JPH02289828A - Mim element - Google Patents

Mim element

Info

Publication number
JPH02289828A
JPH02289828A JP2041527A JP4152790A JPH02289828A JP H02289828 A JPH02289828 A JP H02289828A JP 2041527 A JP2041527 A JP 2041527A JP 4152790 A JP4152790 A JP 4152790A JP H02289828 A JPH02289828 A JP H02289828A
Authority
JP
Japan
Prior art keywords
film
hard carbon
electrode
elements
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2041527A
Other languages
Japanese (ja)
Other versions
JP2879747B2 (en
Inventor
Hidekazu Ota
英一 太田
Yuji Kimura
裕治 木村
Hitoshi Kondo
均 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4152790A priority Critical patent/JP2879747B2/en
Publication of JPH02289828A publication Critical patent/JPH02289828A/en
Application granted granted Critical
Publication of JP2879747B2 publication Critical patent/JP2879747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the MIM element which is high in mechanical strength, is adequate for thin-film devices and can be formed to a larger area by forming an insulating film of a hard carbon film. CONSTITUTION:The insulating film 3 of the MIM element interposed with the insulating film 3 between a lower electrode 2 and an upper electrode 4 is the hard carbon film contg. group III elements, group IV elements and group V elements of the periodic table, alkaline metal elements, alkaline earth metal elements, nitrogen atom, chalcogen element or halogen atom as dopants in addition to a carbon atom and hydrogen atom. This element is advantageous for the formation to the larger area and is adequate as the switching element for a liquid crystal display having high reliability. The mechanical strength of the element is thus greatly improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスイッチング素子,特に液晶表示用スイッチン
グ素子として有用なMIM (金属一絶縁膜一金属)素
子に関する. 〔従来技術〕 簿膜2端子素子の代表的なものにMIM素子がある.従
来のMIM素子としては下部(金属)電極にTa.絶縁
膜に下部電極の陽極酸化によるTa,O,,及び上部(
金属)電極にCr単独又はCr/ITO積1体を用いた
もの(特開昭62−62333号)や,下部電極にIT
O.絶縁膜にプラズマCVD法によるSiNx.及び上
部電極にCrを用いたもの(特開昭61−260219
号,日経エレクトロニクス1987年1月12日号)が
知られている.これらMIN素子は特にアクティブマト
リックス方式の液晶表示用スイッチング素子として利用
されているが、前者のHIM素子の場合は、l)絶縁膜
が下部金属の陽極酸化により形成されるため,膜の物性
,ひいては素子特性の制御が容易でなく、従ってデバイ
ス設計上の自由度がせまい、2)液晶表示装置に用いる
場合は液晶を一定方向に配向するためのラビング処理が
必要であるため、膜や素子の機械的損傷を受けないよう
に,厚膜又は硬質の絶縁膜が要求されるが,陽極酸化膜
は軟質であり、しかも電流一電圧特性や訃動電圧の関係
上,膜厚を600人程度以下に抑えなければならない,
3)陽極酸化膜の場合は極性の対称性を得るために30
0〜500℃程度の熱処理が必要であり,このために基
板の材質が限定される,4)液晶表示装置に用いる場合
,液晶部容量Cr.xD/HIM素子容量CMIM=1
0: 1程度必要なので,絶縁膜の誘電率は小さい方が
加工に有利であるが、Ta.0.のような陽極酸化膜は
誘電率が高い(Ta,OSの場合は約25)ので,高度
な微細加工技術を要し、大面積に歩留り良く作製するの
が困難である等の欠点がある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a switching element, particularly an MIM (metal-insulating film-metal) element useful as a switching element for liquid crystal display. [Prior Art] A typical example of a two-terminal film-based device is an MIM device. Conventional MIM elements use Ta. The insulating film is coated with Ta, O, and the upper part (by anodizing the lower electrode).
(metal) electrode using Cr alone or a single Cr/ITO product (Japanese Unexamined Patent Publication No. 62-62333), or using IT as the lower electrode.
O. SiNx. insulating film by plasma CVD method. and one using Cr for the upper electrode (Japanese Patent Application Laid-Open No. 61-260219
issue, Nikkei Electronics, January 12, 1987 issue). These MIN devices are particularly used as switching devices for active matrix type liquid crystal displays, but in the case of the former HIM device, l) the insulating film is formed by anodizing the lower metal; 2) When used in a liquid crystal display device, rubbing treatment is required to orient the liquid crystal in a certain direction, making it difficult to control the mechanical properties of the film and element. A thick or hard insulating film is required to prevent physical damage, but the anodic oxide film is soft, and due to current-voltage characteristics and damage voltage, the film thickness must be kept to about 600 or less. must be suppressed,
3) In the case of anodic oxide film, 30% to obtain polarity symmetry.
4) When used in a liquid crystal display device, the capacitance of the liquid crystal portion Cr. xD/HIM element capacitance CMIM=1
0:1 is required, so the smaller the dielectric constant of the insulating film is, the more advantageous it is for processing. 0. Since the anodic oxide film has a high dielectric constant (approximately 25 in the case of Ta and OS), it requires advanced microfabrication technology and has drawbacks such as being difficult to manufacture over a large area with good yield.

一方,後者のHIM素子の場合は前記l)、2)及び4
)の欠点は解消されるものの成膜温度が約300℃と高
いため,前記3)と同様の欠点がある上,大面積化の際
、基板温度分布のため、膜厚、膜質が不均一になり易く
,従って薄膜デバイス用として不向きである.更に製膜
時に気相中で発生するダストにより、ビンホールが多数
発生するため素子歩留りが低下したり,或いは膜ストレ
スが高いため剥離が生じ易く、やはり歩留り低下のfM
因となる等の欠点がある.〔発明が解決しようとする課
題〕 本発明の第一の目的は以上のような従来技術の欠点を解
消し、絶縁膜を硬質炭素膜で形成することにより、デバ
イス設計上の自由度が広く,機械的強度も高く、基板材
質に制約がなく、薄膜デバイス用として好適で、しかも
大面積化も容品な?HM素子を提供することである。
On the other hand, in the case of the latter HIM element, the above l), 2) and 4
), but since the film forming temperature is as high as approximately 300°C, there are the same drawbacks as in 3) above, and when increasing the area, the film thickness and quality may become non-uniform due to the substrate temperature distribution. Therefore, it is unsuitable for thin film devices. Furthermore, the dust generated in the gas phase during film formation causes a large number of via holes, which reduces device yield, and high film stress tends to cause peeling, which also reduces fM.
There are disadvantages such as causing [Problems to be Solved by the Invention] The first purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology, and by forming the insulating film with a hard carbon film, the degree of freedom in device design is widened. It has high mechanical strength, has no restrictions on substrate materials, is suitable for thin film devices, and can be easily expanded to a large area. An object of the present invention is to provide an HM element.

本発明の第二〇口的は通常の硬質炭素膜の構成元素に特
定元素(ドーパント冫を加えることにより、更に機械的
強度、硬度、安定性等の膜特性を向上した肘H素子を提
供することである,〔発明の構成・動作) 本発明のHIM素子は下部電極と上部電極との間に絶縁
膜を介在させてなるHIM素子において、絶縁膜が炭素
原子及び水素原子の他にドーパントとして周期律表第m
族元素.同第■族元索,同第V族元素、アルカリ金属元
素、アルカリ士類金属元素、窒素原子、酸素原子、カル
コゲン系元素又はハロゲン原子を構成元素として含む硬
質炭素膜であることを特徴とするものである。
The second aspect of the present invention is to provide an elbow H element in which film properties such as mechanical strength, hardness, and stability are further improved by adding a specific element (dopant) to the constituent elements of a normal hard carbon film. [Structure and operation of the invention] The HIM element of the present invention is a HIM element in which an insulating film is interposed between a lower electrode and an upper electrode, and the insulating film contains carbon atoms and hydrogen atoms as dopants. periodic table m
Group elements. It is characterized by being a hard carbon film containing a Group III element, an alkali metal element, an alkali metal element, a nitrogen atom, an oxygen atom, a chalcogen element, or a halogen atom as a constituent element. It is something.

このように本発明のHIM素子は絶縁膜に特徴があり,
この絶縁膜は前記特定の元素又は原子を含む硬質炭素膜
からなっている。
As described above, the HIM element of the present invention is characterized by its insulating film.
This insulating film is made of a hard carbon film containing the specific element or atom.

本発明の?lIM素子に用いられる硬質炭素膜自体は炭
素原子及び水素原子を主要な構成元素として非品質及び
微結品質の少くとも一方を含む材料で構成され、i−C
膜、ダイヤモンド状炭素膜、アモルファスダイヤモンド
膜,ダイヤモンド薄膜とも呼ばれている.本発明では硬
質炭素膜の構成元素としてその他に前記第■族元素等の
特定元素を含んでいる. 本発明において硬質炭素膜を形成するために有機化合物
ガス,特に炭化水素ガスと後述するような他の化合物の
ガスとの混合系が用いられる.これら原料における相状
態は常温常圧において必.ずしも気相である必要はなく
、加熱或は減圧等により溶融,蒸発、昇華等を経て気化
し得るものであれば、液相でも同相でも使用可能である
. 原料ガスとしては炭化水素ガスについては、例えばCH
,, C.H., C3H., C.H..等のパラフ
ィン系炭化水素、C, 84等のアセチレン系炭化水素
、オレフィン系炭化水素、ジオレフィン系炭化水素,さ
らには芳香族炭化水素などのすべての炭化水素が使用可
能である. ?らに,炭化水素以外でも,例えば、アルコール類、ケ
トン類、エーテル類、エステル類、co.co.等,炭
素となり得る化合物であれば使用可能である。
The invention? The hard carbon film itself used in the IIM element is composed of a material containing at least one of non-quality and microcrystalline quality, with carbon atoms and hydrogen atoms as the main constituent elements, and the i-C
Also called diamond-like carbon film, amorphous diamond film, and diamond thin film. In the present invention, the hard carbon film also contains specific elements such as the above-mentioned Group Ⅰ elements. In the present invention, in order to form a hard carbon film, a mixed system of organic compound gas, particularly hydrocarbon gas, and other compound gases as described below is used. The phase state of these raw materials is necessary at room temperature and pressure. Sushi does not necessarily have to be in a gas phase; it can be used in either a liquid phase or the same phase as long as it can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. Regarding hydrocarbon gas as raw material gas, for example, CH
,,C. H. , C3H. , C. H. .. All hydrocarbons can be used, including paraffinic hydrocarbons such as, acetylenic hydrocarbons such as C, 84, olefinic hydrocarbons, diolefinic hydrocarbons, and even aromatic hydrocarbons. ? Furthermore, other than hydrocarbons, for example, alcohols, ketones, ethers, esters, co. co. Any compound that can become carbon can be used.

原料ガスとしては炭化水素ガス及び水素の他にドーパン
トとして膜中に周期律表第■族元素,同第■族元素、同
第■族元素、アルカリ金属元素、アルカリ土類金属元素
、窒素素子,酸素原子、カルコゲン系元素又はハロゲン
元素を含有させるために、これらの元素又は原子を含む
化合物(又は分子)(以下、これらを「他の化合物」と
いうこともある)のガスが用いられる。
In addition to hydrocarbon gas and hydrogen, raw material gases include elements from group Ⅰ of the periodic table, elements from group Ⅰ, elements from group ①, alkali metal elements, alkaline earth metal elements, nitrogen elements, In order to contain an oxygen atom, a chalcogen element, or a halogen element, a gas of a compound (or molecule) containing these elements or atoms (hereinafter, these may be referred to as "other compounds") is used.

ここで周期律表第■族元素を含む化合物としては,例え
ばB(QC21{,),, B21f,, BCQ,,
 BBr,,BF31 An(0−i−CJt)it 
(CH3)3AQI (C2HS)3AQl(i−C4
H.)3AQ, AQCQ,, Ga(0−i−C3H
7)37(CH3),Ga,(C2Hs).Ga, G
aCQ3, GaBr3T (0−i−C3H7)3T
nl(czos)■In等がある。
Here, examples of compounds containing Group I elements of the periodic table include B(QC21{,),, B21f,, BCQ,,
BBr,,BF31 An(0-i-CJt)it
(CH3)3AQI (C2HS)3AQl(i-C4
H. )3AQ, AQCQ,, Ga(0-i-C3H
7) 37(CH3), Ga, (C2Hs). Ga, G
aCQ3, GaBr3T (0-i-C3H7)3T
There are nl(czos)■In, etc.

周期律表第■族元素を含む化合物としては、例えばSi
,H,, (C2H,),SiHI SiF4, Si
H,CQ2,?iCQ4, Si(QC}I,)4, 
Si(QC,tl,),, Si(QC,tl■)4,
GeCQ4, GeH4, Ge(OCzHs)4+G
e(CzHi)4+(CHi)*Sn+(C2H, )
.Sn , SnCff,等がある。
Examples of compounds containing Group Ⅰ elements of the periodic table include Si.
,H,, (C2H,),SiHI SiF4, Si
H,CQ2,? iCQ4, Si(QC}I,)4,
Si(QC,tl,),, Si(QC,tl■)4,
GeCQ4, GeH4, Ge(OCzHs)4+G
e(CzHi)4+(CHi)*Sn+(C2H, )
.. There are Sn, SnCff, etc.

周期律表第V族元素を含む化合物としては、例えばPH
3, PFJ. PF,, PCfl.F., PC4
,, PCQ.F,PBr,, po(ocl+,),
, P(CzH5)3p POCQ3H A!3}+3
1AsCQ,, AsBr,, AsF3, AsFs
, AsCQ,, SbH,,SbF,,SbCQ3,
 Sb(QC,H.)■等がある。
Examples of compounds containing Group V elements of the periodic table include PH
3, PFJ. PF,, PCfl. F. , PC4
,, PCQ. F, PBr,, po(ocl+,),
, P(CzH5)3p POCQ3H A! 3}+3
1AsCQ,, AsBr,, AsF3, AsFs
, AsCQ,, SbH,, SbF,, SbCQ3,
There are Sb(QC,H.)■ etc.

アルカリ金属原子を含む化合物としては例えばLiO−
i−C,f{,, NaO−i−C,H,, KO−i
−C,H,等がある。
Examples of compounds containing alkali metal atoms include LiO-
i-C,f{,, NaO-i-C,H,, KO-i
-C, H, etc.

アルカリ土類金属原子を含む化合物としては例えばCa
(OCzHsL+ Mg(QC21ts)z. (cz
uJzMg等がある。
Examples of compounds containing alkaline earth metal atoms include Ca
(OCzHsL+ Mg(QC21ts)z. (cz
There are uJzMg etc.

窒素原子を含む化合物としては例えば窒素ガス,アンモ
ニア等の無機化合物,アミノ基,シアノ基等の官能基を
有する有機化合物及び窒素を含む複素環等がある. 酸素原子を含む化合物としては例えば酸素ガス、オゾン
,水(水蒸気)、過酸化水素,一酸?炭素,二酸化炭素
、亜酸化炭素,一酸化窒素、二酸化窒素、三酸化二窒素
、五酸化二窒素,三酸化窒素等の無機化合物、水酸基、
アルデヒド基、アシル基、ケトン基、ニトロ基、ニトロ
ソ基、スルホン基、エーテル結合,エステル結合、ベプ
チド結合、酸素を含む複素環等の官能基或いは結合を有
する有機化合物、更には金属アルコキシド等が挙げられ
る。
Examples of compounds containing nitrogen atoms include nitrogen gas, inorganic compounds such as ammonia, organic compounds having functional groups such as amino groups and cyano groups, and nitrogen-containing heterocycles. Examples of compounds containing oxygen atoms include oxygen gas, ozone, water (steam), hydrogen peroxide, and monoacid. Inorganic compounds such as carbon, carbon dioxide, nitrous oxide, nitrogen monoxide, nitrogen dioxide, dinitrogen trioxide, dinitrogen pentoxide, nitrogen trioxide, hydroxyl groups,
Examples include organic compounds having functional groups or bonds such as aldehyde groups, acyl groups, ketone groups, nitro groups, nitroso groups, sulfone groups, ether bonds, ester bonds, peptide bonds, and oxygen-containing heterocycles, as well as metal alkoxides. It will be done.

カルコゲン系元素を含む化合物としては例えばH2S,
 (C■,)(CH,).S(Cl1■)4CH, ,
 CI+, = C}+CIl25CH2Cll = 
CIl■, C.2H,SC,H,, C2H,SCH
,,チオフエン,H2Ss, (C,H,).Sa, 
H,Te等がある.またハロゲン元素を含む化合物とし
ては例えば弗素、塩素、臭素、沃素,弗化水素,弗化塩
素、弗化臭素,弗化沃素,塩化水素、塩化臭素、塩化沃
素、臭化水素、臭化沃素、沃化水素等の無機化合物,ハ
ロゲン化アルキル、ハロゲン化アリール、ハロゲン化ス
チレン,ハロゲン化ポリメチレン、ハロホルム等の有機
化合物が用いられる. 本発明の硬質炭素膜中に構成元素の一つとし含まれるド
ーバンドの量は次の第1表Aに示すとおりである。なお
これら元素又は原子の量は元素分析の常法,例えばオー
ジェ分析によって測定することができる.またこの量は
原料ガスに含まれる他の化合物の量や成膜条件等で調節
可能である.膜中に含まれる元素又は原子の量は原料ガ
ス中の化合物の流量比とは一致しない。
Examples of compounds containing chalcogen elements include H2S,
(C■,) (CH,). S(Cl1■)4CH, ,
CI+, = C}+CIl25CH2Cll =
CIl■, C. 2H,SC,H,, C2H,SCH
,,thiophene, H2Ss, (C,H,). Sa,
There are H, Te, etc. Examples of compounds containing halogen elements include fluorine, chlorine, bromine, iodine, hydrogen fluoride, chlorine fluoride, bromine fluoride, iodine fluoride, hydrogen chloride, bromine chloride, iodine chloride, hydrogen bromide, iodine bromide, Inorganic compounds such as hydrogen iodide, and organic compounds such as alkyl halides, aryl halides, styrene halides, polymethylene halides, and haloform are used. The amount of doband contained as one of the constituent elements in the hard carbon film of the present invention is as shown in Table 1 A below. The amounts of these elements or atoms can be measured by conventional methods of elemental analysis, such as Auger analysis. Moreover, this amount can be adjusted by adjusting the amount of other compounds contained in the source gas, film formation conditions, etc. The amount of elements or atoms contained in the film does not match the flow rate ratio of the compounds in the source gas.

膜中にとり込まれる量はガス種、成膜条件等で異なるが
、ほぼ50%程度かそれ以下の量となっている。
The amount incorporated into the film varies depending on the gas type, film forming conditions, etc., but is approximately 50% or less.

本発明におけるそれぞれの化合物の使用量は、炭素を含
む化合物に対して,次の第1表Bに示すとおりである. (以下余白) 本発明における原料ガスからの硬質炭素膜の形成方法と
しては、成膜活性種が、直流,低周波,高周波、或いは
マイクロ波等を用いたプラズマ法により生成されるプラ
ズマ状態を経て形成される方法が最も好ましいが、その
他にも、イオン化蒸着法、或いはイオンビーム蒸着法等
により生成されるイオン状態を経て形成されていてもよ
いし,真空蒸着法,或いはスパッタリング法等により生
成される中性粒子から形成されていてもよいし,さらに
は,これらの組み合せにより形成されてもよい。
The amount of each compound used in the present invention is as shown in Table 1 B below for carbon-containing compounds. (Left below) In the method of forming a hard carbon film from a raw material gas in the present invention, active species for film formation pass through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. Although the most preferred method is to form the ions, the ions may be formed through an ion state generated by ionization vapor deposition, ion beam evaporation, or the like, or may be formed by vacuum evaporation, sputtering, or the like. It may be formed from neutral particles, or may be formed from a combination of these.

こうして作製される硬質炭素膜の堆積条件の一例はプラ
ズマCvD法の場合,次の通りである.RF出力: 0
.1 〜5011/aJ圧   力: 10”” 〜1
0Torr堆積温度:室温〜950℃ またこのような堆積条件により作成された膜物性は次の
第2表の通りである. 第2表 注)測定法; 比抵抗(ρ):コプレナー型セルによるト■特性より求
める. 光学的バンドギャップ(Egopt):分光特性から吸
収係数(α)を求め, (αhν)’=B(hγ−Egopt)の関係より決定
する. 膜中水素量(CH):赤外吸収スペクトルから2900
cn−1付近のピークを積分し、吸収断面積Aをかけて
求める. ?■=Ajfα(I1)lw−dv SP’/SP”比:赤外吸収スペクトルを、sp3,s
p”にそれぞれ帰属されるガウス関 数に分解し,その面積比より求 める. ビブカース硬度(H):マイクロビッカース計による.
屈折率(ロ):エリブソメーターによる.欠陥密度:E
SRによる. また,xg及び電子回折分析によれば、アモルファス状
@ ( a−C:H)、及び/又は約50人〜数μm程
度の微結晶粒を含むアモルファス状態によることが判っ
ている. こうして形成される硬質炭素膜はIR吸収法及びラマン
分光法による分析の結果,夫々、第2図及び第3図に示
すように炭素原子がSP1の混成軌道とSP1の混成軌
道とを形成した原子間結合が混在していることが明らか
になっている.sp”結合とSP1結合との比率は、I
Rスペクトルをピーク分離することで概ね推定できる.
IRスペクトルには、2800〜3150cm−”に多
くのモードのスペクトルが重なって測定されるが、夫々
の波数に対応するピークの帰属は明らかになっており、
第2図の如くガウス分布によってピーク分離を行ない、
夫々のピーク面積を算出し、その比率を求めればSP3
/SP”比を知ることができる.又、成膜においては、
RF出力が小さく圧力が低い程、膜の比抵抗値及び硬度
が増加し,水素混合比が大きい程、屈折率が増加して欠
陥密度が減少、即ち良質な膜を得ることができる. このように,MIM素子のMl膜を硬質炭素膜により形
成することにより、素子特性のバラツキが少なくなり、
機械的損傷に耐え得るMIM素子とし得る.このMIX
素子を液晶表示用能動素子として使用する場合、液晶材
料封入時のラビング工程による損傷が少なく,歩留まり
が向上するものとなる.又、前述のようにLCDとMI
M素子の電気容量はCLCD : CMl11= 10
 : 1程度必要であるが、絶縁膜の誘電率が小さい方
が加工に有利である.本発明では硬質炭素膜の誘電率t
r弁4程度と小さいのでそれ程微細加工も必要とせずに
高精度に形成でき、この点からも歩留まりが向上する。
An example of the deposition conditions for the hard carbon film produced in this manner is as follows in the case of the plasma CVD method. RF output: 0
.. 1 to 5011/aJ pressure: 10”” to 1
0 Torr Deposition temperature: room temperature to 950°C The physical properties of the film created under these deposition conditions are shown in Table 2 below. Table 2 Note) Measurement method; Specific resistance (ρ): Determined from the characteristics of a coplanar cell. Optical band gap (Egopt): Obtain the absorption coefficient (α) from the spectral characteristics and determine it from the relationship (αhν)'=B(hγ−Egopt). Amount of hydrogen in the film (CH): 2900 from infrared absorption spectrum
Integrate the peak near cn-1 and multiply by the absorption cross section A. ? ■=Ajfα(I1)lw-dv SP'/SP" ratio: The infrared absorption spectrum is
p'' is decomposed into Gaussian functions assigned to each, and determined from the area ratio. Bibbers hardness (H): by micro-Vickers meter.
Refractive index (b): Based on ellipsometer. Defect density: E
By S.R. In addition, according to xg and electron diffraction analysis, it has been found that it is in an amorphous state (a-C:H) and/or an amorphous state containing microcrystalline grains of about 50 to several μm in size. As a result of analysis by IR absorption method and Raman spectroscopy, the hard carbon film formed in this way shows that carbon atoms form SP1 hybrid orbitals and SP1 hybrid orbitals as shown in FIGS. 2 and 3, respectively. It is clear that there is a mixture of inter-connections. The ratio of sp” bonds to SP1 bonds is I
It can be roughly estimated by separating the peaks of the R spectrum.
In the IR spectrum, the spectra of many modes overlap in the range from 2800 to 3150 cm-'', but the attribution of the peak corresponding to each wave number has been clarified.
Peak separation is performed using Gaussian distribution as shown in Figure 2,
If you calculate each peak area and find the ratio, SP3
/SP" ratio. Also, in film formation,
The smaller the RF output and the lower the pressure, the higher the resistivity and hardness of the film, and the larger the hydrogen mixing ratio, the higher the refractive index and the lower the defect density, that is, the higher the quality of the film. In this way, by forming the Ml film of the MIM element with a hard carbon film, variations in element characteristics are reduced.
It can be used as an MIM element that can withstand mechanical damage. This MIX
When the device is used as an active device for a liquid crystal display, there is less damage caused by the rubbing process during encapsulation of liquid crystal material, and the yield is improved. Also, as mentioned above, the LCD and MI
The capacitance of the M element is CLCD: CMl11=10
: Approximately 1 is required, but it is advantageous for processing if the dielectric constant of the insulating film is small. In the present invention, the dielectric constant t of the hard carbon film is
Since the r-valve is as small as 4, it can be formed with high precision without requiring very fine processing, and from this point of view as well, the yield is improved.

本発明における硬質炭素膜の誘電率は2〜6が好ましい
The dielectric constant of the hard carbon film in the present invention is preferably 2 to 6.

この誘電率は製膜時のRFバワー(投入電力)によって
制御できる。
This dielectric constant can be controlled by RF power (power applied) during film formation.

誘電率とRFバワーとの関係を第12図に示す.更にこ
の硬質炭素膜の構成元素の1つとして周期率表第■族元
素、同じく第■族元素,アルカリ金属元素、アルカリ土
類金属元素,窒素原子又は酸素原子を導入したものは硬
質炭素膜の膜厚をノンドープのものに比べて約2〜3倍
に厚くすることができ,またこれにより素子作製時のビ
ンホールの発生を防止すると共に、素子の機械的強度を
飛躍的に向上することができる.更に窒素原子又は酸素
原子の場合は以下に述べるような周期率表第■族元素等
の場合と同様な効果がある. 同様に窒素原子、酸素原子、周期率表第■族元素、カル
コゲン系元素又はハロゲン元素を導入したものは硬質炭
素膜の安定性が飛躍的に向上すると共に,膜の硬度も改
善されることと相まって高信頼性の素子が作製できる。
Figure 12 shows the relationship between dielectric constant and RF power. Furthermore, as one of the constituent elements of this hard carbon film, an element from group Ⅰ of the periodic table, an element from group Ⅰ, an alkali metal element, an alkaline earth metal element, a nitrogen atom, or an oxygen atom is introduced. The film thickness can be made approximately 2 to 3 times thicker than that of a non-doped film, and this can prevent the occurrence of bottle holes during device fabrication and dramatically improve the mechanical strength of the device. .. Furthermore, in the case of nitrogen atoms or oxygen atoms, the same effect as in the case of elements of group Ⅰ of the periodic table, etc., as described below, is obtained. Similarly, when nitrogen atoms, oxygen atoms, elements from group Ⅰ of the periodic table, chalcogen elements, or halogen elements are introduced, the stability of the hard carbon film is dramatically improved, and the hardness of the film is also improved. In combination, a highly reliable device can be manufactured.

これらの効果が得られるのは酸素原子,第■族元素及び
カルコゲン系元素の場合は硬質炭素膜中に存在する活性
な2重結合を減少させるからであり.またハロゲン元素
の場合はl)水素に対する引抜き反応により原料ガスの
分解を促進して膜中のダングリングボンドを減少させる
,2)成膜過程でハロゲン元素XがC−H結合中の水素
を引抜いてこれと置換し、C−X結合として膜中に入り
,結合エネルギーが増大する(C−H間及びC−X間の
結合エネルギーはC−X間の方が大きい)からである.
窒素原子は励起状態が高いため、気相反応中で原料ガス
の活性化に効果的であるためである. 次に本発明のκIM素子を用いた液晶表示装置について
説明する. 基板としてはガラス板,プラスチック板又はフレキシブ
ルなプラスチックフィルム等の透明絶縁板が使用される
.このような透明基板を2枚用意し、各基板に画素電極
を設け、少なくとも一方の基板の画素電極の各々に少く
とも一個のにIM素子と共通電極配線とを設ける.この
場合,画素電極は基板上にITO, ZnO:i, Z
nO:Si,SnO. :sbのような透明電極材料を
,スパッタリング、蒸着. CVD等の方法で数百人か
ら1μm程度に堆積させパターニングすることにより形
成される.次に前述のような透明電極上に下部電極を形
成する.下部電極は^Q, Ni−Cr合金,No, 
Cr, Ni, Tit Zr, Nb, Au, A
g, Pt, Cuなとの高導電材料をスパッタリング
法、蒸着法、CVD法等により数百人〜数千人程度の膜
厚に堆積せしめ,これをフォトリソグラフィー・エッチ
ング工程により所定のパターンにパターン化することに
より形成される。
These effects are obtained because oxygen atoms, group Ⅰ elements, and chalcogen elements reduce the active double bonds present in the hard carbon film. In the case of halogen elements, 1) an abstraction reaction with hydrogen promotes the decomposition of the source gas and reduces dangling bonds in the film; 2) halogen element X abstracts hydrogen from C-H bonds during the film formation process. This is because it replaces this and enters the film as a C-X bond, increasing the bond energy (the bond energy between C-H and C-X is larger for C-X).
This is because nitrogen atoms have a highly excited state and are therefore effective in activating the source gas during gas phase reactions. Next, a liquid crystal display device using the κIM element of the present invention will be explained. The substrate used is a transparent insulating plate such as a glass plate, plastic plate, or flexible plastic film. Two such transparent substrates are prepared, a pixel electrode is provided on each substrate, and at least one IM element and a common electrode wiring are provided on each pixel electrode of at least one substrate. In this case, the pixel electrode is made of ITO, ZnO:i, Z on the substrate.
nO: Si, SnO. : Sputtering, vapor deposition, etc. of transparent electrode material such as sb. It is formed by depositing several hundred layers to a thickness of about 1 μm using a method such as CVD and patterning it. Next, a lower electrode is formed on the transparent electrode as described above. The lower electrode is ^Q, Ni-Cr alloy, No.
Cr, Ni, Tit Zr, Nb, Au, A
Highly conductive materials such as G, Pt, and Cu are deposited to a thickness of several hundred to several thousand layers by sputtering, vapor deposition, CVD, etc., and then patterned into a predetermined pattern using photolithography and etching processes. It is formed by .

次に硬質炭素膜を前述の方法を用いて、100人から1
μ量の膜厚に堆積させ,これをフォトリソグラフィー・
エッチング工程により所定のパターンにパターン化する
. 続いて、上部電極として前記下部電極の場合と同様な高
導電材料を用い、これをスパッタリング法、蒸着法. 
CVD法等により数百人から数千人堆積させ,これをフ
ォトリソエッチングによりパターニングする.これによ
り本発明の阿IN素子を用いた液晶表示用基板が得られ
る。
Next, using the method described above, a hard carbon film was coated from 100 to 1
The film is deposited to a thickness of μ, and then photolithographically
It is patterned into a predetermined pattern using an etching process. Next, a highly conductive material similar to that used for the lower electrode was used as the upper electrode, and this was applied by sputtering or vapor deposition.
Several hundred to several thousand layers are deposited by CVD, etc., and then patterned by photolithography. As a result, a liquid crystal display substrate using the AIN element of the present invention is obtained.

この場合、HIM素子の構成はこれに限られるものでは
なく、κIN素子の作成後,最上層に透明電極を設けた
もの、透明電極が上部又は下部電極を兼ねた構成のもの
,下部電極の側面にIff阿素子を形成したもの等、種
々の構成が可能である. 前述のようにして得られた液晶表示用基板と対向して共
通透明電極を持つ透明基板にそれぞれ配向膜としてポリ
イミド等の配向層を設けラビング処理を行なう. 次に各々の基板の各画素電極側を内側にして対向させ.
ギャップ材を介して貼合せ,更にこうして形成されたセ
ル内に液晶材料を封入することにより液晶表示装置が得
られる。
In this case, the configuration of the HIM element is not limited to this, but after the creation of the κIN element, a transparent electrode is provided on the top layer, a transparent electrode also serves as an upper or lower electrode, a side surface of the lower electrode, etc. Various configurations are possible, such as one in which an Iff element is formed on the top. An alignment layer made of polyimide or the like is provided as an alignment film on each of the transparent substrates having a common transparent electrode facing the liquid crystal display substrate obtained as described above, and then rubbed. Next, place each substrate facing each other with each pixel electrode side facing inside.
A liquid crystal display device can be obtained by bonding them together via a gap material and then sealing a liquid crystal material into the cells thus formed.

以上の液晶表示装置は白黒表示のものについて説明した
がこれに限られず.カラーフィルターをセルの内側又は
外側に設けたカラー液晶表示装置としてもよい, ところで一般に、MIM素子の電流一世圧(1−V)特
性はその絶縁膜により異なるが,いま絶縁膜として硬質
炭素膜を用いた場合、プール・フレンケル型の伝導を示
し,次式で表わされる関係がある。
Although the liquid crystal display device described above is a black and white display device, the present invention is not limited to this. It is also possible to use a color liquid crystal display device with a color filter provided inside or outside the cell.In general, the current voltage (1-V) characteristics of an MIM element differ depending on the insulating film, but it is currently possible to use a hard carbon film as the insulating film. When used, it exhibits Poole-Frenkel type conduction, and there is a relationship expressed by the following equation.

I:(!8Xp (βJ■) 上式中のαは比例定数で、βは非線形性を表わす係数で
ある.β〉QではIはVの増加とともに急激に増加する
.すなわち、抵抗RはVの増加により急激に低下する.
この抵抗の変化はβが大きいほど変化が急激になる.ま
た、αはκ工阿素子を形成する面積と、M縁膜の膜厚の
逆数に比例するものである。
I: (!8 decreases rapidly with an increase in
The larger β is, the more rapid the change in resistance becomes. Further, α is proportional to the area where the κ element is formed and the reciprocal of the thickness of the M edge film.

第3図及び第4図に夫々本発明MIM素子の曲型的なI
−V特性及び素子構成を示す。第4図中、1は画素透明
電極,2は下部電極、3は硬質炭素膜、4は上部及び走
査電極である。
FIGS. 3 and 4 show curved I of the MIM device of the present invention, respectively.
-V characteristics and element configuration are shown. In FIG. 4, 1 is a pixel transparent electrode, 2 is a lower electrode, 3 is a hard carbon film, and 4 is an upper and scanning electrode.

以下に本発明を実施例によって説明する。The present invention will be explained below by way of examples.

実施例1〜9 一方の透明基板としてパイレックスガラス基板上にIT
Oをスパッタリング法によりIOOOA厚に堆積後、パ
ターン化して画素電極を形成した。
Examples 1 to 9 IT was placed on a Pyrex glass substrate as one transparent substrate.
After O was deposited to a thickness of IOOOA by sputtering, it was patterned to form a pixel electrode.

次に能動素子として肘M素子を次のようにして設けた.
まず基板の画素電極上にAQを蒸着法により1000人
厚に堆積後、パターン化して下部電極を形成した。その
上に絶縁膜として硬質炭素膜をプラズマCvD法により
900人厚に堆積後,ドライエッチングによりパターン
化した。この時の成膜条件は以下の通りである。
Next, an elbow M element was provided as an active element as follows.
First, AQ was deposited to a thickness of 1,000 layers on the pixel electrode of the substrate by vapor deposition, and then patterned to form a lower electrode. A hard carbon film was deposited thereon as an insulating film to a thickness of 900 mm by plasma CVD, and then patterned by dry etching. The film forming conditions at this time are as follows.

圧      力: 0.035Torr原料ガス組成
:第3表の通り トータル流量: 20SCCM RFパワー: 0.2v/i 第3表 つぎに,前記実施例1〜3,6,7.9で得られた硬質
炭素膜の物性を第4表に示す。
Pressure: 0.035 Torr Raw material gas composition: As shown in Table 3 Total flow rate: 20 SCCM RF power: 0.2 v/i Table 3 Table 4 shows the physical properties of the carbon film.

更に、各硬質炭素絶縁膜上にNiを蒸着法により100
0人厚に堆積後、バター・ン化して上部電極を形成した
Furthermore, 100% Ni was deposited on each hard carbon insulating film by vapor deposition.
After being deposited to a thickness of 0.000 g, it was turned into a batter to form an upper electrode.

次に他方の透明基板(対向基板)としてパイレックス基
板上にITOをスパッタリング法により1000人厚に
堆積後,ストライプ状にパターン化して共通画素電極を
形成した。
Next, ITO was deposited on a Pyrex substrate as the other transparent substrate (counter substrate) to a thickness of 1,000 layers by sputtering, and then patterned into stripes to form a common pixel electrode.

次に両基板の上に配向膜としてポリイミド膜を形成しラ
ビング処理を行なった。
Next, a polyimide film was formed as an alignment film on both substrates, and a rubbing process was performed.

次にこれらの基板を各画素電極側を内側にして対向させ
,5μm径のギャップ材を介して貼合わせ.更にこうし
て形成されたセル内に市販の液晶材料を封入することに
より第5図に示すような液晶表示装置を作った。第5図
中、5は透明基板,6は画素電極、6′は共通画素電極
,7はMIX素子、8は共通電極又は共通配線、9は配
向膜、10はギャップ材,1lは液晶材料である. 実施例lO〜18 ガラス板上に蒸着法により1000人厚のAQ薄膜を形
成し、ついでエッチングによりパターニングして下部金
属電極とし、その上に夫々実施例1〜9と同様の方法に
より800人厚の硬質炭素膜を被覆し、ドライエッチン
グによってパターニングしてI!縁膜とし,更に各硬質
炭素膜上にE.B.蒸着法により1000人厚のITO
を被覆し、エッチングによりパターニングして上部透明
画素電極を形成することにより第6図のタイプのMI河
素子を作った.第6図中、12は透明基板、13は金属
電極、14は透明電極,15は硬質炭素絶縁膜である. 次に対向基板としてプラスチックフィルム上にスパッタ
リング法により. ITOを500人厚に堆積後、スト
ライブ状にパターン化して共通画素電極を形成した,引
続きその上に実施例1と同様にポリイミド膜を設け、ラ
ビング処理した.これら2枚の基板を実施例1〜9と同
様にギャップ材を介して貼合せた後、市販の液晶材料を
封入することにより液晶表示装置を作った.実施例19
〜27 ガラス板上に夫々実施例1〜9と同様にして下部金属電
極及び絶縁膜として硬質炭素膜を形成した後,各硬質炭
素膜上に蒸着法によって500人厚のpt膜を形成し,
パターニングを行なって補助電極を形成し.さらにその
上に実施例10〜18と同様にして上部透明画素電極を
形成することにより,第7図のタイプのκIM素子を作
った.第7図中. 12は透明基板. 13は金属電極
,14は透明電極、15は硬質炭素絶縁膜、l6は補助
電極である. 次に対向基板としてパイレックス基板にITOをマグネ
トロンスパッタリング法により800人厚に堆積後、ス
トライブ状にパターン化して共通画素電極を形成した.
引続きその上に実施例1〜9と同様にポリイミド膜を設
け.ラビング処理した後,これら2枚の基板を実施例1
〜9と同様にギャップ材を介して貼合せた後、市販の液
晶材料を封入することにより液晶表示装置を作った. 実施例28〜36 第8図(a)に示すように透明基板17上に下部電極1
8、硬質炭素膜19を積層形成する.下部電極l8の材
料としてはNiCrを使用し、膜厚は7000人とした
。硬質炭素$19は実施例1〜9と同じ材料で、膜厚は
5000人とした。
Next, these substrates were placed facing each other with each pixel electrode side facing inward, and then pasted together with a gap material with a diameter of 5 μm interposed therebetween. Furthermore, a liquid crystal display device as shown in FIG. 5 was manufactured by sealing a commercially available liquid crystal material into the cells thus formed. In Fig. 5, 5 is a transparent substrate, 6 is a pixel electrode, 6' is a common pixel electrode, 7 is a MIX element, 8 is a common electrode or common wiring, 9 is an alignment film, 10 is a gap material, and 1l is a liquid crystal material. be. Examples 1O~18 A 1000-layer thick AQ thin film was formed on a glass plate by vapor deposition, and then patterned by etching to form a lower metal electrode, and an 800-layer thick film was formed on it by the same method as in Examples 1-9, respectively. I! is coated with a hard carbon film and patterned by dry etching. E. B. 1000mm thick ITO by vapor deposition method
An MI element of the type shown in FIG. 6 was fabricated by coating and patterning by etching to form an upper transparent pixel electrode. In FIG. 6, 12 is a transparent substrate, 13 is a metal electrode, 14 is a transparent electrode, and 15 is a hard carbon insulating film. Next, sputtering was performed on a plastic film as a counter substrate. After depositing ITO to a thickness of 500 layers, it was patterned into stripes to form a common pixel electrode.Subsequently, a polyimide film was provided thereon in the same manner as in Example 1, and rubbed. These two substrates were bonded together via a gap material in the same manner as in Examples 1 to 9, and then a commercially available liquid crystal material was encapsulated to produce a liquid crystal display device. Example 19
~27 After forming a hard carbon film as a lower metal electrode and an insulating film on a glass plate in the same manner as in Examples 1 to 9, a 500-layer thick PT film was formed on each hard carbon film by vapor deposition,
Perform patterning to form auxiliary electrodes. Further, an upper transparent pixel electrode was formed thereon in the same manner as in Examples 10 to 18, thereby producing a κIM element of the type shown in FIG. In Figure 7. 12 is a transparent substrate. 13 is a metal electrode, 14 is a transparent electrode, 15 is a hard carbon insulation film, and l6 is an auxiliary electrode. Next, ITO was deposited on a Pyrex substrate as a counter substrate to a thickness of 800 nm by magnetron sputtering, and then patterned into stripes to form a common pixel electrode.
Subsequently, a polyimide film was provided thereon in the same manner as in Examples 1 to 9. After rubbing these two substrates in Example 1
After bonding via a gap material in the same manner as in steps 9 to 9, a liquid crystal display device was made by filling a commercially available liquid crystal material. Examples 28 to 36 As shown in FIG. 8(a), the lower electrode 1 was placed on the transparent substrate 17.
8. Form a layer of hard carbon film 19. NiCr was used as the material for the lower electrode 18, and the film thickness was 7000. The hard carbon $19 was the same material as in Examples 1 to 9, and the film thickness was 5000.

次に,同図(b)に示すように硬質炭素膜!9と下部電
極18とをドライエッチング法により順次エッチングし
.所定のパターンにパターン化する。これらの硬質炭素
膜19と下部電極18とを順次エッチングする処理は、
同一チャンバー中でガス種、圧力、放電パワー等を選択
設定することにより連続的に行なうことができる.更に
、同図(c)に示すようにパターン化された硬質炭素7
1I19上面及び側面及び下部電極18側面を覆うよう
に第2の硬質炭素膜20を形成する.この第2の硬質炭
素膜20(組成は実施例1〜9と同じ)の膜厚は400
人とした。
Next, as shown in the same figure (b), a hard carbon film! 9 and the lower electrode 18 are sequentially etched using a dry etching method. Pattern into a predetermined pattern. The process of sequentially etching the hard carbon film 19 and the lower electrode 18 is as follows:
It can be performed continuously by selecting and setting the gas type, pressure, discharge power, etc. in the same chamber. Furthermore, as shown in the same figure (c), patterned hard carbon 7
1I A second hard carbon film 20 is formed to cover the top and side surfaces of the electrode 19 and the side surface of the lower electrode 18. The thickness of this second hard carbon film 20 (composition is the same as in Examples 1 to 9) is 400 mm.
As a person.

これらの硬質炭素jI19,20により阿IN素子の絶
縁膜が構成されるが、硬質炭素膜19.20が積層され
ている下部電極18表面では膜厚が両者の和より厚くな
り、段差部,既ち下部電18の側面箇所では硬質炭素膜
20だけであり、膜厚が薄くなるように構成されている
These hard carbon films 19 and 20 constitute the insulating film of the AIN element, but on the surface of the lower electrode 18 on which the hard carbon films 19 and 20 are laminated, the film thickness becomes thicker than the sum of both, and the step portion and the In other words, only the hard carbon film 20 is formed on the side surface of the lower electrode 18, and the film thickness is reduced.

更に、同図(d)に示すように画素電極となる透明電w
A21をE.B.蒸着法により形成し、所定のパターン
ニングを行なう。透明電極21の材料としてはITOを
用い、膜厚は900人とした。
Furthermore, as shown in the same figure (d), a transparent electrode w serving as a pixel electrode is
A21 to E. B. It is formed by a vapor deposition method and subjected to predetermined patterning. ITO was used as the material for the transparent electrode 21, and the film thickness was 900 mm.

このような構成において. MIM素子として動作する
のは下部電極18側面の硬質炭素膜20の薄い個所、既
ち下部電極(金属)18一第2の硬質炭素膜(MJi層
)2〇一透明電極(金属)21が横方向に積層された個
所Aである。なおMEN素子の面積は下部電極l8の段
差部(膜厚)と透明電極21のパターンとにより決定さ
れる。
In such a configuration. The thin part of the hard carbon film 20 on the side surface of the lower electrode 18 operates as an MIM element. This is the location A where the layers are stacked in the direction. Note that the area of the MEN element is determined by the step portion (film thickness) of the lower electrode l8 and the pattern of the transparent electrode 21.

このMIκ素子の斜視図を第9図に示す。このようにし
て得られた[M素子の基板上に実施例1〜9と同様にポ
リイミド膜を設け,ラビング処理した. 次に対向基板としてプラスチックフィルム上に■丁0を
スパッタリング法によりsoo人厚に堆積後,ストライ
ブ状にパターン化して共通画素電極を形成した.引続き
その上に実施例1〜9と同様にポリイミド膜を設け.ラ
ビング処理した.これら2枚の基板を実施例1〜9と同
様にギャップ材を介して貼合せた後,市販の液晶材料を
封入することにより液晶表示装置を作った.実施例37
〜45 本実施例は第10図に示すように、概略的にはMIX素
子箇所用の上部電122を独立して形成し.透明電極2
1との電気的接続をとるようにしたものである. まず、基板l7上に下部電極18,硬質炭素膜19を積
層形成する.これらの材料は実施例28〜36の場合と
同様ヌあり,またこれらの層は順次ドライエッチングし
て所定のパターンにパターン化する.この場合,下部電
極18のエッチングに際しては段差部が断面テーパ形状
となるようにエッチングする.このようなテーパ形状と
することにより、次工程で形成する第2の硬質炭素膜2
0の段差部、即ちテーバ面上での膜厚及びその均一性は
いっそう制御し易くなる.但し,硬質炭素11120の
膜厚は実施例28〜36の場合と同様である.次に実施
例28〜36と同様にして第2の硬質炭素膜20を形成
した後、本実施例では硬質炭素膜20上の一部がら基板
l7上にがけて所定パターンで上部電極22を形成する
9この上部?!極22は下部電極18と同一材料を用い
て膜厚4ooo人に形成した。
A perspective view of this MIκ element is shown in FIG. A polyimide film was provided on the substrate of the M element thus obtained in the same manner as in Examples 1 to 9, and rubbed. Next, on a plastic film as a counter substrate, a film of 100% was deposited to a thickness of about 100 ml using a sputtering method, and then patterned into stripes to form a common pixel electrode. Subsequently, a polyimide film was provided thereon in the same manner as in Examples 1 to 9. Rubbed. These two substrates were bonded together via a gap material in the same manner as in Examples 1 to 9, and then a commercially available liquid crystal material was encapsulated to produce a liquid crystal display device. Example 37
~45 As shown in FIG. 10, in this embodiment, the upper electrode 122 for the MIX element is formed independently. Transparent electrode 2
It is designed to make an electrical connection with 1. First, a lower electrode 18 and a hard carbon film 19 are laminated on a substrate 17. These materials are the same as in Examples 28 to 36, and these layers are sequentially dry etched to form a predetermined pattern. In this case, the lower electrode 18 is etched so that the stepped portion has a tapered cross-sectional shape. By forming such a tapered shape, the second hard carbon film 2 to be formed in the next step
It becomes easier to control the film thickness and its uniformity on the stepped portion of 0, that is, on the Taber surface. However, the film thickness of hard carbon 11120 is the same as in Examples 28-36. Next, after forming the second hard carbon film 20 in the same manner as in Examples 28 to 36, in this example, the upper electrode 22 is formed in a predetermined pattern over a portion of the hard carbon film 20 onto the substrate l7. Do 9 this upper part? ! The electrode 22 was formed using the same material as the lower electrode 18 and had a film thickness of 400 mm.

この後,画素電極となる透明電極21を形成し、一部が
上部電極22上にががるようにパターン化する.この結
果、本実施例によれば、透明電極2lと硬質炭素膜20
とが直接接触せず,透明電極21の形成時に硬質炭素膜
表面の変質に伴う接合状態の劣化が起こらず、素子特性
がより安定化する. このようにした得られたHIM素子基板上に実施例1〜
9と同様にポリイミド膜を設け、ラビング処理した. 次に対向基板としてガラス基板上にスパッタリング法に
よりITOを500人厚に堆積後、ストライブ状にパタ
ーン化して共通画素電極を形成した。引続きその上に実
施例1〜9と同様にポリイミド膜を設け,ラビリグ処理
した。
Thereafter, a transparent electrode 21 that will become a pixel electrode is formed and patterned so that a portion thereof extends over the upper electrode 22. As a result, according to this embodiment, the transparent electrode 2l and the hard carbon film 20
Since the transparent electrode 21 is not in direct contact with the transparent electrode 21, the bonding state does not deteriorate due to deterioration of the surface of the hard carbon film, and the device characteristics become more stable. Examples 1-
A polyimide film was provided and rubbed in the same manner as in 9. Next, ITO was deposited to a thickness of 500 nm on a glass substrate as a counter substrate by sputtering, and then patterned into stripes to form a common pixel electrode. Subsequently, a polyimide film was provided thereon in the same manner as in Examples 1 to 9, and Labyrig treatment was performed.

これら2枚の基板を実施例1〜9と同様にギャップ材を
介して貼合せた後、市販の液晶材料を封入することによ
り液晶表示装置を作った。
After bonding these two substrates together via a gap material in the same manner as in Examples 1 to 9, a commercially available liquid crystal material was encapsulated to produce a liquid crystal display device.

実施例46〜54 一方の透明基板としてプラスチック基板上にITOをス
パッタリング法により1000人厚に,堆積後、パター
ン化して画素電極を形成した。その上にAI2を蒸着法
により1000人厚に堆積後、パターン化して下部共通
電極を形成した。その上に絶縁膜として実施例1〜9と
同様にして硬質炭素膜をプラズマCVD法により600
人厚に堆積後、ドライエッチングによりパターン化した
,更にその上にCrを2000人厚に蒸着後、パターン
化して上部電極とした6引続きその上に実施例1〜9と
同様にポリイミド膜を設け,ラビング処理した. 次に対向基板としてプラスチックフィルム上にfTOを
スパッタリング法により500人厚に堆積後,ストライ
プ状にパターン化して共通画素電極を形成した。引続き
その上に実施例1〜9と同様にポリイミド膜を設け,ラ
ビング処理した後,その反対面にカラーフィルター23
を取り付けた。
Examples 46 to 54 ITO was deposited on a plastic substrate as one transparent substrate to a thickness of 1000 nm by sputtering, and then patterned to form pixel electrodes. AI2 was deposited thereon to a thickness of 1,000 layers by vapor deposition, and then patterned to form a lower common electrode. On top of that, a hard carbon film was applied as an insulating film to 600% by plasma CVD method in the same manner as in Examples 1 to 9.
After depositing Cr to a thickness of 2,000 mL, it was patterned by dry etching, and then Cr was deposited to a thickness of 2,000 mL and patterned to form an upper electrode. , rubbed. Next, fTO was deposited to a thickness of 500 nm on a plastic film as a counter substrate by sputtering, and then patterned into stripes to form a common pixel electrode. Subsequently, a polyimide film was provided thereon in the same manner as in Examples 1 to 9, and after rubbing treatment, a color filter 23 was applied on the opposite side.
was installed.

これら2枚の基板を実施例1〜9と同様にギャップ材を
介して貼合せた後、市販の液晶材科を封入することによ
り第11図に示すようなカラー液晶表示装置を作った。
These two substrates were bonded together via a gap material in the same manner as in Examples 1 to 9, and then a commercially available liquid crystal material was encapsulated to produce a color liquid crystal display device as shown in FIG. 11.

〔発明の作用効果〕[Function and effect of the invention]

本発明のκ■κ素子に用いられる硬質戻素膜は1) プ
ラズマCVO法等の気相合成法で作製されるため、成膜
条件によって物性が広範に制御でき,従ってデバイス設
計上の自由度が大きい、 2)硬質でしかも厚膜にできるため、機械的損傷を受け
難く、また厚膜化によるピンホールの減少も期待できる
、 3)室温付近の低温においても良質な膜を形成できるの
で、基板材質に制約がない、 4)膜厚,膜質の均一性に優れているため、薄膜デバイ
ス用として適している、 5)誘電率が低いので,高度の微細加工技術を必要とせ
ず,従って素子の大面積化に有利である, 等の特長を有し,このため特に信頼性の高い液晶表示用
スイッチング素子として好適である.更にこの硬質炭素
膜の構成元素の1つとして周期律表第■族元素、同じく
第■族元素,アルカリ金属元素、アルカリ土類金属元素
、窒lA原子又は酸素原子を導入したものは硬質炭素膜
の膜厚をノンドープのものに比べて約2〜3倍に厚くす
ることができ,またこれにより素子作製時のピンホール
の発生防止をいっそう効果的にすると共に.素子の機械
的強度を飛躍的に向上することができる.更に窒素原子
又は酸素原子の場合は以下に述べるような周期律表第■
族元素等の場合と同様な効果がある. 周期律表第■族元素,カルコゲン系元素又はハロゲン元
素を導入したものは硬質炭素膜の安定性が飛躍的に向上
すると共に,膜の硬度も改善されることとも相まって高
信頼性の素子が作製できる. なお、以上の効果が得られる理由は前述した通りである
The hard return element film used in the κ■κ element of the present invention is 1) produced by a gas phase synthesis method such as plasma CVO method, so its physical properties can be controlled over a wide range by changing the film formation conditions, and therefore there is greater freedom in device design. 2) It is hard and can be made into a thick film, so it is less susceptible to mechanical damage, and a thicker film can also be expected to reduce pinholes. 3) A high-quality film can be formed even at low temperatures near room temperature. 4) Excellent uniformity in film thickness and film quality, making it suitable for thin-film devices; 5) Low dielectric constant, so advanced microfabrication technology is not required; It has the following characteristics: it is advantageous for increasing the area of the display, and is therefore particularly suitable as a highly reliable switching element for liquid crystal displays. Furthermore, a hard carbon film is one in which an element from group Ⅰ of the periodic table, an alkali metal element, an alkaline earth metal element, a nitrogen atom, or an oxygen atom is introduced as one of the constituent elements of the hard carbon film. The film thickness can be made approximately 2 to 3 times thicker than that of a non-doped film, and this makes prevention of pinholes during device fabrication more effective. The mechanical strength of the device can be dramatically improved. Furthermore, in the case of nitrogen atoms or oxygen atoms, the periodic table No.
There is an effect similar to that of group elements. Introducing elements from group Ⅰ of the periodic table, chalcogen elements, or halogen elements dramatically improves the stability of the hard carbon film and improves the hardness of the film, making it possible to create highly reliable devices. can. The reason why the above effects can be obtained is as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明のMIM索子に使用され
る硬質炭素膜のIR及びラマンスペクトル図,第3図(
a.)及び(b)は夫々本発明MIP1素子の曲型的な
I−V特性及びQnI−v’v特性図、第4図は本発明
MIM素子の曲型的な構成図、第5図は実施例1〜9で
作った液晶表示装置の斜視図、第6図は実施例10〜1
8で作ったMIM素子の断面図,第7図は実施例19〜
27で作ったMIM素子の断面図、第8図(a)〜(b
)は実施例28〜36で作ったMI?l素子の製造工程
図、第9図は同じく実施例28〜36で作ったHIM素
子の斜視図,第10図は実施例37〜45で作ったHI
M素子の斜視図,第11図は実施例46〜54で作った
カラー液品表示装置の斜視図、第12図は硬質炭素膜製
膜時のRFパワー(投入電力)と得られた硬質炭素膜の
誘電率の関係を示すグラフである。 1・・・画素透明電極  2,18・・・下部N極3,
15・・・硬質炭素維球膜 4・・・上部兼走査電極 5,12.17・・・透明基
板5゛・・・プラスチックフィルム基板 6・・・画素電極    6′・・・共通画素電極7・
・・阿IM素子 8・・共通電極又は共通配線 9・・・配向膜     10・・・ギャップ材11・
・・液晶材料    l3・・・金if!i極l4・・
・透明電極    16・・・補助電極l9・・・第一
硬質炭素膜 20・・・第二硬質炭素膜2l・・・透明
電極    22・・・上部電極23・・カラーフィル
ター
Figures 1 and 2 are IR and Raman spectra of the hard carbon film used in the MIM cord of the present invention, respectively, and Figure 3 (
a. ) and (b) are curved IV characteristic and QnI-v'v characteristic diagrams of the MIP1 device of the present invention, respectively, FIG. 4 is a curved configuration diagram of the MIM device of the present invention, and FIG. A perspective view of the liquid crystal display device manufactured in Examples 1 to 9, and FIG. 6 is a perspective view of the liquid crystal display device manufactured in Examples 1 to 9.
8 is a cross-sectional view of the MIM element made in Example 19.
8 (a) to (b) are cross-sectional views of the MIM device made in 27.
) is the MI? made in Examples 28 to 36? Figure 9 is a perspective view of the HIM element made in Examples 28 to 36, and Figure 10 is a diagram of the HIM element made in Examples 37 to 45.
A perspective view of the M element, FIG. 11 is a perspective view of the color liquid display device made in Examples 46 to 54, and FIG. 12 shows the RF power (input power) during hard carbon film formation and the hard carbon obtained. It is a graph showing the relationship between dielectric constants of films. 1... Pixel transparent electrode 2, 18... Lower N pole 3,
15...Hard carbon fiber membrane 4...Upper and scanning electrode 5,12.17...Transparent substrate 5''...Plastic film substrate 6...Pixel electrode 6'...Common pixel electrode 7・
・・IM element 8・・Common electrode or common wiring 9・・Alignment film 10・・Gap material 11・
...Liquid crystal material l3...gold if! i pole l4...
- Transparent electrode 16... Auxiliary electrode l9... First hard carbon film 20... Second hard carbon film 2l... Transparent electrode 22... Upper electrode 23... Color filter

Claims (1)

【特許請求の範囲】[Claims] 1、下部電極と上部電極との間に絶縁膜を介在させてな
るMIM素子において、絶縁膜がドーパントを含む硬質
炭素膜であることを特徴とするMIM素子。
1. An MIM element having an insulating film interposed between a lower electrode and an upper electrode, wherein the insulating film is a hard carbon film containing a dopant.
JP4152790A 1989-02-23 1990-02-22 MIM element Expired - Lifetime JP2879747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152790A JP2879747B2 (en) 1989-02-23 1990-02-22 MIM element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4467389 1989-02-23
JP1-44673 1989-02-23
JP4152790A JP2879747B2 (en) 1989-02-23 1990-02-22 MIM element

Publications (2)

Publication Number Publication Date
JPH02289828A true JPH02289828A (en) 1990-11-29
JP2879747B2 JP2879747B2 (en) 1999-04-05

Family

ID=26381167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152790A Expired - Lifetime JP2879747B2 (en) 1989-02-23 1990-02-22 MIM element

Country Status (1)

Country Link
JP (1) JP2879747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831695A (en) * 1995-10-09 1998-11-03 Ricoh Company, Ltd. Active matrix liquid crystal display
USRE43590E1 (en) 1993-07-27 2012-08-21 Kobelco Research Institute, Inc. Aluminum alloy electrode for semiconductor devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43590E1 (en) 1993-07-27 2012-08-21 Kobelco Research Institute, Inc. Aluminum alloy electrode for semiconductor devices
US5831695A (en) * 1995-10-09 1998-11-03 Ricoh Company, Ltd. Active matrix liquid crystal display

Also Published As

Publication number Publication date
JP2879747B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5142390A (en) MIM element with a doped hard carbon film
JPH055871A (en) Thin film laminated device with substrate and production thereof
US5674599A (en) Deposited multi-layer device
JPH02289828A (en) Mim element
JPH0618908A (en) Liquid crystal display device
JPH02259725A (en) Liquid crystal display device
JP3074209B2 (en) Thin film laminated device with substrate
JPH04113324A (en) Liquid crystal display device
JPH0486810A (en) Liquid crystal display device
JPH04245229A (en) Thin film two-terminal element
JP2986933B2 (en) Thin film stacking device
JPH03181917A (en) Liquid crystal display device
JP2869436B2 (en) Liquid crystal display
JPH04299312A (en) Liquid crystal display device
JP2994056B2 (en) Thin-film two-terminal element
JPH04204717A (en) Substrate for active matrix
JPH05273600A (en) Plastic substrate for thin-film laminated device and thin-film laminated device with the same
JPH0411227A (en) Thin film two-terminal element
JPH03238424A (en) Liquid crystal display device
JPH0756194A (en) Active matrix substrate and liquid crystal display device
JPH04299318A (en) Plastic substrate of thin-film laminated device and thin-film laminated device formed by using the substrate
JPH02275924A (en) Liquid crystal display device
JPH03163533A (en) Thin film two-terminal element
JPH02271322A (en) Liquid crystal display device
JPH06337441A (en) Thin film two-terminal element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12