JPH03163533A - Thin film two-terminal element - Google Patents

Thin film two-terminal element

Info

Publication number
JPH03163533A
JPH03163533A JP1304418A JP30441889A JPH03163533A JP H03163533 A JPH03163533 A JP H03163533A JP 1304418 A JP1304418 A JP 1304418A JP 30441889 A JP30441889 A JP 30441889A JP H03163533 A JPH03163533 A JP H03163533A
Authority
JP
Japan
Prior art keywords
film
insulating film
hard carbon
thin film
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304418A
Other languages
Japanese (ja)
Inventor
Hitoshi Kondo
均 近藤
Hidekazu Ota
英一 太田
Yuji Kimura
裕治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1304418A priority Critical patent/JPH03163533A/en
Publication of JPH03163533A publication Critical patent/JPH03163533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enhance the degree of freedom in design, to make film thickness and film quality uniform and to have the advantage of making the area of an element large by constituting an insulating film which intervenes between 1st and 2nd conductors of a hard carbon film and making a conductor provided in contact with and under the insulating film contain Al as a principal component element. CONSTITUTION:In a thin film two-terminal element obtained by making the insulating film 2 intervene between the 1st and the 2nd conductors 1 and 3, the insulating film 2 is constituted of the hard carbon film and the conductor 1(Hereinafter referred to as a lower conductor) provided in contact with and under the insulating film 2 is made to contain at least Al as the principal component element. Since the hard carbon film is a vapor growth film, the various physical properties of the film are controlled in a wide range by a film producing condition. By selecting a material containing Al as the principal component element as the material of the lower conductor, the element is made excellent especially in the aspect of pressure proof and yield(difficulty in being peeled off). Thus, the design of the device is possible in the wide range and the dispersion of the characteristic of the element is reduced. Furthermore, the element is made excellent in threshold voltage and pressure proof and the yield is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜二端子素子に関し、詳しくは、OA機器用
やTV用等のフラットパネルディスプレイなどに好適に
使用しうるスイッチング素子、特に液晶表示装置のスイ
ッチング素子として有用な薄膜二端子素子に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thin film two-terminal device, and more specifically, to a switching device that can be suitably used in flat panel displays for office automation equipment, TVs, etc., especially liquid crystal displays. The present invention relates to a thin film two-terminal device useful as a switching device for devices.

〔従来の技術〕[Conventional technology]

OA機器端末機や液晶TVには大面積液晶パネルの使用
の要望が強く、そのため、アクティブ・マトリックス方
式では各画素ごとにスイッチを設け、電圧を保持するよ
うに工夫されている。
There is a strong demand for the use of large-area liquid crystal panels for office automation equipment terminals and liquid crystal TVs, and for this reason, the active matrix method is designed to maintain voltage by providing a switch for each pixel.

ところで、前記スイッチの一つとしてMIN(Meta
l Insulator Metal)素子が多く用い
られている。これは薄膜二端子素子がスイッチングに良
好な非線形な電流一電圧特性を示すためである。
By the way, one of the switches is MIN (Meta
l Insulator Metal) elements are often used. This is because the thin film two-terminal element exhibits nonlinear current-voltage characteristics that are good for switching.

そして、従来からの薄膜二端子素子は,ガラス板のよう
な絶縁基板上に下部電極としてTa. AQ− Ti等
の金属電極を設け、その上に前記金属の酸化物又はSi
Ox. SiNx等からなる絶縁膜を設け、更にその上
に、上部電極として肋、Cr等の金rA電極を設けたも
のが知られている。
Conventional thin film two-terminal devices have a Ta. AQ- A metal electrode such as Ti is provided, and an oxide of the metal or Si
Ox. It is known that an insulating film made of SiNx or the like is provided, and a rib or a gold rA electrode made of Cr or the like is provided thereon as an upper electrode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、絶縁体(絶縁膜)に金属酸化物を用いた薄膜二
端子素子(特開昭57−196589号,何61−23
2689号、同62−62333号等の公報に記載)の
場合、絶縁膜は下部電極の陽極酸化又は熱酸化により形
威されるため、工程が複雑であり、しかも高温熱処理を
必要とし(陽極酸化法でも不純物の除去等を確実にする
には高温熱処理が必要である)、また膜制御性(膜質及
び膜厚の均一性及び再現性)に劣る上、基板が耐熱材料
に限られること、及び、絶縁膜は物性が一定な金属酸化
物からなること等から、デバイスの材料やデバイス特性
を自由に変えることができず、設計上の自由度が狭いと
いう欠点がある。これは薄膜二端子素子を組込んだ液晶
表示装置からの仕様を十分に満たすデバイスを設計・作
製することが困難であることを意味する。また、このよ
うに膜制御性が悪いと、素子特性としての電流(I)電
圧(v)特性、特にI−V特性やI−V特性の対称性(
プラスバイアス時とマイナスバイアス時との電流比エー
/工+)のバラッキが大きくなるという問題も生じる。
However, a thin film two-terminal device using a metal oxide as an insulator (insulating film)
No. 2689, No. 62-62333, etc.), the insulating film is formed by anodic oxidation or thermal oxidation of the lower electrode, so the process is complicated and requires high-temperature heat treatment (no. In addition, the film controllability (uniformity and reproducibility of film quality and thickness) is poor, and the substrate is limited to heat-resistant materials. Since the insulating film is made of a metal oxide with fixed physical properties, the device material and device characteristics cannot be freely changed, and the degree of freedom in design is limited. This means that it is difficult to design and manufacture a device that fully satisfies the specifications of a liquid crystal display device incorporating a thin film two-terminal element. In addition, if the film controllability is poor in this way, the current (I) and voltage (v) characteristics as element characteristics, especially the IV characteristics and the symmetry of the IV characteristics (
A problem also arises in that the current ratio A/E +) varies greatly between the positive bias and the negative bias.

その他、薄膜二端子素子を液晶表示装置(LCD)用と
して使用する場合、液晶部容量/薄膜二端子素子容量比
は一般に10以上が望ましいが,金属酸化物膜の場合は
誘電率が大きいことから素子容量も大きくなり、このた
め、素子容量を減少させること即ち素子面積を小さくす
るための微細加工を必要とする。またこの場合、液晶材
料封入時のラビング工程等で絶縁膜が機械的損傷を受け
ることにより、微細加工とも相まって歩留り低下を来た
すという問題もある。
In addition, when using a thin film two-terminal element for a liquid crystal display (LCD), it is generally desirable that the ratio of liquid crystal part capacitance to thin film two-terminal element capacitance be 10 or more, but in the case of metal oxide films, the dielectric constant is large. The element capacitance also increases, and therefore microfabrication is required to reduce the element capacitance, that is, to reduce the element area. In this case, there is also the problem that the insulating film is mechanically damaged during the rubbing process or the like during the filling of the liquid crystal material, resulting in a reduction in yield in combination with microfabrication.

一方、絶縁膜にSiOzやSUN)(を用いた肘阿素子
(特開昭61−260219号公報)の場合、絶縁膜は
プラズマCVD法、スパッタ法等の気相法で成膜するが
、基板温度が通常300℃程度必要であるため、低コス
ト基板は使用できず、また大面積化の際、基板温度分布
のため膜厚,膜質が不均一になり易いという欠点がある
。また,これらの絶縁膜を合戊する際には気相でなされ
ることから、ダストが多く発生し、膜のビンホールが多
いため素子の歩留りが低下する。更には、膜ストレスが
大きく、膜剥離が起こり、この点からも素子の歩留りが
低下する。
On the other hand, in the case of the Hijia element (Japanese Patent Application Laid-Open No. 61-260219) using SiOz or SUN as the insulating film, the insulating film is formed by a vapor phase method such as plasma CVD or sputtering. Since a temperature of about 300°C is usually required, low-cost substrates cannot be used, and when increasing the area, the film thickness and quality tend to become non-uniform due to the substrate temperature distribution. Since the insulating film is bonded in a gas phase, a lot of dust is generated and there are many bottle holes in the film, which reduces the yield of devices.Furthermore, the film stress is large, causing film peeling, and this This also reduces the yield of devices.

本発明者らは、先に、絶縁膜として硬質炭素膜(i型カ
ーボン(i−C)膜)を使用したMIM素子を提案した
が、絶縁膜の厚さは20〜100λと薄いものであった
.この絶縁膜(i−C膜)の場合、その伝導機構はトン
ネル伝導であり,むしろ高速スイッチやトンネル発光等
、超薄膜素子としての応用には適している。しかし,液
晶表示装置等に応用する場合は、耐圧、歩留り(欠陥率
)、素子特性の均一性、しきい値電圧の点から膜厚は厚
い方が望ましい。
The present inventors previously proposed an MIM element using a hard carbon film (i-type carbon (i-C) film) as an insulating film, but the thickness of the insulating film was as thin as 20 to 100λ. Ta. In the case of this insulating film (i-C film), the conduction mechanism is tunnel conduction, and it is rather suitable for applications as ultra-thin film elements such as high-speed switches and tunnel light emission. However, when applied to liquid crystal display devices and the like, a thicker film is preferable from the viewpoints of breakdown voltage, yield (defect rate), uniformity of device characteristics, and threshold voltage.

本発明の第1の目的は、比較的低温でしかも簡単な工程
で形戒でき、膜制御性及び機械的強度に優れた低誘電率
の絶縁膜(硬質炭素膜)を使用することで、広範囲での
デバイス設計が可能で、しかも素子特性のバラツキが少
なく,またしきい値電圧,耐圧に優れ、歩留りの良い薄
膜二端子素子を提供することである。
The first object of the present invention is to use a low dielectric constant insulating film (hard carbon film) that can be formed at a relatively low temperature and in a simple process, and has excellent film controllability and mechanical strength. It is an object of the present invention to provide a thin film two-terminal element that allows device design in the same manner, has less variation in element characteristics, has excellent threshold voltage and breakdown voltage, and has a high yield.

また、本発明の第2の目的は、下部導体材料を選定する
ことにより、リーク電流が小さく、液晶酩動に適する特
性のマージンが広くとれ、かつ素子の信頼性、歩留りが
より高くなる薄膜二端子素子を提供することである。
Furthermore, the second object of the present invention is to provide a thin film structure that, by selecting the lower conductor material, has a small leakage current, a wide margin of characteristics suitable for liquid crystal driving, and higher device reliability and yield. An object of the present invention is to provide a terminal element.

〔課題を解決するための手段及び作用〕本発明の薄膜二
端子素子は、第一の導体と第二の導体との間に絶縁膜を
介在させてなる薄膜二端子素子において,該絶縁膜が硬
質炭素膜からなり、かつ該絶縁膜に接してその下に設け
られる導体(以後、下部導体と称す)が少なくとも脚を
主たる構成元素として含んでいることを特徴としている
[Means and effects for solving the problems] The thin film two-terminal element of the present invention is a thin film two-terminal element in which an insulating film is interposed between a first conductor and a second conductor, in which the insulating film is It is characterized in that a conductor (hereinafter referred to as a lower conductor) made of a hard carbon film and provided in contact with and below the insulating film contains at least legs as a main constituent element.

以下本発明の薄膜二端子素子につき図面を参照しながら
詳細に説明するゆ 第1図は本発明を液晶表示素子の薄膜二端子素子に適用
した場合の素子構成例を示す斜視図であり、画素電極4
が形成された基板(図示せず)上に一部が該画素電極4
の上面に重なるごとく下部導体1が形成され、該下部導
体1上に図示のように絶縁膜2及び上部導体3が形威さ
れ、薄膜二端子素子が構成されている。この薄膜二端子
素子の構成上の特徴は、絶縁膜3が硬質炭素膜より形或
されるとともに、下部導体1が少なくとも静を主たる構
成元素として含んでいる材料から形威されることにある
The thin film two-terminal element of the present invention will be described in detail below with reference to the drawings. Figure 1 is a perspective view showing an example of the element configuration when the present invention is applied to a thin film two-terminal element of a liquid crystal display element. Electrode 4
A part of the pixel electrode 4 is formed on a substrate (not shown) on which the pixel electrode 4 is formed.
A lower conductor 1 is formed so as to overlap with the upper surface of the lower conductor 1, and an insulating film 2 and an upper conductor 3 are formed on the lower conductor 1 as shown in the figure, thereby forming a thin film two-terminal element. The structural feature of this thin film two-terminal element is that the insulating film 3 is formed from a hard carbon film, and the lower conductor 1 is formed from a material containing at least carbon as a main constituent element.

下部導体1は、上記のように少なくともAQを主たる構
成元素として含む材料を用いて蒸着法、スパッタリング
法等により数百〜数千人の膜厚に形或される.絶縁膜2
には例えば後述の方法で成膜される硬質炭素膜が100
〜8000人、望ましくは300〜4000入の膜厚で
使用される。上部導体3は、例え?Pt. Ni. A
g. Cu, Au,IQ, Cr,Ti. W、阿o
. Ta、ITO, ZnO:[1. In20,、S
in■等の導電体材料を用いて蒸着法、スパッタリング
法等により数百〜数千人の膜厚に形成される。
As described above, the lower conductor 1 is formed to a thickness of several hundred to several thousand layers using a material containing at least AQ as a main constituent element by vapor deposition, sputtering, or the like. Insulating film 2
For example, a hard carbon film formed by the method described below is 100%
It is used with a film thickness of ~8,000, preferably 300 to 4,000. Is the upper conductor 3 an example? Pt. Ni. A
g. Cu, Au, IQ, Cr, Ti. W, Ao
.. Ta, ITO, ZnO: [1. In20,,S
It is formed to a thickness of several hundred to several thousand layers using a conductive material such as in■ by a vapor deposition method, a sputtering method, or the like.

本発明の薄膜二端子素子においては、両導体1,2間に
介在する絶縁膜3が硬質炭素膜で形成されているが、該
硬質炭素膜は,炭素原子及び水素原子を・主要な組織形
成元素として非品質及び微結晶質の少なくとも一方を含
む硬質炭素膜(i−C膜、ダイヤモンド状炭素膜、アモ
ルファスダイヤモンド膜、ダイヤモンド薄膜とも呼ばれ
る)からなっている。
In the thin film two-terminal device of the present invention, the insulating film 3 interposed between both conductors 1 and 2 is formed of a hard carbon film, and the hard carbon film is a material that absorbs carbon atoms and hydrogen atoms and forms the main structure. It consists of a hard carbon film (also called an i-C film, a diamond-like carbon film, an amorphous diamond film, or a diamond thin film) containing at least one of non-quality and microcrystalline elements.

硬質炭素膜の一つの特徴は気相成長膜であるがために,
後述するように、その諸物性が製膜条件によって広範囲
に制御できることである。従って、絶縁膜といってもそ
の抵抗値は半絶縁体から絶縁体までの領域をカバーして
おり、この意味では本発明の薄膜二端子素子はMIM素
子は勿論のこと、それ以外でも例えば特開昭61−26
0219号公報でいうところのMSI素子(Metal
−Semi−Insulator)や、SIS素子(半
導体一絶縁体一半導体であって、ここでの「半導体」は
不純物を高濃度にドープさせたものである)としても位
置付けられるものである。
One feature of the hard carbon film is that it is a vapor-phase grown film.
As will be described later, the various physical properties can be controlled over a wide range by controlling the film forming conditions. Therefore, even though it is called an insulating film, its resistance value covers the range from semi-insulator to insulator. Kaisho 61-26
MSI element (Metal
-Semi-Insulator) and SIS element (semiconductor-insulator-semiconductor, where the "semiconductor" is a device doped with impurities at a high concentration).

なお,この硬質炭素膜中には,さらに物性制御範囲を広
げるために、構成元素の一つとして少なくとも周期律表
第■族元素を全構成原子に対し5原子z以下、同じく第
■族元素を35原子2以下,同じく第V族元素を5yX
子2以下、アルカリ土類金属元素を5原子$以下、アル
カリ金属元素を5原子2、窒素原子を5原子$以下、酸
素原子を5yA子2以下、カルコゲン系元素を35原子
2以下,またはハロゲン系元素を35原子2以下の量で
含有させてもよい。
In addition, in order to further widen the control range of physical properties, this hard carbon film contains at least 5 atoms z or less of an element from group Ⅰ of the periodic table as one of the constituent elements, and z or less of an element from group Ⅰ of the periodic table. 35 atoms 2 or less, same group V element as 5yX
2 or less atoms, alkaline earth metal elements 5 atoms or less, alkali metal elements 5 atoms 2, nitrogen atoms 5 atoms or less, oxygen atoms 5yA atoms or less 2, chalcogen-based elements 35 atoms or less 2, or halogen The element may be contained in an amount of 35 atoms/2 or less.

これら元素又は原子の量は元素分析の常法例えばオージ
ェ分析によって測定することができる。また、この量の
多少は原料ガスに含まれる他の化合物の量や或膜条件で
調節可能である。
The amounts of these elements or atoms can be measured by conventional methods of elemental analysis, such as Auger analysis. Further, the amount can be adjusted by adjusting the amount of other compounds contained in the raw material gas and certain film conditions.

こうした硬質炭素膜を形或するためには有機化合物ガス
、特に炭化水素ガスが用いられる,これら原料における
相状態は常温常圧において必ずしも気相である必要はな
く,加熱或いは減圧等により溶融、蒸発,昇華等を経て
気化し得るものであ?ば,液相でも固相でも使用可能で
ある。
In order to form such hard carbon films, organic compound gases, especially hydrocarbon gases, are used.The phase state of these raw materials does not necessarily have to be a gas phase at room temperature and normal pressure, but can be melted or evaporated by heating or reduced pressure. , can it be vaporized through sublimation, etc.? For example, it can be used in either liquid or solid phase.

原料ガスとしての炭化水素ガスについては、例えばCH
4,C,}I,,C4H■。等のパラフィン系炭化水素
、C2H4等のオレフイン系炭化水素、ジオレフイン系
炭化水素、アセチレン系炭化水素、さらには芳香族炭化
水素などすべての炭化水素を少なくとも含むガスが使用
可能である。
Regarding hydrocarbon gas as a raw material gas, for example, CH
4,C,}I,,C4H■. Gases containing at least all hydrocarbons such as paraffinic hydrocarbons such as, olefinic hydrocarbons such as C2H4, diolefinic hydrocarbons, acetylenic hydrocarbons, and even aromatic hydrocarbons can be used.

また、炭化水素以外でも、例えばアルコール類、ケトン
類、エーテル類、エステル類などであって少なくとも炭
素元素を含む化合物であれば使用可能である. 本発明における原料ガスからの硬質炭素膜の形威方法と
しては、或膜活性種が直流,低周波、高周波或いはマイ
クロ波等を用いたプラズマ法により生成されるプラズマ
状態を経て形成される方法が好ましいが,より大面積化
、均一性向上及び/又は低温製膜の目的で低圧下で堆積
を行わせしめるのには磁界効果を利用する方法がさらに
好ましい。また、高温における熱分解によっても活性種
を形成できる. その他にも、イオン化蒸着法或いはイオンビーム蒸着法
等により生威されるイオン状態を経て形成されてもよい
し,真空蒸着法或いはスパッタリング法等により生成さ
れる中性粒子から形成されてもよいし,さらには,これ
らの組み合わせにより形成されてもよい。
In addition, compounds other than hydrocarbons, such as alcohols, ketones, ethers, and esters, can be used as long as they contain at least the carbon element. In the present invention, a method for forming a hard carbon film from a raw material gas includes a method in which a certain film active species is formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. Although preferred, a method using a magnetic field effect is more preferred in order to perform deposition under low pressure for the purpose of increasing the area, improving uniformity, and/or forming a film at a low temperature. Active species can also be formed by thermal decomposition at high temperatures. In addition, it may be formed through an ionic state produced by ionization vapor deposition, ion beam vapor deposition, etc., or may be formed from neutral particles generated by vacuum vapor deposition, sputtering, etc. , or a combination thereof.

こうして作製される硬質炭素膜の堆積条件の一例はプラ
ズマCVD法の場合,概ね次の通りである。
An example of the deposition conditions for the hard carbon film produced in this manner is approximately as follows in the case of the plasma CVD method.

RF出力: 0.1−50 W/cJ 圧   力: 10’−3−10Torr堆積温度:室
温〜950℃で行なうことができるが、好ましくは室温
〜300℃, このプラズマ状態により原料ガスがラジカルとイオンと
に分解され反応することによって、基板上に炭素原子C
と水素原子Hとからなるアモルファス(非品質)及び微
結晶質(結晶の大きさは数10人〜数μm)の少くとも
一方を含む硬質炭素膜が堆積する。硬質炭素膜の諸特性
を表−1に示す。
RF output: 0.1-50 W/cJ Pressure: 10'-3-10 Torr Deposition temperature: It can be carried out at room temperature to 950°C, but preferably room temperature to 300°C. This plasma state allows the source gas to become radicals. By decomposing and reacting with ions, carbon atoms C
A hard carbon film containing at least one of amorphous (non-quality) and microcrystalline (crystal size is several tens of micrometers to several micrometers) consisting of hydrogen atoms H is deposited. Table 1 shows the properties of the hard carbon film.

表−1 注)測定法; 比抵抗(ρ):コプレナー型セルによるI−V特性より
求める。
Table 1 Note) Measurement method; Specific resistance (ρ): Determined from the IV characteristics of a coplanar cell.

光学的バンドギャップ(Egopt) :分光特性から
吸収係数(α)を求め、 (αhv)1/2=B(hy’−Egopt)の関係よ
り決定する。
Optical band gap (Egopt): Obtain the absorption coefficient (α) from the spectral characteristics and determine from the relationship (αhv)1/2=B(hy'-Egopt).

膜中水素量(CM) :赤外吸収スペクトルから290
0cm−1付近のピークを積分し、吸収断面@A をかけて求める。すなわち、 CH:A−fα(v)/w・dv SP3/SP”比:赤外吸収スペクトルを、sp”,s
p2にそれぞれ帰属されるガウス関数に分解 し、その面積比より求める。
Hydrogen content in the film (CM): 290 from infrared absorption spectrum
It is determined by integrating the peak near 0 cm-1 and multiplying by the absorption cross section @A. That is, CH:A-fα(v)/w・dv SP3/SP” ratio: infrared absorption spectrum, sp”, s
It is decomposed into Gaussian functions respectively attributed to p2 and determined from the area ratio thereof.

ビッカース硬度(H):マイクロビッカース計による。Vickers hardness (H): Based on micro Vickers meter.

屈折率(n):エリプソメーターによる。Refractive index (n): by ellipsometer.

欠陥密度: ESRによる。Defect density: Based on ESR.

こうして形或される硬質炭素膜はIR吸収法及びラマン
分光法による分析の結果、夫々、第2図及び第3図に示
すように炭素原子がsp”の混成軌道とsp”の混或軌
道とを形成した原子間結合が混在していることが明らか
になっている。SPJ結合とSP2結合の比率は、IR
スペクトルをピーク分離することで概ね推定できる。I
Rスペクトルには、2800〜3150cm−1に多く
のモードのスペクトルが重なって測定されるが,それぞ
れの波数に対応するピークの帰属は明らかになっており
、第4図に示したごときガウス分布によってピーク分離
を行ない、それぞれのピーク面積を算出し、その比率を
求めればSP3/SP”を知ることができる。
As a result of analysis by IR absorption method and Raman spectroscopy, the hard carbon film formed in this way shows that the carbon atoms have an sp" hybrid orbital and an sp" hybrid orbital, as shown in FIGS. 2 and 3, respectively. It has become clear that there is a mixture of interatomic bonds that formed . The ratio of SPJ binding to SP2 binding is IR
It can be roughly estimated by separating the peaks of the spectrum. I
The R spectrum is measured with many mode spectra overlapping at 2800 to 3150 cm-1, but the attribution of the peak corresponding to each wave number has been clarified, and is determined by the Gaussian distribution shown in Figure 4. SP3/SP'' can be determined by performing peak separation, calculating the area of each peak, and finding the ratio.

また、前記の硬質炭素膜は、X線及び電子線回折分析に
よれば,アモルファス状態(a−C:H)、及び/又は
、数10人〜数μm程度の微結晶粒を含むアモルファス
状態にあることが判かる。
Further, according to X-ray and electron diffraction analysis, the hard carbon film is in an amorphous state (a-C:H) and/or an amorphous state containing microcrystalline grains of several tens of micrometers to several micrometers. It turns out that there is something.

一般に量産に適しているプラズマCvD法の場合には、
RF出力が小さいほど膜の比抵抗値および硬度が増加し
、また、低圧力なほど活性種の寿命が増加するために、
基板温度の低温化,大面積での均一化が図られ,かつ比
抵抗、硬度が増加する傾向にある。更に、低圧力ではプ
ラズマ密度が減少するため、磁場閉じ込め効果を利用す
る方法は,比抵抗の増加には特に効果的である。更にま
た、この方法(プラズマCVD法)は常温〜150℃程
度の比較的低い温度条件でも同様に良質の硬質炭素膜を
形成できるという特徴を有しているため,薄膜二端子素
子製造プロセスの低温化には最適である。
In the case of plasma CVD method, which is generally suitable for mass production,
The lower the RF output, the higher the specific resistance and hardness of the membrane, and the lower the pressure, the longer the life of active species.
The substrate temperature is becoming lower and more uniform over a large area, and resistivity and hardness tend to increase. Furthermore, since the plasma density decreases at low pressures, methods using magnetic field confinement effects are particularly effective in increasing resistivity. Furthermore, this method (plasma CVD method) has the characteristic that it can form a hard carbon film of good quality even under relatively low temperature conditions of room temperature to 150°C, so it can be used at low temperatures in the thin film two-terminal device manufacturing process. It is ideal for

従って、使用する基板材料の選択自由度が広がり、基板
温度をコントロールし易いために大面積に均一な膜が得
られるという特長をもっている。
Therefore, the degree of freedom in selecting the substrate material to be used is increased, and the substrate temperature can be easily controlled, so that a uniform film can be obtained over a large area.

硬質炭素膜の構造、物性は表−1に示したように、広範
囲に制御可能であるため、デバイス特性を自由に設計で
きる利点もある。さらには,膜の誘電率も3〜5と従来
のMIM素子に使用されていたTa20, IAfl,
O,, SiNxなどと比較して小さいため、同じ電気
容量をもった素子を作る場合、素子サイズが大きくてす
むので、それほど微細加工を必要とせず、歩留まりが向
上する(駆動条件の関係からLCDとMI阿素子との容
量比はCLCD : CMIM”lO:1程度必要であ
る)。
As shown in Table 1, the structure and physical properties of the hard carbon film can be controlled over a wide range, so there is the advantage that device characteristics can be designed freely. Furthermore, the dielectric constant of the film is 3 to 5, which is compared to Ta20, IAfl, which are used in conventional MIM devices.
Because it is smaller than O, SiNx, etc., when manufacturing an element with the same capacitance, the element size can be large, so it does not require as much fine processing and improves yield (due to driving conditions, LCD The capacitance ratio between CLCD and MI element is required to be about 1 (CLCD:CMIM"lO:1).

さらに膜の硬度が高いため、液晶材料封入時のラビング
工程による損傷が少なく、この点からも歩留まりが向上
する。
Furthermore, since the film has high hardness, there is little damage caused by the rubbing process during encapsulation of the liquid crystal material, which also improves yield.

液晶駆動用薄膜二端子素子として好適な硬質炭素膜は、
馳動条件から膜厚が100〜8000A .比抵抗が1
0’−1013Ω・cffIの範囲であることが有利で
ある。
A hard carbon film suitable as a thin film two-terminal element for driving a liquid crystal is
The film thickness is 100-8000A due to the turbulence conditions. Specific resistance is 1
Advantageously, it is in the range 0'-1013 Ω·cffI.

なお、駆動電圧と耐圧(絶縁破壊電圧)とのマージンを
考慮すると膜厚は200人以上であることが望ましく、
また、画素部と薄膜二端子素子部の段差(セルギャップ
差)に起因する色むらが実用上問題とならないようにす
るには膜厚は6000大以下であることが望ましいこと
から、硬質炭素膜の膜厚は200−6000人、比抵抗
は5X 10’−10”Ω”cmであることがより好ま
しい。
Furthermore, considering the margin between drive voltage and withstand voltage (dielectric breakdown voltage), it is desirable that the film thickness is 200 or more.
In addition, in order to prevent color unevenness caused by the level difference (cell gap difference) between the pixel part and the thin film two-terminal element part from becoming a practical problem, it is desirable that the film thickness be 6000 or less. More preferably, the film thickness is 200-6000 cm, and the specific resistance is 5X 10'-10"Ω"cm.

硬質炭素膜のピンホールによる素子の欠陥数は膜厚が減
少にともなって増加し、300人以下では特に顕著にな
ること(欠陥率は1%を越える)、及び、膜厚の面内分
布の均一性(ひいては素子特性の均一性)が確保できな
くなる(膜厚制御の精度は30A程度が限度で、膜厚の
パラツキが10%を越える)ことから、膜厚は300入
以上であることがより望ましい。
The number of device defects due to pinholes in the hard carbon film increases as the film thickness decreases, and becomes especially noticeable when the number of people is less than 300 (defect rate exceeds 1%), and the in-plane distribution of the film thickness increases. The film thickness should not exceed 300 Ω because uniformity (and therefore uniformity of device characteristics) cannot be ensured (the accuracy of film thickness control is limited to about 30 A, and the variation in film thickness exceeds 10%). More desirable.

また、ストレスによる硬質炭素膜の剥離が起こりにくく
するため、及び、より低デューティ比(望ましくは1/
1000以下)で廓動するために、膜厚は4000λ以
下であることがより望ましい。
In addition, in order to make it difficult for the hard carbon film to peel off due to stress, and to lower the duty ratio (preferably 1/
1,000 λ or less), it is more desirable that the film thickness is 4,000 λ or less.

これらを総合して考慮すると、硬質炭素膜の膜厚は30
0−4000入、比抵抗は10’−1011Ω・cII
1であることが一層好ましい。
Taking all of these into consideration, the thickness of the hard carbon film is 30
0-4000 input, specific resistance is 10'-1011Ω・cII
More preferably, it is 1.

ところで、本発明者らは、絶縁膜(硬質炭素膜)に接し
てその下に設けられる下部導体の材料と硬質炭素膜の膜
物性との関係について鋭意検討を重ねた結果、下部導体
材料の選定によって硬質炭素膜の膜物性が異なり、下部
導体材料として、少なくとも肋を主たる構成元素として
含む材料を選定した場合、素子のI−V特性(特に液晶
駐動用スイッチング素子に用いて好適な特性)、耐圧、
歩留り(剥離しにくさ)等゛の面で特に優れていること
を見出した。表−2は各種下部導体材料による硬質炭素
膜及び素子の諸特性を比較して示す表である。なお、素
子構成は第1図に示す構成とした。
By the way, as a result of intensive studies on the relationship between the material of the lower conductor provided under and in contact with the insulating film (hard carbon film) and the physical properties of the hard carbon film, the inventors have determined the selection of the material for the lower conductor. The physical properties of the hard carbon film differ depending on the type of film, and if a material containing at least ribs as a main constituent element is selected as the lower conductor material, the I-V characteristics of the device (characteristics particularly suitable for use in switching devices for liquid crystal parking), pressure resistance,
It has been found that it is particularly excellent in terms of yield (difficulty in peeling off), etc. Table 2 is a table showing a comparison of various characteristics of hard carbon films and devices made of various lower conductor materials. Note that the element configuration was as shown in FIG.

表−2 表−2より、素子特性として、il士Ion (on電
流)が最も小さく、また耐圧が最も高いことがわかる。
Table 2 From Table 2, it can be seen that, as the element characteristics, IlIon (ON current) is the smallest and the withstand voltage is the highest.

Ionが小さいということは硬質炭素膜の比抵抗が大き
いことを意味し、■リーク電流が小さて、■液晶腫動に
適する特性(κ,β)のマージンが広い等の利点を有す
る。
A small Ion means that the specific resistance of the hard carbon film is large, and has the following advantages: (1) a small leakage current, and (2) a wide margin for characteristics (κ, β) suitable for liquid crystal swelling.

ここで■について第5図を用いて説明を加える。Here, an explanation will be added regarding ■ using FIG. 5.

第5図はシミュレーションによって求めた液晶卵動適正
範囲を示す概念図である。駆動条件によって値、幅のシ
フトは発生するが、形状的には相似である。κ,βは本
発明の薄膜二端子素子のI−V特性を表わすプールフレ
ンケル伝導式における係数であり、以下の関係式で示さ
れる。
FIG. 5 is a conceptual diagram showing the appropriate range of liquid crystal egg movement determined by simulation. Although the values and widths shift depending on the driving conditions, they are similar in shape. κ and β are coefficients in the Poole-Frenkel conduction equation representing the IV characteristics of the thin film two-terminal device of the present invention, and are expressed by the following relational expression.

I=κexp(βvt72)            
 −(1)I:電流 V:印加電圧 κ:導電係数 β
:プールフレンケル係数 n:キャリャ密度  μ:キャリャモビリテイq:電子
の電荷量  Φ:トラップ深さρ:比抵抗     d
:絶縁膜の厚さ(人)k:ボルツマン定数 T:雰囲気
温度 ε、:絶縁膜の誘電率 (2)式より、比抵抗が大きいほどκが小さくなり、し
たがって第5図より駆動に適する特性のマージンが広く
なることがわかる。また、耐圧が高いということは(イ
)素子の信頼性が高い、(口)駆動電圧を上げることが
できるので高デューテイ化に適する,等の利点を有する
I=κexp(βvt72)
-(1) I: Current V: Applied voltage κ: Conductivity coefficient β
: Poole-Frenkel coefficient n: Carrier density μ: Carrier mobility q: Electron charge Φ: Trap depth ρ: Specific resistance d
: Thickness of insulating film (person) k: Boltzmann's constant T: Ambient temperature ε, : Permittivity of insulating film From equation (2), the larger the specific resistance, the smaller κ becomes. Therefore, from Figure 5, the characteristics are suitable for driving. It can be seen that the margin becomes wider. Furthermore, the high withstand voltage has advantages such as (a) high reliability of the element, and (c) suitability for higher duty because the driving voltage can be increased.

このような素子特性は硬質炭素膜の膜中水素量と関係づ
けることができる。すなわち、下部導体材料がAQの場
合、膜中水素量が最も多く,炭素原子の未結合手が効果
的にターミネートされているために欠陥密度が下がり、
その結果比抵抗が大きくなり、耐圧も上がると考えられ
る。さらに剥離しにくさにおいてもiは良好(Crも同
様に良好)な結果を示し、歩留りが高くなるという利点
を有する。
Such device characteristics can be related to the amount of hydrogen in the hard carbon film. In other words, when the lower conductor material is AQ, the amount of hydrogen in the film is the highest and the dangling bonds of carbon atoms are effectively terminated, resulting in a lower defect density.
It is thought that as a result, the specific resistance increases and the withstand voltage also increases. Furthermore, i shows good results in terms of resistance to peeling (Cr also has good results) and has the advantage of high yield.

なお、下部導体としてはAfl単体に限られるものでは
なく、必要に応じて他の元素、例えばSL, Cu等を
含有させても同様な効果を得ることができる.〔実施例
〕 次に実施例を示すが、本発明はこれらに限定されるもの
ではない。
Note that the lower conductor is not limited to Afl alone, and the same effect can be obtained by containing other elements such as SL, Cu, etc. as necessary. [Example] Next, Examples will be shown, but the present invention is not limited thereto.

実施例1 第1図に示すように,パイレックス透明基板(図示せず
)上に、ITO透明導電性薄膜をスパッタリング法によ
り数百〜数千λ厚に堆積後、パターニングして画素電極
4を形威した。次に薄膜二端子素子を次のようにして作
製した。まず肝を蒸着法によりIOOOA厚に堆積後、
パターニングして下部導体1を形威した。その上に硬質
炭素膜をプラズマCVD法により800人堆積させたの
ち、ドライエッチングによりパターニングして、N縁膜
2を形威した。さらに、この上にNiをEB蒸着法によ
りl000人厚に堆積後パターニングして上部導体3を
形或した。この時の硬質炭素膜の或膜条件は以下の通り
である。
Example 1 As shown in FIG. 1, an ITO transparent conductive thin film was deposited on a Pyrex transparent substrate (not shown) to a thickness of several hundred to several thousand λ by sputtering, and then patterned to form a pixel electrode 4. Intimidated. Next, a thin film two-terminal device was fabricated as follows. First, after depositing the liver to a thickness of IOOOA by vapor deposition method,
The lower conductor 1 was formed by patterning. After 800 hard carbon films were deposited thereon by the plasma CVD method, they were patterned by dry etching to form the N edge film 2. Furthermore, Ni was deposited on this layer to a thickness of 1,000 layers by EB evaporation, and then patterned to form the upper conductor 3. The conditions for forming the hard carbon film at this time are as follows.

圧   力:0,035Torr CH4流量:10sccn RFパワー:0.2V/a# 実施例2 第6図に示すような薄膜二端子素子を次のようにして作
製した。まずプラスチック透明基板5上に蒸着法により
IOOOA厚のAQ薄膜を形成し,パターニングして下
部導体1とした。その上に絶縁膜2として硬質炭素膜を
プラズマCvD法により1100入堆積させたのち,ド
ライエッチングによりパターニングした。さらにその上
にEB蒸着法により1000人厚のITO膜を被覆し、
エッチングによりパターニングして上部導体3を形成し
た.この時の硬質炭素膜の成膜条件は以下の通りである
.圧   力:0,035Torr CH4流量:20sccm RFパワー:0.IV/ail 実施例1あるいは2の構戒によれば、素子特性(■−■
特性あるいはI−V特性の対称性)が良好なものとなり
、また耐圧は20V以上あり、連続動作に対する安定性
も問題なかった。一方、下部導体としてNiを用いると
同一構成において耐圧がlOv以下と低かった。またC
rを用いると連続動作において短時間(数分〜数10分
)で素子特性に異常をきたす(膜の変質を伴う)ことが
わかった。
Pressure: 0,035 Torr CH4 flow rate: 10 sccn RF power: 0.2 V/a# Example 2 A thin film two-terminal device as shown in FIG. 6 was fabricated as follows. First, an AQ thin film having a thickness of IOOOA was formed on a plastic transparent substrate 5 by vapor deposition and patterned to form a lower conductor 1. A hard carbon film having a thickness of 1,100 mm was deposited thereon as an insulating film 2 by plasma CVD, and then patterned by dry etching. Furthermore, a 1,000-layer thick ITO film is coated on top of it using the EB evaporation method.
The upper conductor 3 was formed by patterning by etching. The conditions for forming the hard carbon film at this time were as follows. Pressure: 0,035 Torr CH4 flow rate: 20 sccm RF power: 0. IV/ail According to the structure of Example 1 or 2, the element characteristics (■-■
The characteristics (or the symmetry of the IV characteristics) were good, the breakdown voltage was 20 V or more, and there was no problem in stability for continuous operation. On the other hand, when Ni was used as the lower conductor, the withstand voltage was as low as 1Ov or less in the same configuration. Also C
It has been found that when r is used, the device characteristics become abnormal (accompanied by deterioration of the film) in a short period of time (several minutes to several tens of minutes) during continuous operation.

〔発明の効果〕〔Effect of the invention〕

本発明の薄膜二端子素子は第一の導体と第二の導体間に
介在させた絶縁膜が硬質炭素膜であり、この膜は 1)プラズマCVD法等の気相合成法で作製されるため
,成膜条件によって物性が広範囲に制御でき,従ってデ
バイス設計の自由度が大きい、 2)硬質でしかも厚膜にできるため、機械的損傷を受け
難く,また厚膜化によるピンホールの減少も期待できる
、 3)室温付近の低温においても良質な膜を形成できるの
で、基板材質に制約がなり)、4)膜厚、膜質の均一性
に優れて%Xるため、薄膜デバイス用として適している
、 5)誘電率が低いので、高度の微細加工技術を必要とせ
ず、従って素子の大面積化に有利である, 等の特長を有し,このような絶縁膜を用レ1た薄膜二端
子素子は液晶表示用スイッチング素子とじて好適である
In the thin film two-terminal device of the present invention, the insulating film interposed between the first conductor and the second conductor is a hard carbon film, and this film is manufactured by 1) a vapor phase synthesis method such as plasma CVD method; , the physical properties can be controlled over a wide range by changing the film formation conditions, and therefore there is a large degree of freedom in device design. 2) Since it is hard and can be made thick, it is less susceptible to mechanical damage, and it is expected that pinholes will be reduced due to the thicker film. 3) It is possible to form a high-quality film even at low temperatures near room temperature, so there are no restrictions on the substrate material. 4) It is suitable for thin-film devices because it has excellent uniformity in film thickness and film quality. , 5) Since the dielectric constant is low, advanced microfabrication technology is not required, and therefore it is advantageous for increasing the area of the device. The device is suitable as a switching device for liquid crystal display.

さらに、本発明の薄膜二端子素子の下部導体i±少なく
ともAQを主たる構成元素として含有してb)るので、 1)リーク電流が小さい,あるレ1は液晶院動番こ適す
る特性のマージンが広い, 2)耐圧が高くなるため,素子の信頼性が高いあるいは
翻動電圧を上げることができ、高デューティに適する、 3)硬質炭素膜が剥離しにくいので歩留りが高い、 等の特長を持つ。
Furthermore, since the lower conductor of the thin film two-terminal device of the present invention contains at least AQ as a main constituent element, 1) the leakage current is small, and a certain level 1 has a margin of characteristics suitable for liquid crystal display. 2) It has a high withstand voltage, making it suitable for high-duty applications as it increases the reliability of the element or increases the swinging voltage. 3) The yield rate is high because the hard carbon film is difficult to peel off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る薄膜二端子素子の代表的な一例(
実施例1)の斜視図、第2図、第3図及び第4図は硬質
炭素膜の物性を説明するための図、第5図はシミュレー
ションより求めた液晶酩動適正範囲を示す概念図、第6
図は本発明の実施例2に係る薄膜二端子素子の構成を説
明するための断面図である.
FIG. 1 shows a typical example of a thin film two-terminal device according to the present invention (
A perspective view of Example 1), FIG. 2, FIG. 3, and FIG. 4 are diagrams for explaining the physical properties of the hard carbon film, and FIG. 5 is a conceptual diagram showing the appropriate range of liquid crystal intoxication determined by simulation. 6th
The figure is a cross-sectional view for explaining the configuration of a thin film two-terminal device according to Example 2 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)第一の導体と第二の導体との間に絶縁膜を介在さ
せてなる薄膜二端子素子において、該絶縁膜が硬質炭素
膜からなり、かつ該絶縁膜に接してその下に設けられる
導体が少なくともAlを主たる構成元素として含んでい
ることを特徴とする薄膜二端子素子。
(1) In a thin film two-terminal element in which an insulating film is interposed between a first conductor and a second conductor, the insulating film is made of a hard carbon film, and the insulating film is provided in contact with and below the insulating film. 1. A thin film two-terminal device characterized in that a conductor containing at least Al as a main constituent element.
JP1304418A 1989-11-22 1989-11-22 Thin film two-terminal element Pending JPH03163533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304418A JPH03163533A (en) 1989-11-22 1989-11-22 Thin film two-terminal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304418A JPH03163533A (en) 1989-11-22 1989-11-22 Thin film two-terminal element

Publications (1)

Publication Number Publication Date
JPH03163533A true JPH03163533A (en) 1991-07-15

Family

ID=17932761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304418A Pending JPH03163533A (en) 1989-11-22 1989-11-22 Thin film two-terminal element

Country Status (1)

Country Link
JP (1) JPH03163533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431401B2 (en) 2006-07-10 2013-04-30 Takagi Industrial Co., Ltd. Method of cultivating cell or tissue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431401B2 (en) 2006-07-10 2013-04-30 Takagi Industrial Co., Ltd. Method of cultivating cell or tissue

Similar Documents

Publication Publication Date Title
JP3090979B2 (en) Thin film laminated device with substrate and method of manufacturing the same
JPH02308226A (en) Liquid crystal display device
JPH05313210A (en) Thin-film laminated device
JPH03163533A (en) Thin film two-terminal element
JP3155332B2 (en) Switching element
JP3009520B2 (en) Plastic substrate for thin film laminated device and thin film laminated device using the same
JP3074209B2 (en) Thin film laminated device with substrate
JPH02259725A (en) Liquid crystal display device
JP2798963B2 (en) Liquid crystal display
JP2986933B2 (en) Thin film stacking device
JP2994056B2 (en) Thin-film two-terminal element
JPH02271579A (en) Mim element
JP2989285B2 (en) Thin film laminated device with substrate
JPH04113324A (en) Liquid crystal display device
JPH0756194A (en) Active matrix substrate and liquid crystal display device
JPH03163532A (en) Thin film two-terminal element
JPH0419712A (en) Thin film two-terminal element
JPH06337441A (en) Thin film two-terminal element
JPH03223723A (en) Active matrix substrate
JPH02264928A (en) Liquid crystal display device
JPH0895505A (en) Hard carbon film, thin-film two-terminal element and liquid crystal display device formed by using the same
JPH08248386A (en) Active matrix substrate
JPH02289828A (en) Mim element
JPH03163531A (en) Active matrix substrate
JPH0486810A (en) Liquid crystal display device