CN113049227A (en) * 2021-03-15 2021-06-29 深圳市杰普特光电股份有限公司 Laser wavelength modulation measuring device and measuring method and measuring system thereof
CN114777822A (en) * 2022-04-18 2022-07-22 南京大学 Fiber grating array synchronous sensing system based on multi-wavelength tunable laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232204B (en) * 2008-01-11 2011-08-10 华中科技大学 High pressure equipment insulating power supply based on electro-optical transformation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210944A (en) * 1995-02-02 1996-08-20 Yokogawa Electric Corp Optical fiber inspection device
JPH08219947A (en) * 1995-02-09 1996-08-30 Yokogawa Electric Corp Inspection apparatus for optical fiber
JP2007175433A (en) * 2005-12-28 2007-07-12 Olympus Corp Endoscopic apparatus and lighting system for endoscope
CN113049227A (en) * 2021-03-15 2021-06-29 深圳市杰普特光电股份有限公司 Laser wavelength modulation measuring device and measuring method and measuring system thereof
CN113049227B (en) * 2021-03-15 2024-04-02 深圳市杰普特光电股份有限公司 Laser wavelength modulation measuring device, measuring method and measuring system thereof
CN114777822A (en) * 2022-04-18 2022-07-22 南京大学 Fiber grating array synchronous sensing system based on multi-wavelength tunable laser
CN114777822B (en) * 2022-04-18 2024-03-19 南京大学 Fiber bragg grating array synchronous sensing system based on multi-wavelength tunable laser

Also Published As

Publication number Publication date
JP2626099B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP3335205B2 (en) Optical system calibration method
JP3279116B2 (en) Laser Doppler velocimeter
EP0754939B1 (en) Optical fibre detecting device
KR100719892B1 (en) Apparatus for measuring a differential mode delay of a multimode optical fiber
JP2954871B2 (en) Optical fiber sensor
US6850318B1 (en) Polarization mode dispersion measuring device and polarization mode dispersion measuring method
US6008487A (en) Optical-fiber inspection device
US6856723B1 (en) Group velocity dispersion measuring device and group velocity dispersion measuring method
JPH03180704A (en) Laser interference gauge
JP2626099B2 (en) Optical transmission line measuring instrument
JP2996704B2 (en) Optical sensor with multimode interference
US7719665B2 (en) Method, apparatus, and program for measuring wavelength dispersion of optical waveguide
EP0501559B1 (en) Process and apparatus for absolute interferometric measurements of physical magnitudes
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
KR102059502B1 (en) distributed optical fiber sensor apparatus
JPH06317478A (en) Optical wavelength/frequency detector
JP2905269B2 (en) Temperature measurement method using optical fiber
JP2001284707A (en) Semiconductor laser light source and device for measuring reflection of optical frequency region
JP2002090259A (en) Semiconductor laser light source device and measuring apparatus for reflection in optical frequency region
EP4116667A1 (en) Three- wavelengths interferometric measuring device and method
JP2012132704A (en) Peak power monitoring device and peak power monitoring method
EP0297556A2 (en) Emission spectral width measuring apparatus for light source
JPS5837496B2 (en) Optical fiber length measurement method
JP3453746B2 (en) Optical fiber inspection equipment
JP2775293B2 (en) Optical waveguide backscatter measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees