JPH02284609A - Operation of ceramic filter - Google Patents

Operation of ceramic filter

Info

Publication number
JPH02284609A
JPH02284609A JP10584689A JP10584689A JPH02284609A JP H02284609 A JPH02284609 A JP H02284609A JP 10584689 A JP10584689 A JP 10584689A JP 10584689 A JP10584689 A JP 10584689A JP H02284609 A JPH02284609 A JP H02284609A
Authority
JP
Japan
Prior art keywords
backwashing
filter
liquid
filtration
ceramic filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10584689A
Other languages
Japanese (ja)
Inventor
Kazuya Yamada
和矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10584689A priority Critical patent/JPH02284609A/en
Publication of JPH02284609A publication Critical patent/JPH02284609A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To sufficiently restore the capacity of the filter by backwashing at a low bulk velocity by allowing a fluid to flow in parallel with the filter only immediately after backwashing in the cross-flow filtration so that the wall- surface shearing stress is increased on the filter surface. CONSTITUTION:A liq. is filtered by the cross-flow ceramic filter 1, the filter is backwashed when the filtration differential pressure increases to restore the filtration performance, and filtration is repeated. The wall-surface shearing stress is increased on the filter surface only after backwashing by introducing a pressurized liq. into the circulating flow from another tank 18. Consequently, the capacity is sufficiently restored by the backwashing even at a low bulk velocity. Since the treatment is carried out only immediately after backwashing, the capacity of a pump and the diameter of the pipeline need not be increased, and even a cooler for removing the heat generated from the pump can be dispensed with. Accordingly, the filtration performance of the ceramic filter can be improved by the compact equipment.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、食品工業、医薬品工業、原子カニ業などの分
野で液体中の懸濁固形物を除去または濃縮するために広
く用いられているセラミックフィルタの運転方法に関す
る。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention is useful for removing or concentrating suspended solids in a liquid in the food industry, pharmaceutical industry, atomic crab industry, etc. This article relates to a method of operating a widely used ceramic filter.

(従来の技術) アルミナ、シリカなどの無機化合物で構成されているセ
ラミックフィルタは、強度、耐熱性、耐蝕性に優れてい
るため、食品工業、医薬品工業。
(Conventional technology) Ceramic filters made of inorganic compounds such as alumina and silica have excellent strength, heat resistance, and corrosion resistance, and are therefore used in the food and pharmaceutical industries.

原子カニ業などの分野で広く用いられている。It is widely used in fields such as atomic crab industry.

セラミックフィルタには各種形状の物があり、運転方法
も様々であるが、−様に濾過時間の経過と共にフィルタ
表面に処理対象の固形物が捕捉。
Ceramic filters come in various shapes and operate in a variety of ways, but as the filtration time elapses, solids to be treated are trapped on the filter surface.

沈着されて、次第に濾過性能が低下し、またフィルタを
透過する際の抵抗が増えて、濾過差圧が」二昇して処理
流量が低下するので、所定の処理容量が得られなくなる
。そこで、フィルタを洗浄して処理性能の回復を図る必
要が生じる。
As a result, the filtration performance gradually decreases, and the resistance when passing through the filter increases, the filtration differential pressure rises, and the treatment flow rate decreases, making it impossible to obtain the desired treatment capacity. Therefore, it becomes necessary to clean the filter to restore processing performance.

フィルタの洗浄には、従来、透過液または清水または気
体により洗浄または逆洗(濾過処理方法とは逆の方向に
流す)しているが、フィルタ表面に捕捉、沈積した固形
物の種類によっては、この洗浄または逆洗だけでは十分
に処理性能が回復しない場合もあるので、固形物の種類
に応じて薬液を選定していた。
Conventionally, filters are cleaned by washing or backwashing (flowing in the opposite direction to the filtration method) with permeate, clean water, or gas, but depending on the type of solids trapped or deposited on the filter surface, Since there are cases where treatment performance is not fully restored by this washing or backwashing alone, the chemical solution has been selected depending on the type of solid material.

従来のセラミックフィルタを用いた運転方法の一例を第
5図の系統図により説明する。
An example of an operating method using a conventional ceramic filter will be explained with reference to the system diagram shown in FIG.

被処理液タンク3内の懸濁固形物を含む被処理液体は、
ポンプ4により給液配管11,13.弁6を経てセラミ
ックフィルタ収納容器2に導かれ、セラミックフィルタ
1の管内側の流路を流れ、弁7゜循環配管14を経て再
び被処理液タンク3に戻り、再び同じ経路で循環する。
The liquid to be treated containing suspended solids in the liquid to be treated tank 3 is
The pump 4 connects liquid supply pipes 11, 13. The liquid is guided to the ceramic filter storage container 2 through the valve 6, flows through the flow path inside the tube of the ceramic filter 1, returns to the liquid to be treated tank 3 through the valve 7 and the circulation piping 14, and is circulated again along the same route.

セラミックフィルタ1では、被処理液体の一部が管内側
の流路での流れと垂直方向にフィルタを透過するいわゆ
るクロスフロー濾過が行われ、濾液吐出配管15に吐出
される。
In the ceramic filter 1 , so-called cross-flow filtration is performed in which a portion of the liquid to be treated passes through the filter in a direction perpendicular to the flow in the flow path inside the tube, and is discharged to the filtrate discharge pipe 15 .

このように被処理液が循環すると、被処理液体中の懸濁
固形物は次第に濃縮される。濃縮液は弁9を開けること
により配管16を通って系外に排出される。濃縮液が排
出されると、被処理液タンク3には配管17.弁10を
経て新しい被処理液が供給される。
When the liquid to be treated is circulated in this manner, the suspended solids in the liquid to be treated are gradually concentrated. By opening the valve 9, the concentrated liquid is discharged out of the system through the pipe 16. When the concentrated liquid is discharged, the liquid to be treated tank 3 is connected to the pipe 17. New liquid to be treated is supplied via valve 10.

前記したクロスフロー濾過では、濾過によりフィルタを
透過する濾過液の流れの方向と被処理液体の流れの方向
が異なるため、フィルタ表面への固形物の沈着は比較的
起りにくいが、処理が進むにつれて徐々に沈着し、透過
に要する抵抗が増え、所定の処理能力が得られなくなる
。そのような場合には、透過液、清水、気体等により洗
浄または逆洗していた。
In the above-mentioned cross-flow filtration, the flow direction of the filtrate passing through the filter and the flow direction of the liquid to be treated are different, so the deposition of solids on the filter surface is relatively unlikely to occur, but as the treatment progresses, Gradual deposition increases the resistance required for permeation, making it impossible to obtain the desired throughput. In such cases, cleaning or backwashing was performed using permeate, fresh water, gas, etc.

ところで、処理能力の回復には、単に逆洗の条件だけで
はなく、逆洗後に再開される循環流の流速(バルク速度
)が非常に大きく影響することがわかっている。第6図
にその実験結果の一例を示す。この実験は4種のバルク
速度の循環流について、逆洗圧力5 kg / crl
 、逆洗水量41  (0,02m3/留)という同一
の逆洗条件で逆洗したときの逆洗後の濾液の透過流束を
調べたものであるが、この図に示すように、同一の逆洗
条件でしてもバルク速度が大きいほうが処理能力がよく
回復することがわかる。
By the way, it has been found that the recovery of processing capacity is greatly influenced not only by the conditions of backwashing but also by the flow rate (bulk speed) of the circulating flow restarted after backwashing. FIG. 6 shows an example of the experimental results. This experiment was performed for circulating flow at four bulk velocities, with a backwash pressure of 5 kg/crl.
The permeation flux of the filtrate after backwashing was investigated when backwashing was performed under the same backwashing conditions of 41 (0.02 m3/distillate) of backwash water volume, but as shown in this figure, the same It can be seen that even under backwash conditions, the processing capacity recovers better when the bulk speed is higher.

したがって、セラミックフィルタにおいてより効率的な
運転を長期間にわたって続けるためには、バルク速度を
大きく、すなわち被処理液体の循環流量を大きくした条
件で運転をする必要があった。
Therefore, in order to continue more efficient operation over a long period of time in a ceramic filter, it is necessary to operate at a high bulk speed, that is, at a high circulating flow rate of the liquid to be treated.

(発明が解決しようとする課題) しかしながら、このように被処理液体の循環流量を大き
くすると、被処理液体の循環用ポンプを高容量のものに
しなければならず、また循環ラインの配管径も大きくし
なければならない。さらに、ポンプが発熱するのでその
熱を除去するために冷却設備も必要となる。これらのこ
とから装置が大がかりになるという問題がある。
(Problem to be Solved by the Invention) However, if the circulation flow rate of the liquid to be treated is increased in this way, the pump for circulating the liquid to be treated must have a high capacity, and the piping diameter of the circulation line must also be increased. Must. Furthermore, since the pump generates heat, cooling equipment is also required to remove the heat. Due to these factors, there is a problem that the device becomes large-scale.

本発明は上記情況に鑑みてなされたもので、その目的は
、低バルク速度でも逆洗による処理能力の回復効果が十
分に得られるようなセラミックフィルタの運転方法を提
供することにある。
The present invention has been made in view of the above circumstances, and its object is to provide a method of operating a ceramic filter that can sufficiently restore the throughput through backwashing even at low bulk speeds.

[発明の構成] (課題を解決するための手段および作用)すなわち、本
発明は、被処理液を濾過処理し、濾過差圧が上昇したと
きに逆洗を行って濾過性能を回復させ、再び濾過処理す
ることを繰り返すセミツクフィルタの運転方法において
、逆洗の直後だけ、フィルタ表面での壁面剪断応力を大
きくするような方法でフィルタ表面と平行に流体を流す
ことを大きくするセミツクフィルタの運転方法に関する
[Structure of the invention] (Means and effects for solving the problem) That is, the present invention filters the liquid to be treated, performs backwashing when the filtration differential pressure increases to restore the filtration performance, and then performs the filtration process again. In the operating method of a semi-crystal filter that repeats filtration processing, the semi-crystal filter increases the flow of fluid parallel to the filter surface using a method that increases the wall shear stress on the filter surface only immediately after backwashing. Regarding driving methods.

本発明において、フィルタ表面での壁面剪断応力を大き
くするような方法でフィルタ表面と平行に流体を流す方
法としては、例えば、循環流に別のタンクから加圧した
液体を流入させて一時的にセラミックフィルタの被処理
液体側の流量を増加させるとか、循環流中に気体を混入
してセラミックフィルタの被処理液体側の流路に流すな
どの方法がある。
In the present invention, as a method of flowing fluid parallel to the filter surface in a manner that increases the wall shear stress on the filter surface, for example, pressurized liquid from another tank may be introduced into the circulating flow to temporarily cause the fluid to flow parallel to the filter surface. There are methods such as increasing the flow rate on the side of the liquid to be treated of the ceramic filter, or mixing gas into the circulating flow and flowing it through the flow path on the side of the liquid to be treated of the ceramic filter.

これらの処理は逆洗直後だけであるので、ポンプ容量や
配管径を大きくする必要がなく、ポンプから発生する熱
を除去するための冷却装置も必要ない。したがってコン
パクトな設備でセラミックフィルタの濾過性能を上げる
ことができる。
Since these treatments are performed only immediately after backwashing, there is no need to increase the pump capacity or pipe diameter, and there is no need for a cooling device to remove heat generated from the pump. Therefore, the filtration performance of the ceramic filter can be improved with compact equipment.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の運転方法の一実施例を示す系統図であ
る。なお、既に説明した第5図と同一の部分については
同一符号を付]7て説明する。
FIG. 1 is a system diagram showing an embodiment of the operating method of the present invention. Note that the same parts as those in FIG. 5 already explained are given the same reference numerals.]7.

第1図において、セラミックフィルタ1は収納容器2内
に固定されている。収納容器2の流入側には弁6および
ポンプ4を有し被処理液タンク3に接続している給液配
管13.11が、また収納容器2の流出側には弁7を備
え被処理液タンク3につながる循環配管14が、さらに
収納容器2の側面には弁8を備えた濾液吐出配管15が
接続されている。
In FIG. 1, a ceramic filter 1 is fixed in a storage container 2. As shown in FIG. A liquid supply pipe 13.11 has a valve 6 and a pump 4 on the inflow side of the storage container 2 and is connected to the liquid to be treated tank 3, and a valve 7 has a valve 7 on the outflow side of the storage container 2 to supply the liquid to be treated. A circulation pipe 14 connected to the tank 3 is connected to a side surface of the storage container 2, and a filtrate discharge pipe 15 equipped with a valve 8 is connected to the side surface of the storage container 2.

また、給液配管13のセラミックフィルタと弁6との間
には弁19を備えた循環流への液体加圧注入タンク18
が接続されている。
Further, a liquid pressurized injection tank 18 for the circulating flow is provided with a valve 19 between the ceramic filter of the liquid supply pipe 13 and the valve 6.
is connected.

つぎに上記装置の運転方法について説明する。Next, a method of operating the above device will be explained.

被処理液体を被処理液タンク3、給液配管11、ポンプ
4、給液配管13、セラミックフィルタ1、弁7、循環
配管14の経路で循環させる。この経路で被処理液体が
セラミックフィルタ1を通るときに濾過が行われて濾液
は吐出配管15−・排出される。
The liquid to be treated is circulated through a path including the liquid to be treated tank 3, the liquid supply pipe 11, the pump 4, the liquid supply pipe 13, the ceramic filter 1, the valve 7, and the circulation pipe 14. When the liquid to be treated passes through the ceramic filter 1 along this route, filtration is performed and the filtrate is discharged from the discharge pipe 15-.

この操作を続けてセラミックフィルタの被処理液側表面
に懸濁固形物が付着し濾過の抵抗が大きくなった時に、
弁6を閉じて循環流を止め、濾液を吐出配管15および
弁8を経て逆流させ、逆洗を行う。
If this operation is continued and suspended solids adhere to the surface of the ceramic filter on the liquid side to be treated, and the resistance to filtration increases,
The circulation flow is stopped by closing the valve 6, and the filtrate is allowed to flow back through the discharge pipe 15 and the valve 8, thereby performing backwashing.

逆洗後、再び弁6を開いて被処理液の循環を再開する。After backwashing, the valve 6 is opened again to resume circulation of the liquid to be treated.

このとき、液体加圧注入タンク18に加圧して予め溜め
ておいた液体を循環流へ注入し、セラミックフィルタの
被処理液側流路でのバルク速度を一時的に所定の壁面剪
断応力が得られるように増加する。
At this time, the pressurized liquid injection tank 18 is pressurized and the liquid stored in advance is injected into the circulating flow, and the bulk velocity in the flow path on the liquid-to-be-treated side of the ceramic filter is temporarily adjusted to a predetermined wall shear stress. increase as expected.

第2図にこの実施例の逆洗後の濾液の透過流束の変化を
示す。ここに示したのはバルク速度】−m/Sで運転し
、逆洗後30秒間だけバルク速度を5m/sおよび3m
/sに増加した結果である。なお、逆洗圧力は6kg/
cnf、逆洗水量は41(0,02m’/n()である
。比較例として、逆洗後にバルク速度を増加しなかった
場合の結果(破線)を示した。
FIG. 2 shows the change in permeation flux of the filtrate after backwashing in this example. Shown here is a bulk speed of 5 m/s and 3 m/s for 30 seconds after backwashing.
/s. In addition, the backwash pressure is 6kg/
cnf, the amount of backwash water is 41 (0.02 m'/n(). As a comparative example, the results (dashed line) are shown when the bulk speed is not increased after backwashing.

図から明らかなように、バルク速度1 m / s テ
は、逆洗しても処理能力は十分には回復しないが、逆洗
後に30秒間だけ加圧注入1〜てバルク速度を増加する
ことにより、よく回復することが分かる。
As is clear from the figure, when the bulk speed is 1 m/s, the processing capacity cannot be fully recovered even after backwashing, but by increasing the bulk speed by pressurizing injection for only 30 seconds after backwashing. , it can be seen that the patient recovers well.

つぎに第3図に本発明の運転方法の他の実施例を系統図
によって示す。この実施例は、第1図に示した実施例の
液体注入タンク18の代わりに、セラミックフィルタ1
−と弁6との間に気液混合器20を設置し、これに弁2
1を介して空気供給配管22を接続するようにしたもの
である。
Next, FIG. 3 shows another embodiment of the operating method of the present invention using a system diagram. This embodiment uses a ceramic filter 1 instead of the liquid injection tank 18 of the embodiment shown in FIG.
- a gas-liquid mixer 20 is installed between the valve 6 and the valve 6;
The air supply pipe 22 is connected through the air supply pipe 1.

本実施例では、前記の実施例と同様の濾過処理を行い、
セラミックフィルタの被処理液側表面に懸濁固形物がイ
」着して濾過抵抗が大きくなったときに同様に逆洗する
が、逆洗後被処理液の循環を再開したときに、空気供給
配管22がら空気を導入し、セラミックフィルタ1−の
入り口にある気液混合器20で空気を被処理液体と混合
して流す。このようにすることによって、セラミックフ
ィルタの被処理液体側表面での壁面剪断応力が増大する
In this example, the same filtration process as in the previous example was performed,
When suspended solids adhere to the surface of the ceramic filter on the liquid-to-be-treated side and the filtration resistance increases, backwashing is performed in the same way, but when the circulation of the liquid to be treated is restarted after backwashing, the air supply Air is introduced through the pipe 22, and mixed with the liquid to be treated in the gas-liquid mixer 20 at the entrance of the ceramic filter 1-. By doing so, the wall shear stress on the surface of the ceramic filter on the liquid-to-be-treated side increases.

第4図に上記実施例の逆洗後の濾液の透過流束の変化を
示す。ここに示したのはバルク速度1 m/Sで運転し
、逆洗後30秒間だけバルク速度1 m/S相当分の循
環液流中に、体積比で3倍および6倍の空気を吹き込ん
だ場合の実験結果である。
FIG. 4 shows the change in permeation flux of the filtrate after backwashing in the above example. The system shown here was operated at a bulk speed of 1 m/s, and 3 times and 6 times as much air by volume was blown into the circulating liquid flow equivalent to the bulk speed of 1 m/s for 30 seconds after backwashing. These are the experimental results for the case.

なお、逆洗条件は前の実施例と同じく、逆洗圧力6kg
/c&、逆洗水量41  (0,02m3/rr?)で
ある。
The backwash conditions are the same as in the previous example, backwash pressure 6 kg.
/c&, the amount of backwash water is 41 (0.02 m3/rr?).

バルク速度1m/s相当分の循環流中に吹き込む、空気
量が3倍のときの壁面剪断応力は、バルク速度3 m 
/ sの場合と等価となり、空気量が6倍のときの壁面
剪断応力はバルク速度5 m / sの場合と等価とな
る。この結果から分かるように循環流に空気を吹き込む
ことによっても壁面剪断応力を増大させ、濾過処理能力
を回復させることが分かる。
The wall shear stress when the amount of air blown into the circulating flow equivalent to a bulk velocity of 1 m/s is 3 times the bulk velocity of 3 m/s.
/s, and the wall shear stress when the air volume is 6 times greater is equivalent to that when the bulk velocity is 5 m/s. As can be seen from these results, blowing air into the circulating flow also increases the wall shear stress and restores the filtration capacity.

[発明の効果] 以」二説明したように、本発明によれば、運転中の循環
流量を上げなくても、逆洗直後だけ一時的にセラミック
フィルタの被処理液側表面の壁面剪断応力を大きくする
ように処理することによって、セラミックフィルタの処
理能力を回復することができる。したがって、循環流量
を上げることにともなって必要となる配管やポンプの大
型化が必要なくなり、また冷却設備も不要となるので、
システムのコンパクト化が図れる。
[Effects of the Invention] As explained below, according to the present invention, the wall shear stress on the surface of the treated liquid side of the ceramic filter can be temporarily reduced immediately after backwashing without increasing the circulation flow rate during operation. The processing ability of the ceramic filter can be restored by processing it to increase its size. Therefore, there is no need to increase the size of piping or pumps that are required to increase the circulation flow rate, and there is no need for cooling equipment.
The system can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の運転方法を示す系統図、第
2図は第1図に示す実施例の逆洗後の処理能力の回復状
況を示す図、第3図は本発明の他の実施例の運転方法を
示す系統図、第4図は第3図に示す実施例の逆洗後の処
理能力の回復状況を示す図、第5図は従来のセラミック
フィルタの運転方法を示す系統図、第6図は第5図に示
す運転方法による逆洗後の処理能力の回復状況を示す図
である。 15・・・濾液吐出配管 18・・・液体加圧注入タンク 20・・・気液混合器 22・・・空気供給配管 代理人 弁理士(8733)猪 股  祥 晃(ほか1
名) 1・・・セラミックフィルタ 2・・・セラミックフィルタ収納容器 3・・・被処理液タンク 4・・・ポンプ 第1図 第 図 浅逓漉 〜も− 弔 図
Fig. 1 is a system diagram showing the operating method of an embodiment of the present invention, Fig. 2 is a diagram showing the recovery status of processing capacity after backwashing of the embodiment shown in Fig. A system diagram showing the operating method of another embodiment, Fig. 4 is a diagram showing the recovery status of processing capacity after backwashing of the embodiment shown in Fig. 3, and Fig. 5 shows the operating method of the conventional ceramic filter. The system diagram, FIG. 6, is a diagram showing the state of recovery of processing capacity after backwashing by the operating method shown in FIG. 5. 15...Filtrate discharge piping 18...Liquid pressurized injection tank 20...Gas-liquid mixer 22...Air supply piping Agent Patent attorney (8733) Yoshiaki Inomata (and 1 others)
Name) 1...Ceramic filter 2...Ceramic filter storage container 3...To be treated liquid tank 4...Pump

Claims (3)

【特許請求の範囲】[Claims] (1)被処理液を濾過処理し、濾過差圧が上昇したとき
に逆洗を行って濾過性能を回復させ、再び濾過処理する
ことを繰り返すセミックフィルタの運転方法において、
逆洗の直後だけ、フィルタ表面での壁面剪断応力を大き
くするような方法でフィルタ表面と平行に流体を流すこ
とを特徴とするセラミックフィルタの運転方法。
(1) In a method of operating a semi-conductor filter in which the liquid to be treated is filtered, and when the filtration differential pressure increases, backwashing is performed to restore the filtration performance, and the filtration process is repeated again.
A method of operating a ceramic filter characterized by flowing fluid parallel to the filter surface in such a manner as to increase wall shear stress on the filter surface only immediately after backwashing.
(2)加圧して多量の循環流を流すことによってフィル
タ表面での壁面剪断応力を大きくする請求項1記載のセ
ラミックフィルタの運転方法。
(2) The method of operating a ceramic filter according to claim 1, wherein the wall shear stress on the filter surface is increased by applying a large amount of pressurized circulating flow.
(3)循環流に気体を吹き込むことによってフィルタ表
面での壁面剪断応力を大きくする請求項1記載のセラミ
ックフィルタの運転方法。
(3) The method of operating a ceramic filter according to claim 1, wherein the wall shear stress on the filter surface is increased by blowing gas into the circulating flow.
JP10584689A 1989-04-27 1989-04-27 Operation of ceramic filter Pending JPH02284609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10584689A JPH02284609A (en) 1989-04-27 1989-04-27 Operation of ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10584689A JPH02284609A (en) 1989-04-27 1989-04-27 Operation of ceramic filter

Publications (1)

Publication Number Publication Date
JPH02284609A true JPH02284609A (en) 1990-11-22

Family

ID=14418381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10584689A Pending JPH02284609A (en) 1989-04-27 1989-04-27 Operation of ceramic filter

Country Status (1)

Country Link
JP (1) JPH02284609A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530032A (en) * 2010-05-12 2013-07-25 ハイドラシスト アイピー ピーティワイ エルティディ Water treatment apparatus and water treatment method
WO2016035856A1 (en) * 2014-09-05 2016-03-10 Dowaホールディングス株式会社 Method for manufacturing metal nanowire having improved length distribution uniformity
CN106238746A (en) * 2015-06-12 2016-12-21 陶氏环球技术有限责任公司 For manufacturing the hydro-thermal method through filtering nano silver wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530032A (en) * 2010-05-12 2013-07-25 ハイドラシスト アイピー ピーティワイ エルティディ Water treatment apparatus and water treatment method
WO2016035856A1 (en) * 2014-09-05 2016-03-10 Dowaホールディングス株式会社 Method for manufacturing metal nanowire having improved length distribution uniformity
JP2016055283A (en) * 2014-09-05 2016-04-21 Dowaホールディングス株式会社 Method for producing metal nanowires having improved uniformity in length distribution
CN106238746A (en) * 2015-06-12 2016-12-21 陶氏环球技术有限责任公司 For manufacturing the hydro-thermal method through filtering nano silver wire

Similar Documents

Publication Publication Date Title
US5690830A (en) Waste water treatment apparatus and washing method thereof
US5262053A (en) Filtration process, use of stabilizers installation for a filtration process, and procedure for operating said installation
KR100679231B1 (en) Flexible-fiber filter module
IE913483A1 (en) Membrane separation system and methods of operating and¹cleaning such a system
JPH11156166A (en) Cleaning method for hollow fiber membrane module
JPH02150263A (en) Method for filtering and stabilizing liquid medium, device for using stabilizer, and performing stabilizing and filtration and operation for device
JPH04256425A (en) Back washing device for filtration
JPH0669530B2 (en) Method and apparatus for improving the flux rate of a cross flow filtration system
JPH0217924A (en) Method for backwashing hollow yarn membrane filter apparatus
JPH02284609A (en) Operation of ceramic filter
JP3615918B2 (en) Method and apparatus for cleaning reverse osmosis membrane module
Gupta et al. Liquid radwaste processing with crossflow microfiltration and spiral wound reverse osmosis
JP2685897B2 (en) Method and device for operating ceramic filter
JPH11347382A (en) Shape memory separation membrane system module
JP3440684B2 (en) Filtration device and method for cleaning filtration device
Ripperger Engineering aspects and applications of crossflow microfiltration
US4923609A (en) Method and apparatus for purifying liquids employing a particulate filter and a membrane
JP2521350B2 (en) Cross flow filtration device
JP3371767B2 (en) Operating method of membrane deaerator and membrane deaerator
JPS63302910A (en) Method for washing porous filter
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JPS63315116A (en) Operating method of ceramic filter
JPS63315112A (en) Washing method of ceramic filter
JP2004130211A (en) Filtration unit, filter, and method for controlling the filter
JP2000084377A (en) Removal of membrane contaminated substance for tubular membrane device