JPH03163532A - Thin film two-terminal element - Google Patents
Thin film two-terminal elementInfo
- Publication number
- JPH03163532A JPH03163532A JP1304417A JP30441789A JPH03163532A JP H03163532 A JPH03163532 A JP H03163532A JP 1304417 A JP1304417 A JP 1304417A JP 30441789 A JP30441789 A JP 30441789A JP H03163532 A JPH03163532 A JP H03163532A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conductor
- hard carbon
- insulating film
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 38
- 239000004020 conductor Substances 0.000 claims abstract description 47
- 229910021385 hard carbon Inorganic materials 0.000 claims abstract description 42
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 claims description 115
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 32
- 239000011787 zinc oxide Substances 0.000 abstract description 16
- 230000000704 physical effect Effects 0.000 abstract description 6
- 238000013461 design Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 3
- 229910052736 halogen Inorganic materials 0.000 abstract description 3
- 150000002367 halogens Chemical class 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 21
- 239000000758 substrate Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 125000004429 atom Chemical group 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 In20 Chemical compound 0.000 description 1
- 229910018106 Ni—C Inorganic materials 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910004301 SiNz Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005426 magnetic field effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は薄膜二端子素子に関し、詳しくは、OA機器用
やTV用等のフラットパネルディスプレイなどに好適に
使用しうるスイッチング素子,特に液晶表示装置のスイ
ッチング素子として有用な薄膜二端子素子に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thin film two-terminal device, and more specifically, a switching device that can be suitably used in flat panel displays for office automation equipment, TVs, etc., especially liquid crystal displays. The present invention relates to a thin film two-terminal device useful as a switching device for devices.
OA機器端末機や液晶TVには大面積液晶パネルの使用
の要望が強く、そのため,アクティブ・マトリックス方
式では各画素ごとにスイッチを設け、電圧を保持するよ
うに工夫されている。There is a strong demand for the use of large-area liquid crystal panels for office automation equipment terminals and liquid crystal TVs, and for this reason active matrix systems are designed to maintain voltage by providing a switch for each pixel.
ところで,前記スイッチの一つとしてMIM(Meta
l Insulator Metal)素子が多く用い
られている。これは薄膜二端子素子がスイッチングに良
好な非線形な電流一電圧特性を示すためである。By the way, MIM (Meta
l Insulator Metal) elements are often used. This is because the thin film two-terminal element exhibits nonlinear current-voltage characteristics that are good for switching.
そして,従来からの薄膜二端子素子は、ガラス板のよう
な絶縁基板上に下部電極としてTa, AQ. Ti等
の金属電極を設け,その上に前記金属の酸化物又はSi
Ox. SiNx等からなるM縁膜を設け,更にその上
に,上部電極として周、Cr等の金属電極を設けたもの
が知られている。Conventional thin film two-terminal devices have Ta, AQ. A metal electrode such as Ti is provided, and an oxide of the metal or Si is provided on the electrode.
Ox. It is known that an M edge film made of SiNx or the like is provided, and a metal electrode of Cr or the like is provided thereon as an upper electrode.
しかし、絶縁体(絶縁膜)に金属酸化物を用いた薄膜二
端子素子(特開昭57−196589号,同61−23
2689号、同62−62333号等の公報に記載)の
場合、絶縁膜は下部電極の陽極酸化又は熱酸化により形
或されるため,工程が複雑であり、しかも高温熱処理を
必要とし(陽極酸化法でも不純物の除去等を確実にする
には高温熱処理が必要である),また膜制御性(膜質及
び膜厚の均一性及び再現性)に劣る上、基板が耐熱材料
に限られること,及び,絶縁膜は物性が一定な金属酸化
物からなること等から、デバイスの材料やデバイス特性
を自由に変えることができず、設計上の自由度が狭いと
いう欠点がある。これは薄膜二端子素子を組込んだ液晶
表示装置からの仕様を十分に満たすデバイスを設計・作
製することが困難であることを意味する。また、このよ
うに膜制御性が悪いと,素子特性としての電流(I)電
圧(V)特性、特にI−V特性やI−V特性の対称性(
プラスバイアス時とマイナスバイアス時との電流比L/
I。)のバラッキが大きくなるという問題も生じる.そ
の他、薄膜二端子素子を液晶表示装置(LCD)用とし
て使用する場合、液晶部容量/a膜二端子素子容量比は
一般に10以上が望ましいが,金H,rII化物膜の場
合は誘@率が大きいことから素子容量も大きくなり、こ
のため、素子容量を減少させること即ち素子面積を小さ
くするための微細加工を必要とする。またこの場合、液
晶材料封入時のラビング工程等で絶縁膜が機械的損傷を
受けることにより,微細加工とも相まって歩留り低下を
来たすという問題もある。However, thin film two-terminal devices using metal oxides as insulators (insulating films)
No. 2689, No. 62-62333, etc.), the insulating film is formed by anodic oxidation or thermal oxidation of the lower electrode, so the process is complicated and requires high-temperature heat treatment. In addition, the film controllability (uniformity and reproducibility of film quality and thickness) is poor, and the substrate is limited to heat-resistant materials. Since the insulating film is made of a metal oxide with fixed physical properties, the device material and device characteristics cannot be changed freely, and the degree of freedom in design is limited. This means that it is difficult to design and manufacture a device that fully satisfies the specifications of a liquid crystal display device incorporating a thin film two-terminal element. In addition, if film controllability is poor in this way, the current (I) and voltage (V) characteristics as element characteristics, especially the IV characteristics and the symmetry of the IV characteristics (
Current ratio L/ between positive bias and negative bias
I. ) will also cause the problem of increased variation. In addition, when using a thin film two-terminal element for a liquid crystal display (LCD), it is generally desirable that the ratio of liquid crystal part capacitance/a film two-terminal element capacitance is 10 or more, but in the case of a gold H, rII compound film, the dielectric constant Since the element capacitance is large, the element capacitance also becomes large, and thus microfabrication is required to reduce the element capacitance, that is, to reduce the element area. Furthermore, in this case, there is also the problem that the insulating film is mechanically damaged during the rubbing process or the like during the filling of the liquid crystal material, resulting in a reduction in yield in combination with microfabrication.
一方、絶縁膜にSun)(やSiNzを用いたMIM素
子(特開昭61−260219号公報)の場合,綺縁膜
はプラズマCVD法、スパッタ法等の気相法で或膜する
が、基板温度が通常300℃程度必要であるため、低コ
スト基板は使用できず、また大面積化の際、基板温度分
布のため膜厚、膜質が不均一になり易いという欠点があ
る.また、これらの絶縁膜を合成する際には気相でなさ
れることから,ダストが多く発生し、膜のピンホールが
多いため素子の歩留りが低下する。更には、膜ストレス
が大きく、膜剥離が起こり、この点からも素子の歩留り
が低下する。On the other hand, in the case of an MIM element (Japanese Patent Application Laid-Open No. 61-260219) using Sun) (or SiNz) as an insulating film, the edge film is formed by a vapor phase method such as plasma CVD or sputtering, but the substrate Since a temperature of about 300°C is usually required, low-cost substrates cannot be used, and when increasing the area, the film thickness and film quality tend to become non-uniform due to the substrate temperature distribution. Since the insulating film is synthesized in a gas phase, a lot of dust is generated and there are many pinholes in the film, which reduces the yield of devices.Furthermore, the film stress is large, causing film peeling, and this This also reduces the yield of devices.
本発明者らは、先に、絶縁膜として硬質炭素膜(i型カ
ーボン(i−C)膜)を使用したHIM素子を提案した
が、絶縁膜の厚さは20〜100人と薄いものであった
。この絶縁膜(i−C膜)の場合、その伝導機構はトン
ネル伝導であり、むしろ高速スイッチやトンネル発光等
、超薄膜素子としての応用には適している。しかし、液
晶表示装置等に応用する場合は、耐圧、歩留り(欠陥率
)、素子特性の均一性、しきい値電圧の点から膜厚は厚
い方が望ましい。The present inventors previously proposed a HIM element using a hard carbon film (i-type carbon (i-C) film) as an insulating film, but the thickness of the insulating film was 20 to 100 times thinner. there were. In the case of this insulating film (i-C film), the conduction mechanism is tunnel conduction, and it is rather suitable for applications as ultra-thin film elements such as high-speed switches and tunnel light emission. However, when applied to liquid crystal display devices and the like, it is desirable that the film be thicker in terms of breakdown voltage, yield (defect rate), uniformity of device characteristics, and threshold voltage.
本発明の第1の目的は、比較的低温でしかも簡単な工程
で形成でき、膜制御性及び機械的強度に優れた低誘電率
の絶縁膜(硬質炭素膜)を使用することで、広範囲での
デバイス設計が可能で,しかも素子特性のバラツキが少
なく、またしきい値電圧,耐圧に優れ、歩留りの良い薄
膜二端子素子を提供することである。The first object of the present invention is to use a low dielectric constant insulating film (hard carbon film) that can be formed at a relatively low temperature and in a simple process and has excellent film controllability and mechanical strength. It is an object of the present invention to provide a thin film two-terminal device which enables device design, has little variation in device characteristics, has excellent threshold voltage and breakdown voltage, and has a high yield.
また、本発明の第2の目的は、下部導体材料を選定する
ことにより、工程数を少なくし、ひいては低コスト化さ
れた薄膜二端子素子を提供することである。A second object of the present invention is to provide a thin film two-terminal element that reduces the number of steps and costs by selecting a lower conductor material.
〔課題を解決するための手段及び作用〕本発明の薄膜二
端子素子は、第一の導体と第二の導体との間に介在させ
た絶縁膜が硬質炭素膜からなり、かつ該絶縁膜に接して
その下に設けられる導体(以後、下部導体と称す)が酸
化亜鉛透明導電体からなることを特徴としている。[Means and effects for solving the problems] In the thin film two-terminal element of the present invention, the insulating film interposed between the first conductor and the second conductor is made of a hard carbon film, and the insulating film is made of a hard carbon film. It is characterized in that the conductor (hereinafter referred to as the lower conductor) provided in contact with and below it is made of a zinc oxide transparent conductor.
以下本発明の薄膜二端子素子につき図面を参照しながら
詳細に説明する。Hereinafter, the thin film two-terminal element of the present invention will be explained in detail with reference to the drawings.
第1図は本発明を液晶表示装置の薄膜二端子素子に適用
した場合の該素子の作製方法の一例を示す図で,同図(
c)が完戊後の薄膜二端子素子の層構成を示している。FIG. 1 is a diagram showing an example of a method for manufacturing a thin film two-terminal device for a liquid crystal display device when the present invention is applied to the device.
c) shows the layer structure of the thin film two-terminal device after completion.
同図中,lは基板、2は下部導体,3は絶縁膜,4は上
部導体であり,この例では、下部導体2が酸化亜鉛(Z
nO)透明導電体より形成されるとともに,絶縁膜3が
硬質炭素膜より形成されていることに構或上の特徴があ
る。In the figure, l is the substrate, 2 is the lower conductor, 3 is the insulating film, and 4 is the upper conductor. In this example, the lower conductor 2 is made of zinc oxide (Z
A structural feature is that the insulating film 3 is made of a hard carbon film and is made of a transparent conductor (nO).
この薄膜二端子素子の作製方法を第1図にしたがって説
明すると、まずガラス、プラスチック等の透明基板1上
に酸化亜鉛(ZnO)をスパッタリング法,蒸着法等に
より数百〜数千人堆積させ,パタニングし、下部導体2
を形或する(第l図(a)).なお、本例では下部導体
2は画素電極をも兼ねている.ここで下部導体2を形戊
する際、ZnOに■族、■族またはハロゲン元素をドー
プしてもよく、こうすると、より抵抗を下げることがで
き、特にAQをドープしたZnO:AQは抵抗率、透過
率の点で優れており,好ましい。次に硬質炭素膜をプラ
ズマCvD法、イオンビーム法等により100〜800
0人、望ま?くは200〜6000大、より望ましくは
300〜4000人堆積させ、ドライエッチング等によ
りバターニングし、絶縁膜3とする(第1図(b))。The method for manufacturing this thin film two-terminal device will be explained according to FIG. 1. First, hundreds to thousands of zinc oxide (ZnO) are deposited on a transparent substrate 1 made of glass, plastic, etc. by sputtering, vapor deposition, etc. Patterning and lower conductor 2
(Figure 1(a)). Note that in this example, the lower conductor 2 also serves as a pixel electrode. Here, when forming the lower conductor 2, ZnO may be doped with group Ⅰ, group Ⅰ, or halogen elements, and by doing so, the resistance can be further lowered. In particular, ZnO doped with AQ: , which is preferable because it has excellent transmittance. Next, a hard carbon film is coated with a film of 100 to 800
0 people, do you want it? Preferably, 200 to 6000, more preferably 300 to 4000, are deposited and patterned by dry etching or the like to form the insulating film 3 (FIG. 1(b)).
最後に、Pt. Ni、Ag, Cu. Au. AQ
. Cr. Ti. W. Mo. Ta. ITO,
ZnO:AQ、In20,、SnO■等の導電性薄膜
を蒸着法、スパッタリング法等により数百〜数千入堆積
させ、パターニングし、上部導体4とし(第1図(C)
).薄膜二端子素子が得られる。なお、上部導体4の材
料としては, Ni, Pt, Agが密着力,素子の
長期安定性の点で特に優れている。Finally, Pt. Ni, Ag, Cu. Au. AQ
.. Cr. Ti. W. Mo. Ta. ITO,
Hundreds to thousands of conductive thin films of ZnO:AQ, In20, SnO2, etc. are deposited by vapor deposition, sputtering, etc., and patterned to form the upper conductor 4 (Fig. 1 (C)).
). A thin film two-terminal device is obtained. Note that as the material for the upper conductor 4, Ni, Pt, and Ag are particularly excellent in terms of adhesion and long-term stability of the element.
ところで、透明導電体としては. ZnO以外にITO
、In20,、SnO2等が知られているが、それらを
下部導体としてその上に硬質炭素膜を形威した場合、硬
質炭素膜の成膜時に気相中に存在するイオンあるいは電
子による衝撃を受けるために表面が金属リッチとなり、
抵抗率の上昇及び透過率の低下をきたし,透明導電体と
しての機能が損われる。特にITOあるいはIn.O,
を用いた場合には表面でリッチとなるInが硬質炭素膜
中に拡散しやすいために,素子特性そのものを悪化させ
るという問題が生じる.これに対し、ZnOを用いた場
合には上記の問題は発生せず、イオンあるいは電子によ
る衝撃に対しての安定性が高い.なお,表面の結合状態
は例えばxPSによって知ることができ、実際にH2プ
ラズマによる衝撃を与えて測定すると, ITOあるい
はSnO,ではそれぞれの金属酸化物の結合エネルギー
以外にInあるいはSnの金属結合のエネルギーのピー
クが1!察されるのに対して、ZnOでは酸化物の結合
のみがwt奈された.
このような問題を回避する方法はもちろん存在しないわ
けではなく、第2図のような作製工程により薄膜二端子
素子を作製すればよい。すなわち,まず基板ll上にI
TO、In20,、SnO,等による画素電極15を形
成する(第2図(a)).次に胸、Cr. Ni− C
u、Ti. Ag. Pt, Au. w、Mo. T
a等の導電性薄膜を蒸着法,スパッタ法等により数百〜
数千入堆積させ、パターニングし、下部導体12とする
(第2図(b))。By the way, as a transparent conductor... ITO in addition to ZnO
, In20, SnO2, etc. are known, but if they are used as a lower conductor and a hard carbon film is formed on top of them, they will be bombarded by ions or electrons present in the gas phase during the formation of the hard carbon film. Therefore, the surface becomes metal-rich,
This results in an increase in resistivity and a decrease in transmittance, impairing its function as a transparent conductor. Especially ITO or In. O,
When using carbon, In, which is rich on the surface, tends to diffuse into the hard carbon film, resulting in a problem of deterioration of the device characteristics itself. On the other hand, when ZnO is used, the above-mentioned problems do not occur, and it is highly stable against bombardment by ions or electrons. Note that the surface bonding state can be determined by, for example, xPS, and when actually measured by applying a bombardment with H2 plasma, in ITO or SnO, in addition to the bonding energy of each metal oxide, the energy of the metallic bonding of In or Sn The peak of is 1! In contrast, only oxide bonds were observed in ZnO. Of course, there are ways to avoid such problems, and a thin film two-terminal element may be fabricated using a fabrication process as shown in FIG. That is, first, I
A pixel electrode 15 made of TO, In20, SnO, etc. is formed (FIG. 2(a)). Next, the chest, Cr. Ni-C
u, Ti. Ag. Pt, Au. w, Mo. T
Several hundred conductive thin films such as a are deposited by vapor deposition, sputtering, etc.
Several thousand pieces are deposited and patterned to form the lower conductor 12 (FIG. 2(b)).
この際,画素電極15の保護のため画素電極l5全面を
カバーするようにパターニングを行う.次いで、硬質炭
素膜をプラズマCVD法、イオンビーム法等により10
0〜8000人堆積させ、ドライエッチング等によりパ
ターニングし、絶縁膜l3とする(第2図(C))。さ
らに、Pt. Ni. Ag. Cu. Ar. AQ
. Cr. Ti,U. Mo、Ta等の導電性薄膜を
蒸着法、スパッタリング法等により数百〜数千大堆積さ
せ,パターニングし,上部導体】4とする(第2図(d
))。最後に画素電極15上の導電性薄膜をエッチング
除去して、薄膜二端子素子が完或する。しかしながら第
1図と第2図を比較するとわかるように、下部導体とし
てITO、In20=、Sn02等を用いた場合には、
ZnOを下部導体に用いた場合に比べ、工程数が大幅に
増えてしまう。換言すると、下部導体としてZnOを用
いれば,工程数を大幅に短縮することができ、低コスト
化を図ることが可能となる,
また、本発明の薄膜二端子素子においては、絶縁膜3が
硬質炭素膜で形成されるが、該硬質炭素膜は、炭素原子
及び水素原子を主要な組織形或元素として非品質及び微
結晶質の少なくとも一方を含む硬質炭素膜(i−C膜,
ダイヤモンド状炭素膜、アモルファスダイヤモンド膜、
ダイヤモンド薄膜とも呼ばれる)からなっている。硬質
炭素膜の一つの特徴は気相成長膜であるがために,後述
するように,その諸物性が製膜条件によって広範囲に制
御できることである。従って,絶縁膜といってもその抵
抗値は半絶縁体から絶縁体までの領域をカバーしており
、この意味では本発明の薄膜二端子素子はMIM素子は
勿論のこと、それ以外でも例えば特開昭61−2602
19号公報でいうところのMSI素子(Metal−S
ea+i−Insulator)や、SIS素子(半導
体一絶縁体一半導体であって、ここでの「半導体」は不
純物を高濃度にドープさせたものである)としても位置
付けられるものである。At this time, in order to protect the pixel electrode 15, patterning is performed so as to cover the entire surface of the pixel electrode 15. Next, the hard carbon film is coated by plasma CVD, ion beam method, etc.
0 to 8,000 layers are deposited and patterned by dry etching or the like to form an insulating film 13 (FIG. 2(C)). Furthermore, Pt. Ni. Ag. Cu. Ar. AQ
.. Cr. Ti, U. A conductive thin film of Mo, Ta, etc. is deposited several hundred to several thousand times by vapor deposition, sputtering, etc., and patterned to form an upper conductor] 4 (Fig. 2 (d).
)). Finally, the conductive thin film on the pixel electrode 15 is removed by etching to complete the thin film two-terminal element. However, as can be seen by comparing Figures 1 and 2, when ITO, In20=, Sn02, etc. are used as the lower conductor,
Compared to the case where ZnO is used for the lower conductor, the number of steps is significantly increased. In other words, if ZnO is used as the lower conductor, the number of steps can be significantly shortened and costs can be reduced.Furthermore, in the thin film two-terminal device of the present invention, the insulating film 3 is made of a hard material. The hard carbon film is formed of a carbon film, but the hard carbon film is a hard carbon film (i-C film,
Diamond-like carbon film, amorphous diamond film,
(also called a diamond thin film). One feature of hard carbon films is that, because they are vapor-grown films, their physical properties can be controlled over a wide range by controlling the film-forming conditions, as described below. Therefore, even though it is called an insulating film, its resistance value covers the range from semi-insulator to insulator. Kaisho 61-2602
MSI element (Metal-S
It is also positioned as an SIS element (semiconductor-insulator-semiconductor, where "semiconductor" is a device doped with impurities at a high concentration).
なお、この硬質炭素膜中には、さらに物性制御範囲を広
げるために、構威元素の一つとして少なくとも周期律表
第■族元素を全構戊原子に対し5原子z以下、同じく第
■族元素を35rM子%以下、同じく第■族元素を5原
子$以下、アルカリ土類金属元素を5原子2以下、アル
カリ金属元素を5原子2、窒素原子を5原子2以下,酸
素原子を5原子ぷ以下、カルコゲン系元素を35原子瓢
以下,またはハロゲ?系元素を35原子2以下の量で含
有させてもよい。In addition, in order to further expand the control range of physical properties, this hard carbon film contains at least an element from group Ⅰ of the periodic table as one of the structural elements, with 5 atoms or less of the total atoms in the group Ⅰ. 35 rM% or less for elements, 5 atoms or less for group Ⅰ elements, 5 atoms or less for alkaline earth metal elements, 5 atoms or less for alkali metal elements, 5 atoms or less for nitrogen atoms, 5 atoms or less for oxygen atoms, 5 atoms or less for oxygen atoms. Less than 35 atoms of chalcogen-based elements, or halogen? The element may be contained in an amount of 35 atoms/2 or less.
これら元素又は原子の量は元素分析の常法例えばオージ
ェ分析によって測定することができる。また、この量の
多少は原料ガスに含まれる他の化合物の量や或膜条件で
調節可能である。The amounts of these elements or atoms can be measured by conventional methods of elemental analysis, such as Auger analysis. Further, the amount can be adjusted by adjusting the amount of other compounds contained in the raw material gas and certain film conditions.
こうした硬質炭素膜を形成するためには有機化合物ガス
、特に炭化水素ガスが用いられる。これら゛原料におけ
る相状態は常温常圧において必ずしも気相である必要は
なく、加熱或いは減圧等により溶融、蒸発、昇華等を経
て気化し得るものであれば、液相でも固相でも使用可能
である。In order to form such a hard carbon film, an organic compound gas, particularly a hydrocarbon gas, is used. The phase state of these raw materials does not necessarily have to be a gas phase at room temperature and normal pressure; they can be used in either a liquid or solid phase as long as they can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. be.
原料ガスとしての炭化水素ガスについては、例えばCH
4,C2H.C4H■。等のパラフィン系炭化水素、C
2H,等のオレフィン系炭化水素、ジオレフィン系炭化
水素、アセチレン系炭化水素、さらには芳香族炭化水素
などすべての炭化水素を少なくとも含むガスが使用可能
である6
また、炭化水素以外でも、例えばアルコール類,ケトン
類、エーテル類、エステル類などであって少なくとも炭
素元素を含む化合物であれば使用可能である。Regarding hydrocarbon gas as a raw material gas, for example, CH
4, C2H. C4H■. Paraffinic hydrocarbons such as C
Gases containing at least all hydrocarbons such as olefinic hydrocarbons such as 2H, diolefinic hydrocarbons, acetylenic hydrocarbons, and even aromatic hydrocarbons can be used.6 In addition, gases other than hydrocarbons, such as alcohol Any compound containing at least a carbon element, such as compounds, ketones, ethers, and esters, can be used.
本発明における原料ガスからの硬質炭素膜の形成方法と
しては、成膜活性種が直流,低周波、高周波或いはマイ
クロ波等を用いたプラズマ法により生或されるプラズマ
状態を経て形或される方法が好ましいが、より大面積化
、均一性向上及び/又は低温製膜の目的で低圧下で堆積
を行わせしめるのには磁界効果を利用する方法がさらに
好ましい。また、高温における熱分解によっても活性種
を形成できる。The method of forming a hard carbon film from a raw material gas in the present invention is a method in which active species for film formation are formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. However, in order to perform deposition under low pressure for the purpose of increasing the area, improving uniformity, and/or forming a film at a low temperature, a method using a magnetic field effect is more preferable. Active species can also be formed by thermal decomposition at high temperatures.
その他にも、イオン化蒸着法或いはイオンビーム蒸着法
等により生成されるイオン状態を経て形或されてもよい
し、真空蒸着法或いはスパッタリング法等により生或さ
れる中性粒子から形或されてもよいし、さらには,これ
らの組み合わせにより形戊されてもよい。In addition, it may be formed through an ionic state generated by ionization vapor deposition, ion beam vapor deposition, etc., or it may be formed from neutral particles generated by vacuum vapor deposition, sputtering, etc. Furthermore, it may be formed by a combination of these.
こうして作製される硬質炭素膜の堆積条件の一例はプラ
ズマCVD法の場合、概ね次の通りである。An example of the deposition conditions for the hard carbon film produced in this manner is approximately as follows in the case of plasma CVD method.
RF出力: 0.1−50 W/ci
圧 力: 10””−10Torr堆積温度:室温
〜950℃で行なうことができるが、好ましくは室温〜
300℃。RF output: 0.1-50 W/ci Pressure: 10''-10 Torr Deposition temperature: Can be performed at room temperature to 950°C, but preferably at room temperature to 950°C
300℃.
このプラズマ状態により原料ガスがラジカルとイオンと
に分解され反応することによって、基板上に炭素原子C
と水素原子Hとからなるアモルファス(非品質)及び微
結晶質(結晶の大きさは数LOA〜数μm)の少くとも
一方を含む硬質炭素膜が堆積する。硬質炭素膜の諸特性
を表−1に示す。Due to this plasma state, the raw material gas is decomposed into radicals and ions and reacts, thereby forming carbon atoms on the substrate.
A hard carbon film containing at least one of amorphous (non-quality) and microcrystalline (crystal size is from several LOA to several μm) consisting of and hydrogen atoms H is deposited. Table 1 shows the properties of the hard carbon film.
表−l
注)測定法;
比抵抗(ρ):コプレナー型セルによるI−V特性より
求める。Table 1 Note) Measurement method; Specific resistance (ρ): Determined from the IV characteristics of a coplanar cell.
光学的バンドギャップ(Egopt) :分光特性から
吸収係数(α)を求め、
(αhν)1/2=B(hν’一Egopt)の関係よ
り決定する。Optical band gap (Egopt): Obtain the absorption coefficient (α) from the spectral characteristics and determine from the relationship (αhν)1/2=B(hν′−Egopt).
膜中水素量(CH) :赤外吸収スペクトルから290
0cm””付近のピークを積分し、吸
収断面積Aをかけて求める。すな
わち、CH=A− fα(リ)/ti−dりSP3/S
P”比:赤外吸収スペクトルを、sp3,sp”にそれ
ぞれ帰属されるガウス関
数に分解し、その面積比より求
める。Amount of hydrogen in the film (CH): 290 from infrared absorption spectrum
It is determined by integrating the peak near 0 cm'' and multiplying it by the absorption cross section A. That is, CH=A-fα(ri)/ti-dri SP3/S
P'' ratio: The infrared absorption spectrum is decomposed into Gaussian functions assigned to sp3 and sp'', respectively, and determined from the area ratio.
ビッカース硬度(H):マイクロビッカース計による。Vickers hardness (H): Based on micro Vickers meter.
屈折率(n):エリプソメーターによる。Refractive index (n): by ellipsometer.
欠陥密度: ESRによる。Defect density: Based on ESR.
こうして形成される硬質炭素膜はIR吸収法及びラマン
分光法による分析の結果、夫々、第3図及び第4図に示
すように炭素原子がSP3の混或軌道とsp2の混或軌
道とを形成した原子間結合が混在していることが明らか
になっている。SP3結合とSP2結合の比率は、IR
スペクトルをピーク分離することで概ね推定できる。r
Rスペクトルには. 2800〜3150cm−”に多
くのモードのスペクトルが重なって測定されるが、それ
ぞれの波数に対応するピークの帰属は明らかになってお
り、第5図に示したごときガウス分布によってピーク分
離を行ない、それぞれのピーク面積を算出し、その比率
を求めればSP3/SP”を知ることができる。As a result of analysis by IR absorption method and Raman spectroscopy, the hard carbon film thus formed shows that carbon atoms form mixed orbitals of SP3 and mixed orbitals of sp2, as shown in FIGS. 3 and 4, respectively. It has become clear that there is a mixture of interatomic bonds. The ratio of SP3 binding to SP2 binding is IR
It can be roughly estimated by separating the peaks of the spectrum. r
In the R spectrum. Although the spectra of many modes overlap in the measurement from 2800 to 3150 cm-'', the attribution of the peak corresponding to each wavenumber is clear, and the peaks are separated using a Gaussian distribution as shown in Figure 5. SP3/SP'' can be determined by calculating the area of each peak and finding the ratio.
また、前記の硬質炭素膜は、X,l及び電子線回折分析
によれば、アモルファス状態(a−C:H)、及び/又
は、数10人〜数μm程度の微結晶粒を含むアモルファ
ス状態にあることが判かる。Further, according to X, L and electron beam diffraction analysis, the hard carbon film is in an amorphous state (a-C:H) and/or an amorphous state containing microcrystalline grains of several tens of micrometers to several micrometers. It turns out that there is.
一般に量産に適しているプラズマCVD法の場合には、
RF出力が小さいほど膜の比抵抗値および硬度が増加し
、また、低圧力なほど活性種の寿命が増加するために、
基板温度の低温化、大面積での均一化が図られ、かつ比
抵抗、硬度が増加する傾向にある.更に,低圧力ではプ
ラズマ密度が減少するため、磁場閉じ込め効果を利用す
る方法は,比抵抗の増加には特に効果的である。更にま
た、この方法(プラズマCVD法)は常温−150゜C
程度の比較的低い温度条件でも同様に良質の硬質炭素膜
を形成できるという特徴を有しているため、薄膜二端子
素子製造プロセスの低温化には最適である。In the case of plasma CVD method, which is generally suitable for mass production,
The lower the RF output, the higher the specific resistance and hardness of the membrane, and the lower the pressure, the longer the life of active species.
The substrate temperature is becoming lower and more uniform over a large area, and resistivity and hardness tend to increase. Furthermore, since the plasma density decreases at low pressures, methods using magnetic field confinement effects are particularly effective in increasing resistivity. Furthermore, this method (plasma CVD method) is performed at room temperature -150°C.
It has the characteristic of being able to form a high-quality hard carbon film even under relatively low temperature conditions, so it is ideal for reducing the temperature of the thin film two-terminal device manufacturing process.
従って,使用する基板材料の選択自由度が広がり、基板
温度をコントロールし易いために大面積に均一な膜が得
られるという特長をもっている。Therefore, the degree of freedom in selecting the substrate material to be used is increased, and the substrate temperature can be easily controlled, so that a uniform film can be obtained over a large area.
硬質炭素膜の構造、物性は表−lに示したように、広範
囲に制御可能であるため、デバイス特性を自由に設計で
きる利点もある。さらには、膜の誘電率も3〜5と従来
のMIX素子に使用されていたTa20, ,AQ,O
,, SiNxなどと比較して小さいため、同じ電気容
量をもった素子を作る場合、素子サイズが大きくてすむ
ので、それほど微細加工を必要とせず、歩留まりが向上
する(駆動条件の関係からLCDと肘阿素子との容量比
はCLcD : CMIM”lO:1程度必要である)
。As shown in Table 1, the structure and physical properties of the hard carbon film can be controlled over a wide range, so there is an advantage that device characteristics can be designed freely. Furthermore, the dielectric constant of the film is 3 to 5, which is Ta20, , AQ, O, which is used in conventional MIX elements.
,, Because it is smaller than SiNx etc., when making an element with the same capacitance, the element size only needs to be larger, so it does not require as much fine processing and the yield improves (due to the driving conditions, it is different from LCD). The capacitance ratio with Element Element needs to be about CLcD:CMIM"lO:1)
.
さらに膜の硬度が高いため、液晶材料封入時のラビング
工程による損傷が少なく、この点からも歩留まりが向上
する。Furthermore, since the film has high hardness, there is little damage caused by the rubbing process during encapsulation of the liquid crystal material, which also improves yield.
液晶邸動用薄膜二端子素子として好適な硬質炭素膜は、
能動条件から膜厚が100〜8000人、比抵抗が10
6〜1013Ω・cmの範囲であることが有利である。A hard carbon film suitable as a thin film two-terminal element for liquid crystal display is
From active conditions, the film thickness is 100 to 8000, and the specific resistance is 10.
Advantageously, it is in the range from 6 to 10 13 Ω·cm.
なお、駐動電圧と耐圧(絶縁破壊電圧)とのマージンを
考慮すると膜厚は200人以上であることが望ましく、
また、画素部と薄膜二端子素子部の段差(セルギャップ
差)に起因する色むらが実用上問題とならないようにす
るには膜厚は6000λ以下であることが望ましいこと
から、硬質炭素膜の膜厚は200−6000λ、比抵抗
は5 X 10’−10”Ω・CII+であることがよ
り好ましい。In addition, considering the margin between parking voltage and withstand voltage (dielectric breakdown voltage), it is desirable that the film thickness is 200 or more.
In addition, in order to prevent color unevenness caused by the level difference (cell gap difference) between the pixel part and the thin film two-terminal element part from becoming a practical problem, it is desirable that the film thickness be 6000λ or less. It is more preferable that the film thickness is 200-6000λ and the specific resistance is 5×10′-10”Ω·CII+.
硬質炭素膜のピンホールによる素子の欠陥数は膜厚が減
少にともなって増加し、300λ以下では特に顕著にな
ること(欠陥率は1%を越える)、及び,膜厚の面内分
布の均一性(ひいては素子特性の均一性)が確保できな
くなる(膜厚制御の精度は30人程度が限度で、膜厚の
バラッキが10%を越える)ことから、膜厚は300人
以上であることがより望ましい。The number of device defects due to pinholes in hard carbon films increases as the film thickness decreases, and becomes especially noticeable below 300λ (defect rate exceeds 1%), and the uniformity of the in-plane distribution of film thickness (The accuracy of film thickness control is limited to about 30 people, and the variation in film thickness exceeds 10%). More desirable.
また、ストレスによる硬質炭素膜の剥離が起こりにくく
するため、及び,より低デューテイ比(望ましくは1/
1000以下)で翻動するために、膜厚は4000A以
下であることがより望ましい。In addition, in order to make it difficult for the hard carbon film to peel off due to stress, a lower duty ratio (preferably 1/
1000A or less), it is more desirable that the film thickness be 4000A or less.
これらを総合して考慮すると,硬質炭素膜の膜厚は30
0−400OA、比抵抗は107−to11Ω’cmで
あることが一層好ましい。Taking all of these into account, the thickness of the hard carbon film is 30
It is more preferable that the resistivity is 0 to 400 OA and the specific resistance is 10 7 to 11 Ω'cm.
次に実施例を示すが,本発明はこれらに限定されるもの
ではない。Examples will be shown next, but the present invention is not limited thereto.
実施例1
第6図に示すように、パイレックス透明基板(図示せず
)上にZnO:AQを1000大厚に堆積後、パターニ
ングして下部導体(画素電極を兼ねる)2を形或した.
ZnO:AQの成膜は、ZnO+AM,03(2.5
%)混合体ターゲットを用い. RFマグネトロンスパ
ッタ法により行った。次に、絶縁膜3として硬質炭素膜
をプラズマCVD法により800入堆積させたのち、ド
ライエッチングによりパターニングした。さらに,この
上にNi @ EB蒸着法により1000人厚に堆積後
、ドライエッチングによりパターニングして上部導体4
を形威し、薄膜二端子素子を作製した。この時の硬質炭
素膜の或膜条件は以下の通りである。Example 1 As shown in FIG. 6, ZnO:AQ was deposited to a thickness of 1000 nm on a Pyrex transparent substrate (not shown) and then patterned to form a lower conductor (also serving as a pixel electrode) 2.
The ZnO:AQ film was formed using ZnO+AM,03(2.5
%) using a mixture target. This was done by RF magnetron sputtering method. Next, as the insulating film 3, a hard carbon film having a thickness of 800 mm was deposited by the plasma CVD method, and then patterned by dry etching. Furthermore, after depositing Ni to a thickness of 1000 nm using the Ni@EB evaporation method, the upper conductor 4 is patterned using dry etching.
A thin film two-terminal device was fabricated by applying the method. The conditions for forming the hard carbon film at this time are as follows.
圧 力:0,035Torr
CH4流量:20MCCM
RFパワー:0.2リ/d
実施例1の構或によれば、従来のITO等を画素電極に
用いた場合に比べ(保護用金属膜の形成を省略できるの
で)、工程数が短縮できるにもかかわらず素子特性上遜
色のないものが得られた。一方、実施例1と同一工程(
すなわち、保護用金属膜は設けない)を用いて画素電極
(下部導体)を、例えば工Toにすると、硬質炭素膜形
成後にはITO自体の抵抗値が3桁程度上昇し、また素
子特性も、通常の関係式QnIccv’Vからはずれ、
正負バイアスの対称性も悪くなった。Pressure: 0,035 Torr CH4 flow rate: 20 MCCM RF power: 0.2 RI/d According to the structure of Example 1, compared to the case where conventional ITO or the like is used for the pixel electrode (the formation of a protective metal film is ), it was possible to reduce the number of steps and still obtain a device with comparable characteristics. On the other hand, the same process as Example 1 (
In other words, if the pixel electrode (lower conductor) is made of, for example, ITO (without a protective metal film), the resistance value of the ITO itself increases by about three orders of magnitude after the hard carbon film is formed, and the device characteristics also change. Deviating from the normal relational expression QnIccv'V,
The symmetry of positive and negative biases also deteriorated.
実施例2
第7図に示すように、プラスチック透明基板(図示せず
)上にZnO:AQを1500人厚に堆積後、パターニ
ングして下部導体(画素電極を兼ねる)2を形戒した。Example 2 As shown in FIG. 7, ZnO:AQ was deposited to a thickness of 1500 nm on a plastic transparent substrate (not shown), and then patterned to form a lower conductor (also serving as a pixel electrode) 2.
ZnO:lの或膜はZn+AQ(5%)複合ターゲット
を用い、酸素ガス雰囲気中でRFマグネトロンスパッタ
法により行った。次に、絶縁膜3として硬質炭素膜をプ
ラズマCvD法により1100人堆積させ、続いてNi
をEB蒸着法により1000人厚に堆積後、エッチング
によりパターニングして上部導体4を形或した。最後に
ドライエッチングにより硬質炭素膜をパターニングし、
薄膜二端子素子を作製した。A ZnO:l film was formed by RF magnetron sputtering in an oxygen gas atmosphere using a Zn+AQ (5%) composite target. Next, a hard carbon film was deposited as the insulating film 3 by plasma CVD method, and then Ni
was deposited to a thickness of 1,000 layers by EB evaporation, and then patterned by etching to form the upper conductor 4. Finally, the hard carbon film is patterned by dry etching,
A thin film two-terminal device was fabricated.
この時の硬質炭素膜の或膜条件は以下の通りである。The conditions for forming the hard carbon film at this time are as follows.
圧 力:0.035Torr
CH4流量:10sccM
RFパワー:0.11+I/a#
実施例2の構戒によれば、実施例lの効果に加え、硬質
炭素膜と上部導体(Ni)が連続戒膜されるため、界面
の汚染が防げ、さらに、上部導体のエッチング時に下部
導体(ZnO:AR)上は硬質炭素膜で范われでいるた
め、エッチングの選択性を考慮せずに材料あるいはエッ
チング法を選択できる等のメリットがある.
〔発明の効果〕
本発明の薄膜二端子素子は第一の導体と第二の導体間に
介在させた絶縁膜が硬質炭素膜であり、この膜は
■)プラズマCvD法等の気相合成法で作製されるため
、或膜条件によって物性が広範囲に制御でき,従ってデ
バイス設計の自由度が大きい、
2)硬質でしかも厚膜にできるため、機械的損傷を受け
難く、また厚膜化によるピンホールの減少も期待できる
,
3)室温付近の低温においても良質な膜を形或できるの
で、基板材質に制約がない、
4)膜厚、膜質の均一性に優れているため、薄膜デバイ
ス用として適している、
5)誘電率が低いので、高度の微細加工技術を必要とせ
ず,従って素子の大面積化に有利である、
等の特長を有し、このような絶縁膜を用いた薄膜二端子
素子は液晶表示用スイッチング素子とじて好適である。Pressure: 0.035Torr CH4 flow rate: 10sccM RF power: 0.11+I/a# According to the structure of Example 2, in addition to the effect of Example 1, the hard carbon film and the upper conductor (Ni) are formed into a continuous film. This prevents contamination of the interface, and since the bottom conductor (ZnO:AR) is covered with a hard carbon film when etching the top conductor, it is possible to change the material or etching method without considering etching selectivity. There are advantages such as being able to choose. [Effects of the Invention] In the thin film two-terminal device of the present invention, the insulating film interposed between the first conductor and the second conductor is a hard carbon film, and this film can be processed by (1) vapor phase synthesis method such as plasma CVD method. 2) Since the film is hard and can be made thick, it is less susceptible to mechanical damage and is less prone to pin damage due to thicker film. 3) It is possible to form a high-quality film even at low temperatures near room temperature, so there are no restrictions on the substrate material. 4) It has excellent uniformity in film thickness and quality, making it suitable for thin-film devices. 5) Since the dielectric constant is low, advanced microfabrication technology is not required, and therefore it is advantageous for increasing the area of the device. The terminal element is suitable as a switching element for liquid crystal display.
さらに、本発明の薄膜二端子素子の下部導体は酸化亜鉛
透明導電体により形威されており,この材料はプラズマ
耐性が高いのでII!!m膜或膜時の保護用金属膜を必
要とせず,したがって工程が大幅に短縮でき、低コスト
なものとなる。Furthermore, the lower conductor of the thin-film two-terminal device of the present invention is formed of a zinc oxide transparent conductor, and this material has high plasma resistance, so it is suitable for use in a 2-terminal film. ! There is no need for a protective metal film when forming an m-film, so the process can be significantly shortened and the cost can be reduced.
第1図は本発明に係る薄膜二端子素子の代表的な一例(
実施例l)の作製工程図、第2図は下部導体にITO.
In,O,. SnO2等を用いた場合の作製工程図
、第3図、第4図及び第5図は硬質炭素膜の物性を説明
するための図、第6図は本発明の実施例1に係る薄膜二
端子素子の構成を説明するための斜視図、第7図は本発
明の実施例2に係る薄膜二端子素子の構威を説明するた
めの斜視図である。FIG. 1 shows a typical example of a thin film two-terminal device according to the present invention (
The manufacturing process diagram of Example 1), FIG. 2, shows ITO.
In, O,. 3, 4 and 5 are diagrams for explaining the physical properties of a hard carbon film, and FIG. 6 is a diagram of a thin film two-terminal according to Example 1 of the present invention. FIG. 7 is a perspective view for explaining the structure of a thin film two-terminal device according to Example 2 of the present invention.
Claims (1)
せてなる薄膜二端子素子において、該絶縁膜が硬質炭素
膜からなり、かつ該絶縁膜に接してその下に設けられる
導体が酸化亜鉛透明導電体からなることを特徴とする薄
膜二端子素子。(1) In a thin film two-terminal element in which an insulating film is interposed between a first conductor and a second conductor, the insulating film is made of a hard carbon film, and the insulating film is provided in contact with and below the insulating film. A thin film two-terminal device characterized in that the conductor is made of a zinc oxide transparent conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1304417A JPH03163532A (en) | 1989-11-22 | 1989-11-22 | Thin film two-terminal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1304417A JPH03163532A (en) | 1989-11-22 | 1989-11-22 | Thin film two-terminal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03163532A true JPH03163532A (en) | 1991-07-15 |
Family
ID=17932751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1304417A Pending JPH03163532A (en) | 1989-11-22 | 1989-11-22 | Thin film two-terminal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03163532A (en) |
-
1989
- 1989-11-22 JP JP1304417A patent/JPH03163532A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02308226A (en) | Liquid crystal display device | |
JPH02306223A (en) | Liquid crystal display device | |
US5674599A (en) | Deposited multi-layer device | |
JPH03163532A (en) | Thin film two-terminal element | |
JP3155332B2 (en) | Switching element | |
JP3009520B2 (en) | Plastic substrate for thin film laminated device and thin film laminated device using the same | |
JP2798963B2 (en) | Liquid crystal display | |
JPH03163533A (en) | Thin film two-terminal element | |
JP2994056B2 (en) | Thin-film two-terminal element | |
JP2798962B2 (en) | Liquid crystal display | |
JPH02271321A (en) | Liquid crystal display device | |
JPH0756194A (en) | Active matrix substrate and liquid crystal display device | |
JPH03163531A (en) | Active matrix substrate | |
JPH0367226A (en) | Thin-film two-terminal element | |
JPH0419712A (en) | Thin film two-terminal element | |
JPH06337441A (en) | Thin film two-terminal element | |
JP2986933B2 (en) | Thin film stacking device | |
JPH04113324A (en) | Liquid crystal display device | |
JP2864480B2 (en) | Active matrix type liquid crystal display | |
JP2798965B2 (en) | Matrix display device | |
JPH03223723A (en) | Active matrix substrate | |
JP2989285B2 (en) | Thin film laminated device with substrate | |
JPH02271579A (en) | Mim element | |
JPH0486810A (en) | Liquid crystal display device | |
JP2798964B2 (en) | Liquid crystal display |