JPH02271579A - Mim element - Google Patents

Mim element

Info

Publication number
JPH02271579A
JPH02271579A JP1092110A JP9211089A JPH02271579A JP H02271579 A JPH02271579 A JP H02271579A JP 1092110 A JP1092110 A JP 1092110A JP 9211089 A JP9211089 A JP 9211089A JP H02271579 A JPH02271579 A JP H02271579A
Authority
JP
Japan
Prior art keywords
film
insulating film
hard carbon
lower electrode
angles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1092110A
Other languages
Japanese (ja)
Other versions
JP2816172B2 (en
Inventor
Hitoshi Kondo
均 近藤
Yuji Kimura
裕治 木村
Hidekazu Ota
英一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1092110A priority Critical patent/JP2816172B2/en
Publication of JPH02271579A publication Critical patent/JPH02271579A/en
Application granted granted Critical
Publication of JP2816172B2 publication Critical patent/JP2816172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enable it to operate stably for a long time by putting the sectional form of at least one conductor between the first and second conductors in continuous curvature free from angles. CONSTITUTION:A conductive film is formed as a film 2' for lower electrode on a transparent substrate 1, and a photoresist 5 is formed thereon so that the sectional form may be continuous curvature free from angles. Next, this is etched by reactive ion etching method, etc., so as to form a lower electrode 2. Next, an SiNx film, a hard carbon film, or the like is formed as an insulating film 3, and then it is patterned into a specified pattern, and lastly a conductive film is formed as an upper electrode 4, and is etched into a specified pattern. In the MIM element, which is manufactured this way, the side of the lower electrode 2 has a slow curved surface, so the film thickness and the physical property become uniform when the insulating film 3 is formed by a vapor phase composing method, and it does not have angles, so electric fields are never concentrated at voltage application. Hereby, it becomes the one which operates stably for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はOA用、TV用等の高容量フラットパネルデイ
スプレーに応用可能なMIM (金属−絶縁膜−金属)
型スイッチング素子、特に液晶駆動用スイッチング素子
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an MIM (metal-insulating film-metal) that can be applied to high-capacity flat panel displays for OA, TV, etc.
The present invention relates to switching elements, particularly switching elements for driving liquid crystals.

〔技術技術〕[Technology]

従来、MIM素子としては絶縁膜が陽極酸化膜からなる
ものや気相合成法(例えばプラズマCVD法)により形
成されるSiNx又はSiOxからなるものが知られて
いる。
Conventionally, MIM elements are known in which the insulating film is made of an anodic oxide film or made of SiNx or SiOx formed by a vapor phase synthesis method (for example, plasma CVD method).

これらの絶縁膜を用いた、特に液晶表示スイッチング素
子として好適なMIM素子の概略図を示すと、第1図(
a)(b)の通りである。(a)は斜視図、(b)は断
面図で、また1は基板、2は下部電極(透明電極)、3
は絶縁膜(例えば5iNx)、4は上部電極である。第
1図(b)より明らかなように下部電極2の断面形状が
四角形の外形を有しているため、気相合成法(例えばプ
ラズマCVD法)等で形成される絶縁膜3は2のサイド
部分では上面部に比べて膜厚が薄くなる、あるいは不均
一になる等の欠点がある。したがって電圧印加時、特に
長時間連続印加時には、その部分で特性不良あるいは短
絡が生じやすくなる。また下部電極2は角部を有するた
め、そこで電界の集中が起こり、上記と同様の欠点を生
じる。
A schematic diagram of an MIM element using these insulating films and particularly suitable as a liquid crystal display switching element is shown in Figure 1 (
As shown in a) and (b). (a) is a perspective view, (b) is a cross-sectional view, and 1 is a substrate, 2 is a lower electrode (transparent electrode), and 3
is an insulating film (for example, 5iNx), and 4 is an upper electrode. As is clear from FIG. 1(b), since the cross-sectional shape of the lower electrode 2 has a rectangular outer shape, the insulating film 3 formed by a vapor phase synthesis method (for example, plasma CVD method) is formed on the side of the lower electrode 2. There are drawbacks such as the film thickness being thinner or non-uniform in some parts than in the upper surface part. Therefore, when voltage is applied, especially when applied continuously for a long period of time, poor characteristics or short circuits tend to occur in that part. Furthermore, since the lower electrode 2 has corners, electric field concentration occurs there, resulting in the same drawbacks as described above.

以上は、従来のMIM素子における導体の構造上の欠点
であるが、絶縁膜についての材料上の欠点もある。
The above are disadvantages in terms of the structure of the conductor in the conventional MIM element, but there are also disadvantages in the material of the insulating film.

即ち絶縁膜が陽極酸化膜からなるMIM素子の場合は(
1)絶縁膜が下部金属の陽極酸化膜に限られるため、そ
の物性値の制御、ひいてはMIM素子特性の制御を任意
に行うことは不可能である、(2)300〜500℃程
度の熱処理が必要であるため、用いる基板材質が耐熱性
の高いものに限定される、(3)比誘電率が高いため、
液晶表示装置のスイッチング素子として用いる場合、M
IM容量/液晶容量<1/10という制約から素子面積
を小さくする必要があり、高度な微細加工が要求される
等の欠点を有している。
In other words, in the case of an MIM element whose insulating film is an anodic oxide film, (
1) Since the insulating film is limited to the anodic oxide film of the lower metal, it is impossible to control its physical properties and, by extension, the characteristics of the MIM element. (2) Heat treatment at about 300 to 500°C is necessary. (3) Because the dielectric constant is high, the substrate material used is limited to one with high heat resistance.
When used as a switching element of a liquid crystal display device, M
Due to the constraint of IM capacitance/liquid crystal capacitance<1/10, it is necessary to reduce the element area, and it has drawbacks such as requiring advanced microfabrication.

一方、SiNス、SiOx等の絶縁膜(又は半絶縁膜)
を用いたものは気相合成法により形成されるため、前記
(1)のような欠点はなく、物性制御が広範に行えると
いう長所を有している。
On the other hand, an insulating film (or semi-insulating film) such as SiN or SiOx
Since it is formed by a vapor phase synthesis method, it does not have the drawbacks mentioned in (1) above, and has the advantage that physical properties can be controlled over a wide range.

しかし成膜温度が300℃程度と高く、基板材質が限ら
れる、あるいは大面積に均一な特性の膜を形成すること
が困難である等の問題がある上、ダスト等によるピンホ
ールが発生しやすく、歩留りが低下するという問題を有
している。
However, the film formation temperature is high at around 300°C, and there are problems such as limited substrate materials and difficulty in forming a film with uniform characteristics over a large area.In addition, pinholes are likely to occur due to dust etc. However, there is a problem in that the yield is reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の第一の目的は従来のMIM素子における導体の
構造上の欠点を解消し、長時間安定に動作するMIM素
子を提供することである。
A first object of the present invention is to eliminate the structural defects of conductors in conventional MIM elements and to provide an MIM element that operates stably for a long time.

本発明の第二の目的は従来のMIM素子における絶縁膜
の材料上の欠点を解消し、特に液晶表示装置に用いて好
適な、低コストで且つ高信頼性のMIM素子を提供する
ことである。
A second object of the present invention is to eliminate the disadvantages of the insulating film material in conventional MIM elements, and to provide a low-cost and highly reliable MIM element that is particularly suitable for use in liquid crystal display devices. .

〔発明の構成・動作〕[Structure and operation of the invention]

本発明のMIM素子は第一導体と第二導体間に絶縁膜を
介在させたMIM素子において、第一及び第二の少くと
も1つの導体の断面形状が角のない連続した曲線状であ
ることを特徴とするものである。
The MIM element of the present invention is an MIM element in which an insulating film is interposed between a first conductor and a second conductor, in which the cross-sectional shape of at least one of the first and second conductors is a continuous curved shape without corners. It is characterized by:

以下に本発明のMIM素子の製造方法の一例を第2図に
基づいて説明する。
An example of the method for manufacturing the MIM element of the present invention will be explained below based on FIG. 2.

まずガラス、プラスチック板、プラスチックフィルム等
の透明基板1上に下部電極用薄膜2′としてAfl、T
a、Ti、Cr、Ni、Cu。
First, a thin film 2' for a lower electrode is formed on a transparent substrate 1 such as glass, a plastic plate, or a plastic film.
a, Ti, Cr, Ni, Cu.

Au、Ag、W、Mo、Pt、ITO,Zn○:Afl
、In2O,、SnO,等の導電性薄膜をスパッタリン
グ、蒸着等の方法により、数百〜数千人の厚さに成膜し
、その上にフォトレジスト5を、断面形状が角のない連
続した曲線状、例えばほぼ半円状又は半楕円状になるよ
うに数百〜数μ朧の厚さ(最高部の高さ)に形成する[
第2図(a)]、このような形状を形成するには、ポジ
レジストの場合、感度の高いレジストを用いる、あるい
は現像液の溶解能力を高めればよい。なおレジストの断
面形状としては、図示したものに限らず、比較的傾斜の
ゆるやかなテーパ状であってもよい。
Au, Ag, W, Mo, Pt, ITO, Zn○:Afl
A conductive thin film of , In2O, SnO, etc. is formed to a thickness of several hundred to several thousand layers by sputtering, vapor deposition, etc., and a photoresist 5 is applied on top of the conductive thin film with a continuous cross-sectional shape without corners. Form into a curved shape, for example, approximately semicircular or semielliptical, with a thickness of several hundred to several micrometers (height at the highest point) [
In order to form such a shape as shown in FIG. 2(a), in the case of a positive resist, a highly sensitive resist may be used or the dissolving ability of the developer may be increased. Note that the cross-sectional shape of the resist is not limited to that shown in the drawings, and may be a tapered shape with a relatively gentle slope.

次に反応性イオンエツチング法(RIE)、イオンビー
ムエツチング法等のドライエツチング法等によりエツチ
ングし、下部電極2を形成する[第2図(b)]、この
際、下部電極2を図示のようにほぼ半円状又は半楕円状
にするためには、例えばRIEの場合、異方性エツチン
グを行ない、且つレジストとの選択比が小さいような条
件、即ちガス圧力ζ低く、且つRF電力を高くして行な
えばよい。
Next, etching is performed using a dry etching method such as reactive ion etching (RIE) or ion beam etching to form the lower electrode 2 [FIG. 2(b)]. At this time, the lower electrode 2 is formed as shown in the figure. In order to obtain a substantially semicircular or semielliptical shape, for example, in the case of RIE, anisotropic etching is performed and the selectivity with the resist is small, that is, the gas pressure ζ is low and the RF power is high. Just do it.

次いで絶縁膜3としてSiNx膜、硬質炭素膜等をプラ
ズマCVD法、イオンビーム法、スパッタリング法等に
よって数百〜数千人の厚さに成膜した後、ウェットエツ
チング法、ドライエツチング法あるいはリフトオフ法に
より、所定のパターンにパターンニングする[第2図(
C)]。
Next, as the insulating film 3, a SiNx film, a hard carbon film, etc. is formed to a thickness of several hundred to several thousand layers by plasma CVD, ion beam, sputtering, etc., and then wet etching, dry etching, or lift-off is performed. patterning into a predetermined pattern [Figure 2 (
C)].

最後に上部電極4としてP t HN i+ Ag t
 Au、Cu、Cr、Ti、Au、W、Mo、Ta。
Finally, as the upper electrode 4, P t HN i+ Ag t
Au, Cu, Cr, Ti, Au, W, Mo, Ta.

ITO,ZnO:AQ、In2O,、Sn○2等の導電
性薄膜をスパッタリング、蒸着等の方法により数百〜数
千人の厚さに成膜し、所定のパターンにエツチングする
[第2図(d)]。このようにして作製されたMIM素
子は下部電極のサイドがゆるやかな曲面を有するため、
絶縁膜が気相合成法で形成される際に膜厚、物性が比較
的均一なものとなり、また角を有していないので電圧印
加時に電界が集中することもない。したがって長時間安
定に動作するものとなり、本発明の第一の目的を達成す
ることができる。
A conductive thin film of ITO, ZnO:AQ, In2O, Sn○2, etc. is formed to a thickness of several hundred to several thousand layers by sputtering, vapor deposition, etc., and then etched into a predetermined pattern [Fig. d)]. Since the MIM element manufactured in this way has a gently curved side of the lower electrode,
When the insulating film is formed by vapor phase synthesis, the film thickness and physical properties are relatively uniform, and since there are no corners, the electric field does not concentrate when voltage is applied. Therefore, it can operate stably for a long time, and the first object of the present invention can be achieved.

一方、本発明の第二の目的である従来の絶縁膜の材料上
の種々の問題を解決するためには絶縁膜として硬質炭素
膜を用いることが好ましい。
On the other hand, in order to solve various problems related to the materials of conventional insulating films, which is the second object of the present invention, it is preferable to use a hard carbon film as the insulating film.

この絶縁膜は炭素原子及び水素原子を主要な組織形成元
素として非晶質及び微結品質の少くとも一方を含む硬質
炭素膜(i−C膜、ダイヤモンド状炭素膜、アモルファ
スダイヤモンド膜。
This insulating film is a hard carbon film (i-C film, diamond-like carbon film, amorphous diamond film) containing carbon atoms and hydrogen atoms as main structure-forming elements and at least one of amorphous and microcrystalline properties.

ダイヤモンド薄膜とも呼ばれる。)からなっている、硬
質炭素膜の一つの特徴は気相成長膜であるため、後述す
るようにその諸物性が成膜条件によって広範囲に制御で
きることにある。従って、絶縁膜といってもその抵抗値
は半絶縁体から絶縁体領域までをカバーしており、この
意味では本発明のMIM素子は特開昭61−27581
9号で示されるMSI素子(Metel−3emi−I
nsulator)としても位置付けられるものである
Also called diamond thin film. ), one of the characteristics of the hard carbon film is that since it is a vapor phase grown film, its physical properties can be controlled over a wide range by changing the film forming conditions, as will be described later. Therefore, even though it is called an insulating film, its resistance value covers the range from semi-insulator to insulator region, and in this sense, the MIM element of the present invention is
MSI device shown in No. 9 (Metel-3emi-I
nsulator).

このような硬質炭素膜を形成するためには有機化合物ガ
ス、特に炭化水素ガスが用いられる。
In order to form such a hard carbon film, an organic compound gas, particularly a hydrocarbon gas, is used.

この原料における相状態は常温常圧において必ずしも気
相である必要はなく、加熱或は減圧等により溶融、蒸発
、昇華等を経て気化し得るものであれば、液相でも同相
でも使用可能である。
The phase state of this raw material does not necessarily have to be a gas phase at room temperature and normal pressure; it can be used in either a liquid phase or the same phase as long as it can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. .

原料ガスとしての炭化水素ガスについては例ばC1−1
4,C2H,、C,I+。、C4H工。等のパラフィン
系炭化水素、C,H,等のアセチレン系炭化水素、オレ
フィン系炭化水素、ジオレフィン系炭化水素。
Regarding hydrocarbon gas as raw material gas, for example, C1-1
4,C2H,,C,I+. , C4H Eng. paraffinic hydrocarbons such as, acetylenic hydrocarbons such as C, H, olefinic hydrocarbons, diolefinic hydrocarbons.

さらには芳香族炭化水素などすべての炭化水素を含むガ
スが使用できる。
Furthermore, gases containing all hydrocarbons such as aromatic hydrocarbons can be used.

さらに、炭化水素以外でも、例えば、アルコール類、ケ
トン類、エーテル類、エステル類、co、co□等の炭
素元素を含む化合物であれば使用できる。
Furthermore, other than hydrocarbons, compounds containing carbon elements such as alcohols, ketones, ethers, esters, co, and co□ can be used.

本発明における原料ガスからの硬質炭素膜の形成方法と
しては、成膜活性種が、直流、低周波、高周波、或いは
マイクロ波等を用いたプラズマ法により生成されるプラ
ズマ状態を経て形成される方法が好ましいが、大面積化
、均一性向上、低温成膜の目的で、低圧下で堆積を行う
ため、磁界効果を利用する方法がさらに好ましい。
The method of forming a hard carbon film from a raw material gas in the present invention is a method in which the film-forming active species is formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. However, since deposition is performed under low pressure for the purpose of increasing the area, improving uniformity, and forming a film at a low temperature, a method using a magnetic field effect is more preferred.

またこの活性種は高温熱分解によっても形成できる。そ
の他にも、イオン化蒸着法、或いはイオンビーム蒸着法
等により生成されるイオン状態を経て形成されてもよい
し、真空蒸着法、或いはスパッタリング法等により生成
される中性粒子から形成されてもよいし、さらには、こ
れらの組み合わせにより形成されてもよい。
This active species can also be formed by high temperature pyrolysis. In addition, it may be formed through an ionic state generated by ionization vapor deposition, ion beam vapor deposition, etc., or may be formed from neutral particles generated by vacuum vapor deposition, sputtering, etc. However, it may also be formed by a combination of these.

こうじて作製される硬質炭素膜の堆積条件の一例はプラ
ズマCVD法の場合、概ね次の通りである。
An example of the deposition conditions for the hard carbon film produced in this way is approximately as follows in the case of plasma CVD method.

RF出カニ 0.1〜50 V/ca+”圧   カニ
 to−”10 Torr堆積温度:室温〜950℃ このプラズマ状態により原料ガスがラジカルとイオンと
に分解され反応することによって、基板上に炭素原子C
と水素原子Hとからなるアモルファス(非晶質)及び微
結晶質(結晶の大きさは数10人〜数μm)の少くとも
一方を含む硬質炭素膜が堆積する。なお、硬質炭素膜の
諸物性を表−1に示す。
RF output 0.1 to 50 V/ca + "pressure to -" 10 Torr Deposition temperature: room temperature to 950°C Due to this plasma state, the raw material gas is decomposed into radicals and ions and reacts, thereby forming carbon atoms on the substrate. C
A hard carbon film containing at least one of amorphous (amorphous) and microcrystalline (crystal size is several tens of micrometers to several micrometers) consisting of hydrogen atoms H is deposited. The physical properties of the hard carbon film are shown in Table 1.

表−1 注)測定法: 比  抵  抗 (ρ):コプレナー型セルによるI−
V特性より求める。
Table-1 Note) Measurement method: Specific resistance (ρ): I- by coplanar cell
Determined from V characteristics.

光学的バンドギャップ:分光特性から吸収係数(α)を
求め、(Egopt)     (αhv )””:β
(h v−Egopt)の関より係決定。
Optical bandgap: Obtain the absorption coefficient (α) from the spectral characteristics, (Egopt) (αhv)””:β
(h v-Egopt).

膜中水素量 (CH)   :赤外吸収スペクトルがら
2900as−’付近のピークを積分し、吸収断面 積Aを掛けて求める。すなわちC8 α(w) cH=A5−・dw SP3/SP’  比  :赤外吸収スペクトルをSP
3/SP”にそれぞれ帰属されるガウス関数に 分解し、その面積比より求める。
Amount of hydrogen in the film (CH): Obtained by integrating the peak around 2900 as-' from the infrared absorption spectrum and multiplying it by the absorption cross section A. That is, C8 α(w) cH=A5-・dw SP3/SP' ratio: SP infrared absorption spectrum
3/SP'' into Gaussian functions, respectively, and find it from the area ratio.

ビッカース硬度 (11)  :マイクロビッカース計
による。
Vickers hardness (11): Based on micro Vickers meter.

屈  折  率 (n):エリプソメーターによる。Refractive index (n): By ellipsometer.

欠陥密度 : ESRによる。Defect density: Based on ESR.

こうして形成される硬質炭素膜はIR吸収法及びラマン
分光法による分析の結果、夫々、第3図及び第4図に示
すように炭素原子がSP3の混成軌道とsp”の混成軌
道とを形成した原子間結合が混在していることが明らか
になっている。
The hard carbon film thus formed was analyzed by IR absorption method and Raman spectroscopy, and it was found that the carbon atoms formed an SP3 hybrid orbital and an sp'' hybrid orbital, as shown in Figures 3 and 4, respectively. It has become clear that there are interatomic bonds.

SP3結合とSP2結合との比率は、IRスペクトルを
ピーク分離することで概ね推定できる。IRスペクトル
には、2800〜3150C!m−’に多くのモードの
スペクトルが重なって測定されるが、夫々の波数に対応
するピークの帰属は明らかになっており、第5図のよう
にガウス分布によってピーク分離を行ない、夫々のピー
ク面積を算出し。
The ratio of SP3 bonds to SP2 bonds can be approximately estimated by peak-separating the IR spectrum. The IR spectrum has 2800-3150C! Although the spectra of many modes are measured overlapping in m-', the attribution of the peak corresponding to each wave number is clear, and as shown in Figure 5, the peaks are separated using a Gaussian distribution, and each peak is Calculate the area.

その比率を求めればSP” /SP”を知ることができ
る。
By finding the ratio, SP"/SP" can be found.

またX線及び電子回折分析によればアモルファス状態(
a−C:H)、及び/又は約50人〜数μm程度の微結
晶粒を含むアモルファス状態にあることが判っている。
Also, according to X-ray and electron diffraction analysis, it is in an amorphous state (
a-C:H) and/or in an amorphous state containing microcrystalline grains of about 50 to several μm in size.

一般に量産に適しているプラズマCVD法の場合にはR
F出力が小さいほど膜の比抵抗値および硬度が増加し、
低圧力なほど活性種の寿命が増加するために基板温度の
低温化、大面積での均一化が図れ、且つ比抵抗及び硬度
が増加する傾向にある。更に、低圧力ではプラズマ密度
が減少するため、磁場閉じ込め効果を利用する方法は膜
質の向上には特に効果的である。
In the case of plasma CVD method, which is generally suitable for mass production, R
The smaller the F output, the more the specific resistance value and hardness of the membrane increase,
The lower the pressure, the longer the life of the active species, the lower the temperature of the substrate, the more uniform it can be over a large area, and the more specific resistance and hardness tend to increase. Furthermore, since the plasma density decreases at low pressure, a method using the magnetic field confinement effect is particularly effective in improving film quality.

さらに、この方法は常温〜150℃程度の比較的低い温
度条件でも同様に良質の硬質炭素膜を形成できるという
特徴を有しているためMIM素子製造プロセスの低温化
には最適である。従って使用する基板材料の選択自由度
が広がり、基板温度をコントロールし易くするために、
大面積に均一な膜が得られる、という特徴を持っている
。また硬質炭素膜の構造、物性は表−1に示したように
、広範囲に制御可能であるため。
Furthermore, this method has the feature that it can form a hard carbon film of good quality even under relatively low temperature conditions of about room temperature to 150° C., so it is optimal for lowering the temperature of the MIM element manufacturing process. Therefore, the degree of freedom in selecting the substrate material to be used increases, and in order to make it easier to control the substrate temperature,
It has the characteristic that a uniform film can be obtained over a large area. Furthermore, the structure and physical properties of the hard carbon film can be controlled over a wide range, as shown in Table 1.

デバイス特性を自由に設計できる利点もある。Another advantage is that device characteristics can be designed freely.

さらには、膜の誘電率も3〜5と従来のMIM素子に使
用されていたTa、0= I AQ*Oz * SiN
xと比較して小さいため、同じ電気容量を持った素子を
作る場合、素子サイズが大きくてすむので、それほど微
細加工を必要とせず、歩留りが向上する(駆動条件の関
係からLCDとMIM素子の容量比はCLco : C
MIM= 10 : 1程度必要である。
Furthermore, the dielectric constant of the film is 3 to 5, compared to Ta, 0= I AQ * Oz * SiN, which is used in conventional MIM devices.
Since it is small compared to The capacity ratio is CLco:C
MIM=10:1 is required.

さらに、膜の硬度が高いため、液晶材料封入時のラビン
グ工程による損傷が少なく、この点からも歩留りが向上
する。
Furthermore, since the film has high hardness, there is little damage caused by the rubbing process when filling the liquid crystal material, which also improves the yield.

以上のような硬質炭素膜にはさらに必要に応じて物性制
御範囲を広げるために、不純物として周期律表第■族元
素、同第■族元素、同第■族元素、アルカリ金属元素、
アルカリ土類金属元素、窒素原子、酸素原子、カルコゲ
ン系元素又はハロゲン原子をドープ含有させることがで
きる。この不純物ドープにより素子の安定性及びデバイ
ス設計の自由度はいっそう増大する。
In order to further widen the control range of physical properties as necessary, the hard carbon film described above may contain impurities such as elements from Group ■ of the periodic table, elements from Group ■, elements from Group ■, alkali metal elements,
It can be doped with alkaline earth metal elements, nitrogen atoms, oxygen atoms, chalcogen elements, or halogen atoms. This impurity doping further increases the stability of the element and the degree of freedom in device design.

これら不純物の量は通常1周期律表第■族元素について
は全構成原子に対し5原子%以下、同じく第■族元素の
量は35yK子%以下、同じく第■族元素の量は5原子
%以下、アルカリ金属元素の量は5原子%以下、アルカ
リ土類金属元素の量は5原子%以下、窒素光子の量は5
原子%以下、酸素原子の量は5H子%以下、カルコゲン
系元素の量は35[子%以下、またハロゲン元素の量は
35原子%以下である。なおこれら元素又は原子の量は
元素分析の常法、例えばオージェ分析によって測定する
ことができる。またこの量は原料ガスに含まれる他の化
合物の量や成膜条件等で調節可能である。
The amount of these impurities is usually 5 atomic % or less of the total constituent atoms for Group Ⅰ elements of the Periodic Table, 35 yK % or less for Group Ⅰ elements, and 5 atomic % for Group Ⅰ elements. Below, the amount of alkali metal elements is 5 at% or less, the amount of alkaline earth metal elements is 5 at% or less, and the amount of nitrogen photons is 5 at% or less.
The amount of oxygen atoms is 5H% or less, the amount of chalcogen elements is 35% or less, and the amount of halogen elements is 35% or less. Note that the amounts of these elements or atoms can be measured by a conventional method of elemental analysis, for example, Auger analysis. Further, this amount can be adjusted by adjusting the amount of other compounds contained in the source gas, film forming conditions, etc.

なお絶縁膜の膜厚等の範囲は、液晶駆動用MIM素子と
して好適な硬質炭素膜として、駆動条件から膜厚が10
0〜8000人、比抵抗が10’〜1013Ωlの範囲
であることが望ましい。なお駆動電圧と耐圧(絶縁破壊
電圧)とのマージンを考慮すると膜厚は200Å以上で
あることが望ましく、また、画素部とMIM素子部間の
段差(セルギャップ)に起因する色ムラが実用上問題と
ならないようにするには膜厚は6000Å以下であるこ
とが望ましいことから、硬質炭素膜の膜厚は200〜6
000人、比抵抗は5X10″〜1012Ω1であるこ
とが更に望ましい、また硬質炭素膜のピンホールによる
素子の欠陥数は膜厚の減少にともなって増加し、300
Å以下では特に顕著になること(欠陥率は1%を越える
)、及び膜厚の面内分布の均一性(ひいては素子特性の
均一性)が確保できなくなる(膜厚制御の精度は30人
程度が限度で、膜厚のバラツキが10%を越える)こと
から、膜厚は300Å以上であることがいっそう望まし
い。また、ストレスによる硬質炭素膜の剥離を起こり薙
くするため、及び更に低デユーティ比(望ましくは1/
1000以下)で駆動するために、膜厚は4000Å以
下であることがいっそう望ましい、従って硬質炭素膜の
膜厚は300〜4000人、比抵抗は10’〜to11
Ω口であることが更に好ましい。
Note that the range of the film thickness of the insulating film is such that the film thickness is 10 mm depending on the driving conditions as a hard carbon film suitable for an MIM element for driving a liquid crystal.
It is desirable that the resistivity is in the range of 0 to 8000 people and the specific resistance is in the range of 10' to 1013 Ωl. In addition, considering the margin between drive voltage and withstand voltage (dielectric breakdown voltage), it is desirable that the film thickness is 200 Å or more, and color unevenness due to the step (cell gap) between the pixel part and the MIM element part is not practical. To avoid problems, it is desirable that the film thickness be 6,000 Å or less, so the thickness of the hard carbon film should be 200 to 6,000 Å or less.
It is more desirable that the specific resistance is between 5X10'' and 1012Ω1, and the number of device defects due to pinholes in the hard carbon film increases as the film thickness decreases.
This is particularly noticeable below Å (the defect rate exceeds 1%), and the uniformity of the in-plane distribution of the film thickness (and therefore the uniformity of the device characteristics) cannot be ensured (the accuracy of film thickness control is approximately 30 people). (with a variation in film thickness exceeding 10%), it is more desirable that the film thickness be 300 Å or more. In addition, in order to prevent the hard carbon film from peeling off due to stress, and to reduce the duty ratio (preferably 1/
1000 Å or less), it is more desirable that the film thickness be 4000 Å or less. Therefore, the thickness of the hard carbon film should be 300 to 4000 Å, and the specific resistance should be 10' to 11.
It is more preferable that the opening is Ω.

以下に本発明を実施例によって説明する。The present invention will be explained below by way of examples.

実施例1 第6図に示すように透明基板としてパイレックスガラス
基板上にITOをスパッタリング法によりtooo人厚
に堆積後、パターン化して画素電極6を形成した0次に
能動素子としてMIM素子を次のようにして設けた。ま
ず基板の画素電極上にAnを蒸着法により1000人厚
に堆積後、パターン化して下部電極2を形成した。この
時のレジスト膜厚は最高部で5000人とした。エツチ
ングは、平行平板型RIEによりCCQ4ガスを用い、
圧力0.02Torr、 RFパワー0.3W/dで行
った。
Embodiment 1 As shown in FIG. 6, ITO was deposited on a Pyrex glass substrate as a transparent substrate to a thickness of about 100 cm by sputtering, and then patterned to form a pixel electrode 6. A MIM element was used as a zero-order active element as follows. It was set up like this. First, An was deposited to a thickness of 1000 nm on the pixel electrode of the substrate by vapor deposition, and then patterned to form the lower electrode 2. The resist film thickness at this time was 5000 at the highest point. Etching was performed using CCQ4 gas by parallel plate type RIE.
The test was carried out at a pressure of 0.02 Torr and an RF power of 0.3 W/d.

その上に絶縁膜として硬質炭素膜2をプラズマCVD法
により800人厚0堆積後、ドライエツチングによりパ
ターン化した。この時の成膜条件は以下の通りである。
A hard carbon film 2 as an insulating film was deposited thereon to a thickness of 800 mm by plasma CVD, and then patterned by dry etching. The film forming conditions at this time are as follows.

圧    カニ    0.035TorrCH4流量
:   203CCM RFパワー:   0.2W/cd 更にこの硬質炭素絶縁膜上にNiを蒸着法により100
0人厚に堆積後、パターン化して上部電極4を形成した
Pressure Crab 0.035Torr CH4 flow rate: 203CCM RF power: 0.2W/cd Furthermore, Ni was deposited on this hard carbon insulating film by evaporation to 100%
After being deposited to a thickness of zero, it was patterned to form the upper electrode 4.

実施例2 第7図に示すようなMIM素子を次のようにして作製し
た。まずガラス板上に蒸着法により1000人厚の堆積
薄膜を形成し、パターニングして下部金属電極2とした
Example 2 A MIM device as shown in FIG. 7 was fabricated as follows. First, a deposited thin film with a thickness of 1,000 layers was formed on a glass plate by vapor deposition, and patterned to form the lower metal electrode 2.

この時のレジスト膜厚及びエツチング条件はエツチング
ガスとしてCa2.+02を用いた他は実施例1と同じ
とした。
The resist film thickness and etching conditions at this time were Ca2. The procedure was the same as in Example 1 except that +02 was used.

次にその上に600人厚0硬質炭素膜3を被覆し、ドラ
イエツチングによってパターニングして絶縁膜とし、更
に硬質炭素膜上にE、B、蒸着法により1000人厚の
堆積O膜を被覆し、エツチングによりパターニングして
上部透明画素電極4を形成した。なお硬質炭素膜の成膜
条件は以下の通りである。
Next, a hard carbon film 3 with a thickness of 600 mm is coated thereon, and patterned by dry etching to form an insulating film.Furthermore, a deposited O film 3 with a thickness of 1000 mm is coated on the hard carbon film by E, B, and vapor deposition methods. Then, the upper transparent pixel electrode 4 was formed by patterning by etching. The conditions for forming the hard carbon film are as follows.

圧    カニ    0.05TorrCH,流量:
   IO5ccM RFパワー:   0.1W/cd 〔発明の作用効果〕 本発明のMIM素子は絶縁膜をはさむ第−導体及び第二
導体の少なくとも1つが角のない連続した曲線の外形を
持つ断面形状を有しているので、信頼性が高く、長時間
安定に動作する上。
Pressure crab 0.05TorrCH, flow rate:
IO5ccM RF power: 0.1W/cd [Operations and Effects of the Invention] The MIM element of the present invention has a cross-sectional shape in which at least one of the first conductor and the second conductor sandwiching the insulating film has a continuous curved outline without corners. As a result, it is highly reliable and operates stably for a long time.

電極断線による欠陥も大幅に減少するという効果がある
This has the effect of significantly reducing defects due to electrode disconnection.

また絶縁膜に硬質炭素膜を用いた場合はこの膜は l) プラズマCVD法等の気相合成法で作製されるた
め、成膜条件によって物性が広範に制御でき、従ってデ
バイス設計上の自由度が大きい、 2)硬質でしかも厚膜にできるため、機械的損傷を受は
難く、また厚膜化によるピンホールの減少も期待できる
、 3)室温付近の低温においても良質な膜を形成できるの
で、基板材質に制約がない、 4)膜厚、膜質の均一性に優れているため、薄膜デバイ
ス用として適している、 5)誘電率が低いので、高度の微細加工技術を必要とせ
ず、従って素子の大面積化に有利である。
In addition, when a hard carbon film is used as an insulating film, this film is manufactured by a vapor phase synthesis method such as plasma CVD, so the physical properties can be controlled over a wide range by changing the film formation conditions, and therefore there is greater freedom in device design. 2) It is hard and can be made into a thick film, so it is less susceptible to mechanical damage, and a thicker film can also be expected to reduce pinholes. 3) A high-quality film can be formed even at low temperatures near room temperature. , there are no restrictions on the substrate material; 4) it has excellent uniformity in film thickness and film quality, making it suitable for thin film devices; 5) it has a low dielectric constant, so it does not require advanced microfabrication technology; This is advantageous for increasing the area of the device.

等の特長を有し、従ってこのような絶縁膜を用いたMI
M素子は液晶表示用スイッチング素子として好適である
Therefore, MI using such an insulating film
The M element is suitable as a switching element for liquid crystal display.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は夫々従来の好適なMIM素子
の斜視図及び断面図、第2図は本発明のMIM素子の一
例の製造工程の説明図、第3図及び第4図は夫々本発明
のMIM素子に用いられる硬質炭素膜系絶縁膜のIRス
ペクトル及びラマンスペクトルを示し、第5図は前記硬
質炭素膜のガウス分布を示し、第6図及び第7図は夫々
実施例1及び2で作製したMIM素子の斜視図である。 1・・・基板    2・・・下部電極(透明電極)3
・・・絶縁膜   4・・・上部電極5・・・レジスト
  6・・・画素電極特許出願人  株式会社 リ コ
 − 代理人 弁理士   佐  1) 守  雄鳥3図 第4図 ラマンスペクトル (波数) 第2図 第5図 第6図
1(a) and 1(b) are respectively a perspective view and a sectional view of a conventional preferred MIM element, FIG. 2 is an explanatory diagram of the manufacturing process of an example of the MIM element of the present invention, and FIGS. 3 and 4. 5 shows the IR spectrum and Raman spectrum of the hard carbon film-based insulating film used in the MIM device of the present invention, FIG. 5 shows the Gaussian distribution of the hard carbon film, and FIGS. 6 and 7 show the results of the embodiment, respectively. FIG. 2 is a perspective view of the MIM device manufactured in Examples 1 and 2. 1... Substrate 2... Lower electrode (transparent electrode) 3
... Insulating film 4 ... Upper electrode 5 ... Resist 6 ... Pixel electrode Patent applicant Rico Co., Ltd. - Agent Patent attorney Sa 1) Mamoru Otori Figure 3 Figure 4 Raman spectrum (wave number) Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、第一導体と第二導体間に絶縁膜を介在させたMIM
素子において、第一及び第二の少くとも1つの導体の断
面形状が角のない連続した曲線状であることを特徴とす
るMIM素子。 2、絶縁膜が硬質炭素膜からなることを特徴とする請求
項1のMIM素子。
[Claims] 1. MIM with an insulating film interposed between the first conductor and the second conductor
1. A MIM device, wherein the cross-sectional shape of at least one of the first and second conductors is a continuous curved shape without corners. 2. The MIM device according to claim 1, wherein the insulating film is made of a hard carbon film.
JP1092110A 1989-04-12 1989-04-12 MIM element Expired - Fee Related JP2816172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092110A JP2816172B2 (en) 1989-04-12 1989-04-12 MIM element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092110A JP2816172B2 (en) 1989-04-12 1989-04-12 MIM element

Publications (2)

Publication Number Publication Date
JPH02271579A true JPH02271579A (en) 1990-11-06
JP2816172B2 JP2816172B2 (en) 1998-10-27

Family

ID=14045292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092110A Expired - Fee Related JP2816172B2 (en) 1989-04-12 1989-04-12 MIM element

Country Status (1)

Country Link
JP (1) JP2816172B2 (en)

Also Published As

Publication number Publication date
JP2816172B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP2757207B2 (en) Liquid crystal display
JP2799875B2 (en) Liquid crystal display
JPH02271579A (en) Mim element
JP3155332B2 (en) Switching element
JP3009520B2 (en) Plastic substrate for thin film laminated device and thin film laminated device using the same
JP2798963B2 (en) Liquid crystal display
JPH02264928A (en) Liquid crystal display device
JPH03163533A (en) Thin film two-terminal element
JPH0756194A (en) Active matrix substrate and liquid crystal display device
JPH06337441A (en) Thin film two-terminal element
JP2994056B2 (en) Thin-film two-terminal element
JP2798965B2 (en) Matrix display device
JPH0486810A (en) Liquid crystal display device
JPH0354526A (en) Active matrix type liquid crystal display device
JP2869436B2 (en) Liquid crystal display
JPH03163531A (en) Active matrix substrate
JPH04113324A (en) Liquid crystal display device
JPH02289828A (en) Mim element
JPH04245229A (en) Thin film two-terminal element
JP2989285B2 (en) Thin film laminated device with substrate
JPH03223723A (en) Active matrix substrate
JPH02271321A (en) Liquid crystal display device
JPH07199229A (en) Mim element, active matrix substrate and liquid crystal display device
JPH0367226A (en) Thin-film two-terminal element
JPH0419712A (en) Thin film two-terminal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees