JPH0217924A - Method for backwashing hollow yarn membrane filter apparatus - Google Patents

Method for backwashing hollow yarn membrane filter apparatus

Info

Publication number
JPH0217924A
JPH0217924A JP16510588A JP16510588A JPH0217924A JP H0217924 A JPH0217924 A JP H0217924A JP 16510588 A JP16510588 A JP 16510588A JP 16510588 A JP16510588 A JP 16510588A JP H0217924 A JPH0217924 A JP H0217924A
Authority
JP
Japan
Prior art keywords
liquid
hollow fiber
treated
fiber membrane
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16510588A
Other languages
Japanese (ja)
Inventor
Tomohiko Yabu
薮 智彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16510588A priority Critical patent/JPH0217924A/en
Publication of JPH0217924A publication Critical patent/JPH0217924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To enhance washing capacity by inserting a process for preliminarily discharging a part of the liquid to be treated in a filter chamber between a process for temporarily interrupting the flow of the liquid to be treated and a process for pressurizing a treatment chamber. CONSTITUTION:Hollow yarn membrane modules 9 are suspended from the partition plate 21 for partitioning a hermetically closed container main body 5 into an upper treatment chamber 11 and a lower filter chamber 7, and a liquid to be treated is passed through the hollow yarn membranes 51 of said modules 9 and allowed to flow from the filter chamber 7 to the treatment chamber 11 to be filtered. The flow of the liquid to be treated of this hollow yarn membrane filter apparatus 1 is temporarily stopped and the liquid to be treated is allowed to flow back while the content of the filter chamber 7 is discharged from the overflow pipe 27 provided to the filter chamber 7 by pressing the treatment chamber 11 to backwash the hollow yarn membranes 51 to regenerate the same. In this case, a process for preliminarily discharging a part of the liquid to be treated of the filter chamber 7 is inserted between a process for temporarily interrupting the flow of the liquid to be treated and a process for pressurizing the treatment chamber 11. As a result, the sufficient flow passage of a liquid and a sufficient flow passage area at the time of backwashing are secured to enhance washing capacity.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、原子力発電プラントもしくは再処理プラン
トの放射性廃液処理、または原子力もしくは火力発電プ
ラントの複水浄化に用いられる中空糸膜ろ過装置の逆洗
方法に係り、特に処理液による中空糸膜フィルタの逆洗
を効果的に行なえるようにした中空糸膜ろ過装置の逆洗
方法に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) This invention relates to a hollow fiber used for radioactive waste liquid treatment in nuclear power plants or reprocessing plants, or double water purification in nuclear or thermal power plants. The present invention relates to a method for backwashing a membrane filtration device, and more particularly to a method for backwashing a hollow fiber membrane filtration device that enables effective backwashing of a hollow fiber membrane filter with a treatment liquid.

(従来の技術) 中空糸膜ろ過装置は、よく知られているように、高分子
材料によって繊維状に構成された中空糸膜をフィルタエ
レメントとして使用するろ過装置である。中空糸膜フィ
ルタは、微粒状の不溶性混入物を効率よく捕捉できるこ
と、また逆洗による再生使用が可能なこと等の特徴を有
し、各種の液体処理設備で利用されている。原子力発電
プラント等の大型設備に用いる中空糸膜ろ過装置の場合
には、フィルタエレメントとして第12図に示す多数の
中空糸51を束ねて折返し、結束部28から吊下げた中
空糸膜モジュール9が使用されている。
(Prior Art) As is well known, a hollow fiber membrane filtration device is a filtration device that uses a hollow fiber membrane made of a polymeric material in the form of fibers as a filter element. Hollow fiber membrane filters have features such as being able to efficiently capture fine particulate insoluble contaminants and being reusable by backwashing, and are used in various liquid processing equipment. In the case of a hollow fiber membrane filtration device used in large-scale equipment such as a nuclear power plant, a hollow fiber membrane module 9 is used as a filter element by bundling and folding a large number of hollow fibers 51 shown in FIG. It is used.

一般に、原子力発電プラントにおいては、放射線低減対
策として腐食生成物の発生の抑制およびその除去を行な
っている。腐食生成物の除去は、例えば原子力発電プラ
ントで発生する放射性廃液あるいは原子炉復水系の複水
中に存在する懸濁物を、中空糸膜ろ過装置を用いて分離
除去することによりなされる。
Generally, in nuclear power plants, the generation of corrosion products is suppressed and removed as radiation reduction measures. Corrosion products are removed, for example, by using a hollow fiber membrane filtration device to separate and remove suspended matter present in radioactive waste liquid generated in a nuclear power plant or in the complex water of a nuclear reactor condensate system.

第6図は、従来の中空糸膜ろ過装置の一例(以下第1従
来例という)を示す断面図である。
FIG. 6 is a sectional view showing an example of a conventional hollow fiber membrane filtration device (hereinafter referred to as a first conventional example).

この中空糸膜ろ過装置1により廃液(被処理液)をろ過
するには、この廃液を廃液供給配管3から容器本体5の
ろ過室7へ供給する。供給された廃液は、各中空糸膜モ
ジュール9の中空糸膜によりろ過され、各中空糸内を通
って処理室11へ案内される。処理室11に案内された
処理済の液体(処理液)は、処理液排出管13から外部
へ送られる。
In order to filter waste liquid (liquid to be treated) using this hollow fiber membrane filtration device 1, the waste liquid is supplied from the waste liquid supply pipe 3 to the filtration chamber 7 of the container body 5. The supplied waste liquid is filtered by the hollow fiber membrane of each hollow fiber membrane module 9 and guided to the processing chamber 11 through each hollow fiber. The processed liquid (processing liquid) guided into the processing chamber 11 is sent to the outside from the processing liquid discharge pipe 13.

中空糸膜によるろ過作用の進行に伴ってろ過機能が次第
に低下するので、逆洗処理を定期的に行なう必要がある
As the filtration function of the hollow fiber membrane progresses, the filtration function gradually decreases, so backwashing must be performed periodically.

この中空糸膜モジュールの逆洗再生処理方法として、例
えば特開昭60−19002号公報等に記載されている
ように、処理液を用いて中空糸膜モジュールを逆洗する
方法がある。この逆洗方法を第6図の構成によって説明
する。即ち、この逆洗処理の際には、被処理液の供給を
停止し、処理液排出管13から処理室11へ加圧気体が
供給され、処理室11内が加圧される。この加圧により
処理液が逆流し、中空糸の内側から外側へ処理液が噴出
して、中空糸の外周に付着した懸濁物が除去される。除
去された懸濁物は、ろ過室7の底部に沈澱する。
As a method for backwashing and regenerating the hollow fiber membrane module, there is a method of backwashing the hollow fiber membrane module using a treatment liquid, as described in, for example, Japanese Patent Laid-Open No. 19002/1983. This backwashing method will be explained using the configuration shown in FIG. That is, during this backwashing process, the supply of the liquid to be processed is stopped, pressurized gas is supplied from the process liquid discharge pipe 13 to the process chamber 11, and the inside of the process chamber 11 is pressurized. This pressurization causes the processing liquid to flow backwards, ejecting the processing liquid from the inside of the hollow fiber to the outside, and removing suspended matter adhering to the outer periphery of the hollow fiber. The removed suspended matter settles at the bottom of the filtration chamber 7.

加圧空気の際には、バブリング管15から同時に気泡が
噴出され、この気泡により中空糸が振動して、クラッド
等の懸濁物の除去が円滑に行なわれる。
When pressurized air is applied, air bubbles are simultaneously ejected from the bubbling pipe 15, and the air bubbles vibrate the hollow fibers, thereby smoothly removing suspended matter such as crud.

この逆洗作用により、各中空糸膜モジュール9の中空糸
膜はフィルタ機能が回復される。
Due to this backwashing action, the filter function of the hollow fiber membranes of each hollow fiber membrane module 9 is restored.

逆洗中には、処理室11内の処理液が中空糸を介してろ
過室7へ逆流するので、ろ過室7内の過剰な処理液およ
び廃液は、オーバーフロー管17から排出される。同時
に、バブリング管15からろ過室7内へ供給された空気
も、オーバーフロー管17を介して外部へ排出される。
During backwashing, the processing liquid in the processing chamber 11 flows back into the filtration chamber 7 through the hollow fibers, so that the excess processing liquid and waste liquid in the filtration chamber 7 are discharged from the overflow pipe 17. At the same time, the air supplied from the bubbling pipe 15 into the filtration chamber 7 is also discharged to the outside via the overflow pipe 17.

また、逆洗終了後、懸濁物の沈澱により濃縮されたろ過
室7内の廃液は。
In addition, after the backwashing is completed, the waste liquid in the filtration chamber 7 is concentrated due to sedimentation of suspended matter.

濃縮廃液排出管19から排出される。The concentrated waste liquid is discharged from the discharge pipe 19.

その後、廃液供給配管3から再び廃液を導入し、ろ過室
7内に廃液を満たしてろ過処理過程へ移行する。このと
き、中空糸膜モジュール9の中空糸が空気を通しにくい
ので、ろ過室7内の空気は廃液の液面上昇に伴い、オー
バーフロー管17から排出される。しかし、オーバーフ
ロー管17は、ろ過室7と処理室11とを区分する仕切
板21に対し一定距離りを隔てて設置されているため、
ろ過室7内へ廃液供給が完了し、ろ過処理を開始する前
に、ろ過室7の上部に空気が残存することになる。その
ため、中空糸膜モジュール9には、その残存空気23に
接触する部分が存在し、この接触部分がろ過処理に何ら
寄与しないので、中空糸膜モジュール9の有効膜面積゛
が減少して、ろ過動率が低下するという問題がある。ま
た、中空糸膜モジュール9が残存空気23に接触するこ
とから、この残存空気23と接触した中空糸が劣化する
おそれもある。
Thereafter, the waste liquid is introduced again from the waste liquid supply pipe 3, the filtration chamber 7 is filled with the waste liquid, and the process moves to the filtration process. At this time, since it is difficult for air to pass through the hollow fibers of the hollow fiber membrane module 9, the air in the filtration chamber 7 is discharged from the overflow pipe 17 as the liquid level of the waste liquid rises. However, since the overflow pipe 17 is installed at a certain distance from the partition plate 21 that separates the filtration chamber 7 and the processing chamber 11,
After the waste liquid supply into the filtration chamber 7 is completed and before the filtration process is started, air will remain in the upper part of the filtration chamber 7. Therefore, the hollow fiber membrane module 9 has a part that comes into contact with the residual air 23, and this contact part does not contribute to the filtration process, so the effective membrane area of the hollow fiber membrane module 9 decreases and the filtration There is a problem that the rate of movement decreases. Further, since the hollow fiber membrane module 9 comes into contact with the residual air 23, there is a possibility that the hollow fibers that have come into contact with the residual air 23 may deteriorate.

そこで、従来、第7図に示すように、仕切板21に流路
25を形成し、この流路25にオーバーフロー管26を
接続させたもの(以下第2従来例という)が提案されて
いる。また、第8図に示すように、オーバーフロー管2
7をろ過室7内にて上方に曲げ。
Therefore, as shown in FIG. 7, a conventional system has been proposed in which a flow path 25 is formed in a partition plate 21 and an overflow pipe 26 is connected to this flow path 25 (hereinafter referred to as a second conventional example). In addition, as shown in FIG. 8, the overflow pipe 2
7 upwards in the filtration chamber 7.

ろ過室7内に位置するオーバーフロー管27の開口部2
4の先端を、中空糸膜モジュール9の結束部28下端よ
り上方に位置させたもの(以下第3従来例という)があ
る、さらに、第9図に示すように、第1従来例における
オーバーフロー管17のろ過室7内における開口部を囲
むようにしてせき板29を設置し、このせき板29の上
端30を、中空糸膜モジュール9の結束部28下端に位
置させたもの(以下第4従来例という)がある。
Opening 2 of overflow pipe 27 located in filtration chamber 7
4 is located above the lower end of the binding part 28 of the hollow fiber membrane module 9 (hereinafter referred to as the third conventional example). Furthermore, as shown in FIG. 9, the overflow pipe in the first conventional example A weir plate 29 is installed so as to surround the opening in the 17 filtration chambers 7, and the upper end 30 of this weir plate 29 is positioned at the lower end of the binding part 28 of the hollow fiber membrane module 9 (hereinafter referred to as the fourth conventional example). ).

第7図に示す第2従来例によれば、逆洗開始直前におけ
るろ過室7内の廃液液面を仕切板21に接するまで上昇
させ、ろ過室7内の空気を一掃することができる。した
がって、中空糸膜モジュール9の中空糸膜を完全に廃液
中に浸漬させることができる。また、第8図および第9
図に示す第3および第4従来例の場合でも、逆洗開始直
前のろ過室7内廃液液面をオーバーフロー管27(第8
図)の開口部24またはせき板29(第9図)の上端ま
で上昇できるので、中空糸膜モジュール9の中空糸を完
全に廃液中に浸漬させることができる。したがって、こ
れら第2から第4従来例の場合には、中空糸膜モジュー
ル9のろ過動率の向上および中空糸の劣化を防止するこ
とができる。なお、第2から第4従来例は、特開昭61
−293505号公報に掲載されている。
According to the second conventional example shown in FIG. 7, the level of waste liquid in the filtration chamber 7 immediately before the start of backwashing can be raised until it touches the partition plate 21, and the air in the filtration chamber 7 can be purged. Therefore, the hollow fiber membranes of the hollow fiber membrane module 9 can be completely immersed in the waste liquid. Also, Figures 8 and 9
Even in the case of the third and fourth conventional examples shown in the figure, the waste liquid level in the filtration chamber 7 immediately before the start of backwashing is
Since the hollow fibers of the hollow fiber membrane module 9 can be completely immersed in the waste liquid, the hollow fibers of the hollow fiber membrane module 9 can be completely immersed in the waste liquid. Therefore, in the case of these second to fourth conventional examples, it is possible to improve the filtration rate of the hollow fiber membrane module 9 and prevent deterioration of the hollow fibers. Note that the second to fourth conventional examples are disclosed in Japanese Patent Application Laid-open No. 1983
Published in Publication No.-293505.

ところが、第2から第4従来例では、中空糸膜モジュー
ル9の本数が少ない場合には問題ないが、中空糸膜モジ
ュール9の本数が多くなった場合には、逆洗時の廃液お
よび処理液ならびに空気の排出量を考慮すると、オーバ
ーフロー管26.27.17の口径をそれだけ大きくし
たり、またその本数を増加する必要がある。しかし、第
7図に示す第2従来例の場合には、仕切板21の厚さの
制約からオーバーフロー管26および流路25の口径の
拡大に限界がある。したがって、充分大きな流路を確保
できず、所要の逆洗性能を得るに必要な逆洗流量が得ら
れず、逆洗性能が低下するという問題点がある。
However, in the second to fourth conventional examples, there is no problem when the number of hollow fiber membrane modules 9 is small, but when the number of hollow fiber membrane modules 9 increases, waste liquid and processing liquid during backwashing In addition, in consideration of the amount of air discharged, it is necessary to increase the diameter of the overflow pipes 26, 27, 17 or increase the number of overflow pipes. However, in the case of the second conventional example shown in FIG. 7, there is a limit to the expansion of the diameters of the overflow pipe 26 and the flow path 25 due to restrictions on the thickness of the partition plate 21. Therefore, there is a problem that a sufficiently large flow path cannot be secured, and the backwash flow rate required to obtain the required backwash performance cannot be obtained, resulting in a decrease in the backwash performance.

また、第8図および第9図に示す第3および第4従来例
の場合には、オーバーフロー管27の開口部24端部あ
るいはせき扱29上端30と仕切板21との距離を61
とし、中空糸膜モジュール9の結束部28下端と仕切板
21下面との距離を62とすると、δ□〈δ2の関係が
ある。また、中空糸膜モジュール9の本数が多い場合、
これに応じて、例えば第3従来例のオーバーフロー管2
7の口径をある程度大きくしても、その開口部24の周
長がそれほど長くならない、ここで、逆洗時における流
体の流路面積へ〇は、オーバーフロー管27の内径をD
とすると、A□=πDδ1で示される。また、オーバー
フロー管27の開口部24を流れる流体の流速v1は逆
洗時の必要流量をQとすると、V工=Q/A工で示され
る。さらに、流体抵抗が流速の2乗に比例する。
In addition, in the case of the third and fourth conventional examples shown in FIGS. 8 and 9, the distance between the end of the opening 24 of the overflow pipe 27 or the upper end 30 of the weir 29 and the partition plate 21 is set to 61.
If the distance between the lower end of the binding portion 28 of the hollow fiber membrane module 9 and the lower surface of the partition plate 21 is 62, then there is a relationship of δ□<δ2. In addition, when the number of hollow fiber membrane modules 9 is large,
Accordingly, for example, the overflow pipe 2 of the third conventional example
Even if the diameter of the opening 7 is increased to a certain extent, the circumference of the opening 24 will not become so long.
Then, it is expressed as A□=πDδ1. Further, the flow velocity v1 of the fluid flowing through the opening 24 of the overflow pipe 27 is expressed as V=Q/A, where Q is the required flow rate during backwashing. Furthermore, fluid resistance is proportional to the square of the flow velocity.

したがって、これらのことから、距離δ1が小さいと逆
洗時における流体の流路面積A1が不足し、このため流
速v0が増大して流体抵抗が増加することになる。この
ように逆洗時における流体抵抗が増加する結果、中空糸
膜の逆洗が不充分となり、逆洗処理によってもろ過差圧
が充分回復しないという不都合が生ずる。このような不
都合は、第4従来例の場合にも同様である。
Therefore, from these reasons, if the distance δ1 is small, the fluid flow path area A1 during backwashing will be insufficient, and therefore the flow velocity v0 will increase and the fluid resistance will increase. As a result of this increase in fluid resistance during backwashing, backwashing of the hollow fiber membrane becomes insufficient, resulting in the inconvenience that the filtration differential pressure is not sufficiently recovered even by backwashing treatment. Such inconveniences also apply to the fourth conventional example.

第11図は、第3従来例(第8図)において中空糸膜の
表面積を500コとし、酸化第2鉄と、非晶鉄を混合し
た水溶液(流量40rd/h、温度30℃)を定量ろ過
したときの試験結果である。同図の横軸は、中空糸膜に
よる不溶解固形分の捕捉総量を単位膜面積で表わした量
(g/rrf)であり、縦軸はろ過差圧(廃液供給配管
3内と処理液排出管13内との圧力差)を示す。このグ
ラフ−から、逆洗処理によってもろ過差圧が充分回復で
きず、特に逆洗回数の増加に伴いろ過差圧が急激に上昇
し、逆洗回数が増えるほど逆洗性能の回復が図れないと
いうことがわかる。
Figure 11 shows the quantitative determination of an aqueous solution (flow rate 40rd/h, temperature 30°C) containing a mixture of ferric oxide and amorphous iron using a hollow fiber membrane having a surface area of 500 in the third conventional example (Figure 8). These are the test results when filtered. The horizontal axis of the figure is the total amount of undissolved solids captured by the hollow fiber membrane expressed in unit membrane area (g/rrf), and the vertical axis is the filtration differential pressure (inside the waste liquid supply pipe 3 and the treated liquid discharge pressure difference with the inside of the pipe 13). From this graph, we can see that the filtration differential pressure cannot be recovered sufficiently even with backwashing treatment, and especially as the number of backwashing increases, the filtration differential pressure rises rapidly, and as the number of backwashing increases, the backwashing performance cannot be recovered. It turns out that.

第3および第4従来例のこのような逆洗性能の回復低下
を防止するために、これらのオーバーフロー管27.1
7の口径を増大したり、その本数を増加することも提案
されている。しかし、オーバーフロー管27.17の口
径をある程度以上に大きくすると、密閉容器5の貫通部
の穴径が大きくなり、密閉容器5の強度が低下する。ま
た、オーバーフロー管27.17の本数の増加は、密閉
容器5に接続される配管レイアウトの複雑化を招き好ま
しくない。
In order to prevent such a decline in recovery of backwash performance in the third and fourth conventional examples, these overflow pipes 27.1
It has also been proposed to increase the diameter of 7 or increase the number thereof. However, if the diameter of the overflow pipe 27.17 is increased beyond a certain level, the hole diameter of the penetrating portion of the closed container 5 becomes large, and the strength of the closed container 5 decreases. Furthermore, an increase in the number of overflow pipes 27, 17 is undesirable because it complicates the piping layout connected to the closed container 5.

さらに第4従来例の場合には、せき板29内に不溶解固
形分が堆積し、特にこれが原子力発電プラントに適用さ
れた場合には、この不溶解固形分が放射線量の増加を招
き、メンテナンス時における作業員の被曝量が増大して
いた。
Furthermore, in the case of the fourth conventional example, undissolved solid content accumulates within the weir plate 29, and especially when this is applied to a nuclear power plant, this undissolved solid content causes an increase in the radiation dose and maintenance The radiation exposure of workers at the time was increasing.

(発明が解決しようとする課題) 以上のように、第2従来例では、中空糸膜モジュール9
の本数が増加した場合であっても、オーバーフロー管2
6および流路25の口径を拡大することができず、その
ため充分な流路が確保できなくなり、洗浄性能が低下す
るおそれがある。また、第3および第4従来例の場合に
は、δ1くδ2であるため、流体の流路面積が不足して
流体抵抗が増大し、逆洗性能が低下するおそれがある。
(Problems to be Solved by the Invention) As described above, in the second conventional example, the hollow fiber membrane module 9
Even if the number of overflow pipes 2 increases,
6 and the diameter of the flow path 25 cannot be enlarged, and as a result, a sufficient flow path cannot be ensured, and there is a possibility that the cleaning performance will deteriorate. Further, in the case of the third and fourth conventional examples, since δ1 and δ2 are smaller than δ2, there is a possibility that the fluid flow path area is insufficient, the fluid resistance increases, and the backwash performance deteriorates.

この発明は、上述した課題を解決するためになされたも
のであり、逆洗時における液体の充分な流路を確保し、
かつ充分な流路面積を確保して洗浄性能を向上させるこ
とができる中空糸膜ろ過装置の逆洗方法を提供すること
を目的とする。
This invention was made in order to solve the above-mentioned problems, and it ensures a sufficient flow path for liquid during backwashing,
Another object of the present invention is to provide a method for backwashing a hollow fiber membrane filtration device, which can secure a sufficient flow path area and improve cleaning performance.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明においては、密閉された容器本体内を上下に処理
室とろ過室とに仕切る仕切板に垂設された中空糸膜モジ
ュールの中空糸膜を通過させて被処理液をろ過室から処
理室に流して被処理液のろ過を行なう中空糸膜ろ過装置
の被処理液の流れを一時中断し、処理室を加圧してろ過
室に設けられたオーバーフロー管からろ過室の内容物を
排出しながら被処理液を逆流させ、中空糸膜を洗浄して
再生する中空糸膜ろ過装置の逆洗方法において、被処理
液の流れを一時中断する工程と処理室を加圧する工程と
の間に、ろ過室内の被処理液の一部を予め排出する工程
を挿入した。
(Means for Solving the Problems) In the present invention, a hollow fiber membrane of a hollow fiber membrane module vertically installed on a partition plate that partitions a sealed container main body into a processing chamber and a filtration chamber vertically is passed through. The flow of the liquid to be treated in the hollow fiber membrane filtration device, which filters the liquid by flowing it from the filtration chamber to the processing chamber, is temporarily interrupted, the treatment chamber is pressurized, and the process is carried out from the overflow pipe installed in the filtration chamber. In the backwash method for hollow fiber membrane filtration equipment, in which the liquid to be treated flows backward while discharging the contents of the filtration chamber, and the hollow fiber membrane is washed and regenerated, the process of temporarily interrupting the flow of the liquid to be treated and the treatment chamber are performed. A step of previously discharging a portion of the liquid to be treated in the filtration chamber was inserted between the pressurizing step.

(作 用) 逆洗のために処理室が加圧され、被処理液が中空糸膜を
通過してろ過室に噴出したとき、ろ過室内の被処理液の
一部は予め排出されてろ過室内に空気層が形成されてい
るため、オーバーフロー管からはこの空気が排出される
。空気の流体抵抗は液体のそれよりもはるかに小さいた
め、オーバーフロー管で大きな圧損を生ずることはなく
、被処理液が中空糸膜を通過するときの線流速は十分高
く保つことができるので、中空糸膜は効率よく逆洗・再
生される。
(Function) When the processing chamber is pressurized for backwashing and the liquid to be treated passes through the hollow fiber membrane and is ejected into the filtration chamber, a part of the liquid to be treated in the filtration chamber is discharged in advance and flows into the filtration chamber. Since an air layer is formed in the overflow pipe, this air is discharged from the overflow pipe. The fluid resistance of air is much smaller than that of liquids, so there is no large pressure drop in the overflow pipe, and the linear flow rate when the liquid to be treated passes through the hollow fiber membrane can be kept high enough. The thread membrane is efficiently backwashed and regenerated.

(実施例) 以下この発明の一実施例を第1図乃至第4図を参照して
説明する。なお第1図乃至第4図において、中空糸膜ろ
過装置1の構成は先に第6図に示したもののオーバーフ
ロー管を第8図に示したオーバーフロー管27に置換え
たものと同一であり、各構成部材には第6図および第8
図に示したものと同一符号を付してそれらの説明を省略
する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. In FIGS. 1 to 4, the configuration of the hollow fiber membrane filtration device 1 is the same as that shown in FIG. 6 above, except that the overflow tube is replaced with the overflow tube 27 shown in FIG. Components are shown in Figures 6 and 8.
The same reference numerals as those shown in the drawings are used to omit their explanation.

第1図において、ろ過処理は廃液を廃液供給管3からろ
過室7へ供給することにより行なわれる。
In FIG. 1, the filtration process is carried out by supplying waste liquid from a waste liquid supply pipe 3 to a filtration chamber 7.

供給された廃液は、ろ過室7内に配設された中空糸膜モ
ジュール9の中空糸51を透過する際に、廃液中の微細
粒子が中空糸51の膜面に捕捉され、分離除去される。
When the supplied waste liquid passes through the hollow fibers 51 of the hollow fiber membrane module 9 disposed in the filtration chamber 7, fine particles in the waste liquid are captured on the membrane surface of the hollow fibers 51 and separated and removed. .

微細粒子が除去されてろ過された清澄な処理液は、中空
糸膜モジュール9の中空糸51内を通って上部の処理室
11へ流入する。そして、処理液は。
The clear processing liquid from which fine particles have been removed and filtered passes through the hollow fibers 51 of the hollow fiber membrane module 9 and flows into the upper processing chamber 11 . And the processing liquid.

この処理室11から処理液排出管13を通って例えば原
子炉供給水系等の外部へ送られる。
From this processing chamber 11, the processing liquid is sent to the outside, such as a reactor supply water system, through a discharge pipe 13.

廃液のろ過処理の進行に伴って中空糸51の膜面に微細
粒子が付着していき、中空糸膜の微細な透過孔を閉塞す
るので、ろ過差圧が次第に増大していく。ろ過差圧が一
定圧以上に上昇したとき、中空糸膜のろ過機能を回復さ
せるために次に述べる逆洗処理が実施される。
As the waste liquid filtration process progresses, fine particles adhere to the membrane surface of the hollow fiber 51 and block the fine permeation pores of the hollow fiber membrane, so that the filtration pressure difference gradually increases. When the filtration differential pressure rises above a certain pressure, the following backwashing process is performed to restore the filtration function of the hollow fiber membrane.

まず、廃液供給配管3および処理液排出管13に連なる
配管に取付けられた図示しないバルブを閉じ、廃液の供
給を停止する。次にオーバーフロー管27に連なるバル
ブ(図示省略)を開は容器本体5内を大気圧に開放する
。その後第2図に示すように濃縮廃液排出管19を通じ
てろ過室7内の廃液の一部を排出する。排出量は、処理
室11内の容積と同程度とするのが良い。排出量の制御
は、図示しない液位針により行なう。あるいは濃縮廃液
排出管19のバルブの開閉時間をタイマーにより設定し
て行なうこともできる。廃液の一部を排出することによ
り、ろ過室7内に空気層33が形成される。
First, a valve (not shown) attached to a pipe connected to the waste liquid supply pipe 3 and the processing liquid discharge pipe 13 is closed to stop the supply of waste liquid. Next, a valve (not shown) connected to the overflow pipe 27 is opened to open the inside of the container body 5 to atmospheric pressure. Thereafter, as shown in FIG. 2, a portion of the waste liquid in the filtration chamber 7 is discharged through the concentrated waste liquid discharge pipe 19. The discharge amount is preferably about the same as the volume inside the processing chamber 11. The discharge amount is controlled by a liquid level needle (not shown). Alternatively, the opening and closing times of the valve of the concentrated waste liquid discharge pipe 19 can be set using a timer. By discharging a portion of the waste liquid, an air layer 33 is formed within the filtration chamber 7.

この後すみやかに次の工程に入る。After this, proceed to the next step immediately.

次の工程は第3図に示すように、処理液排出管13から
処理室11へ加圧気体を供給し、処理室11内を加圧す
る。この加圧により処理液が逆流し、懸濁物が中空糸5
1からはくすされる。逆洗により当然ろ過室7の水量は
増加するので、上部の空気層33は加圧されるが、この
空気はオーバーフロー管27を通して排出される。
In the next step, as shown in FIG. 3, pressurized gas is supplied from the processing liquid discharge pipe 13 to the processing chamber 11 to pressurize the inside of the processing chamber 11. Due to this pressurization, the processing liquid flows backward, and the suspended matter is transferred to the hollow fiber 5.
From 1 it will be deleted. Since the amount of water in the filtration chamber 7 naturally increases due to backwashing, the upper air layer 33 is pressurized, but this air is discharged through the overflow pipe 27.

次に第4図に示すように処理室11内の処理液が全て逆
流した後に、バブリング管15より気泡を噴出し、中空
糸を振動させ、はくすした懸濁物をふるい落とす。
Next, as shown in FIG. 4, after all of the processing liquid in the processing chamber 11 has flowed back, bubbles are ejected from the bubbling tube 15, the hollow fibers are vibrated, and the suspended matter is sieved off.

中空糸膜モジュール9から取り除かれた微細粒子は、容
器本体5の底部に貯留されるが、この微細粒子を含んだ
濃縮廃液は、逆洗処理終了後に濃縮廃液排出管19を通
して外部へ排出される。
The fine particles removed from the hollow fiber membrane module 9 are stored at the bottom of the container body 5, but the concentrated waste liquid containing these fine particles is discharged to the outside through the concentrated waste liquid discharge pipe 19 after the backwashing process is completed. .

その後廃液供給配管から再び廃液を導入しろ過室7内に
廃液を満たしろ過処理過程へ移行する。
Thereafter, the waste liquid is introduced again from the waste liquid supply pipe to fill the filtration chamber 7 with the waste liquid, and the process moves to the filtration process.

上述した実施例によれば、以下のような効果を生ずる。According to the embodiment described above, the following effects are produced.

■ 逆洗時にオーバーフロー管27を通る流体は、液体
ではなく、気体となるためオーバーフロー管27による
圧力損失がなくなり、逆洗時の流体流量が充分確保でき
るので、逆洗性能を向上させることができる。
■ The fluid passing through the overflow pipe 27 during backwashing becomes gas instead of liquid, so there is no pressure loss due to the overflow pipe 27, and a sufficient fluid flow rate during backwashing can be secured, so backwashing performance can be improved. .

これを具体的数値を用いて明らかにするために、−例と
して、中空糸膜モジュール9を50本使用した中空糸膜
ろ過装置1について考察する。
In order to clarify this using specific numerical values, a hollow fiber membrane filtration device 1 using 50 hollow fiber membrane modules 9 will be considered as an example.

この場合適正な逆洗性能を得るために必要な逆洗の流量
Qは、実験により0.03m/sである。
In this case, the flow rate Q of backwashing required to obtain proper backwashing performance is 0.03 m/s according to an experiment.

例えば、 内径102.3m+nのオーバーフロー管2
7を用い、中空糸膜モジュール9の中空糸51の劣化を
防ぐため1例えばオーバーフロー管z7の上端から仕切
板21の下端までの距離δ1=15閣とする場合、逆洗
時におけるオーバーフロー管27の開口部の流路面積A
は、開口部先端の内径をDとすると、 A = πDδ、 で示される。また、このとき、開口部の先端部上を流れ
る流体の流速Vは、 ■、=n で示される。これらのことから A=πDδ、=πx 102.3 x 15= 482
0 m+” = 6.2 Il/s となる。すなわち、適正な逆洗が行なわれるためには、
オーバーフロー管27の開口部上部の15mの狭いすき
まを6m+/s以上の速度で流体と流す必要がある。こ
の条件で流体として液体を流す事は、圧力損失が極めて
大きく、流体振動。
For example, overflow pipe 2 with an inner diameter of 102.3m+n
7, and in order to prevent deterioration of the hollow fibers 51 of the hollow fiber membrane module 9, for example, if the distance δ1 from the upper end of the overflow pipe z7 to the lower end of the partition plate 21 is set to 15, the distance between the overflow pipe 27 during backwashing is Flow path area A of the opening
is expressed as A = πDδ, where D is the inner diameter of the tip of the opening. Further, at this time, the flow velocity V of the fluid flowing over the tip of the opening is represented by (1), =n. From these facts, A=πDδ, = πx 102.3 x 15= 482
0 m+" = 6.2 Il/s. In other words, in order to perform proper backwashing,
It is necessary to flow the fluid through a narrow gap of 15 m above the opening of the overflow pipe 27 at a speed of 6 m+/s or more. Flowing liquid under these conditions causes extremely large pressure loss and fluid vibration.

エロージョン等を引き起こすおそれもあり実現困難であ
る。
This is difficult to realize as it may cause erosion.

しかるに本実施例では逆洗時にオーバーフロー管27を
流れる流体は気体であり、気体の場合は、6m/sの流
速はいわばそよ風程度であり、圧力損失も小さい、従っ
て適正な逆洗流量を得ることができる。
However, in this embodiment, the fluid flowing through the overflow pipe 27 during backwashing is gas, and in the case of gas, the flow velocity of 6 m/s is about the same as a breeze, and the pressure loss is small, so it is possible to obtain an appropriate backwash flow rate. I can do it.

ここでさらに流体が気体の場合と液体の場合の流速比に
ついてみると、一般に、流体の圧力損失ΔPは流体の密
度ρに比例し、流速Vの自乗に比例することが知られて
いる。従って従来の逆洗方法(添字1)と本発明の逆洗
方法(添字2)で、同一の圧力により加圧空気を加えて
逆洗を行なった場合、水の密度ρ□=1000 (kg
/ボ)、空気の密度ρ、=1.293 (kg/ボ)で
あるから ここでΔP工=ΔP2 とすると、 ρ、V工′=ρ寞V2” すなわち、本発明によれば、同一圧力で、従来の28倍
もの流速が可能となる。実際には、中空糸膜フィルタで
の圧力損失も加わるため、同一圧力を加えても28倍の
流速の差は得られないが、極めて逆洗流速を大きくでき
ることは明らかである。
Looking further at the flow velocity ratio between gas and liquid fluids, it is generally known that the pressure loss ΔP of the fluid is proportional to the density ρ of the fluid and proportional to the square of the flow velocity V. Therefore, when backwashing is performed by adding pressurized air at the same pressure using the conventional backwashing method (subscript 1) and the backwashing method of the present invention (subscript 2), the density of water ρ□=1000 (kg
/Bo), the density of air, ρ, = 1.293 (kg/Bo), so if ΔP = ΔP2, then ρ, V' = ρ寞V2'' In other words, according to the present invention, the same pressure This allows for a flow rate of 28 times that of conventional methods.In reality, the pressure loss in the hollow fiber membrane filter is also added, so even if the same pressure is applied, a flow rate difference of 28 times cannot be obtained, but it is extremely effective for backwashing. It is clear that the flow velocity can be increased.

つまり1本実施例では、流体密度が従来例に比べ著しく
小さいので流体抵抗を従来例の約1/800程度に減少
させることができる。その結果、中空糸51の逆洗を充
分に行なうことが可能となる。
In other words, in this embodiment, since the fluid density is significantly lower than that of the conventional example, the fluid resistance can be reduced to about 1/800 of that of the conventional example. As a result, the hollow fibers 51 can be sufficiently backwashed.

以上のように、本実施例では逆洗時の流速を充分確保で
きるので、逆洗性能の向上を図ることができる。その結
果、中空糸膜モジュール9の長寿命化を達成することも
できる。
As described above, in this embodiment, a sufficient flow rate during backwashing can be ensured, so that backwashing performance can be improved. As a result, it is also possible to extend the life of the hollow fiber membrane module 9.

第10図は、本実施例の定量ろ過試験の試験結果を示す
グラフである。この試験では第11図に示した第3従来
例の試験の場合と同様に、中空糸膜モジュール9の中空
糸膜表面積を500ホとし、酸化第2鉄と非晶鉄を混合
した水溶液(流量40m/h、温度30℃)を、定量ろ
過したものである。同図における横軸は、中空糸膜によ
る不溶解固形分の捕捉総量を単位膜面積当たりで表わし
た量(g/rrr)であり、縦軸はろ過差圧を示す。こ
のグラフによれば、逆洗の度毎にろ過差圧は確実に低下
してほり使用開始時の値に回復し、しかも逆洗回数が増
えてもろ過差圧が増加することはない。したがって第1
1図と比較すれば逆洗性能が飛躍的に向上していること
がわかる。
FIG. 10 is a graph showing the test results of the quantitative filtration test of this example. In this test, the hollow fiber membrane surface area of the hollow fiber membrane module 9 was set to 500 mm, and an aqueous solution (flow rate 40 m/h, temperature 30° C.) was subjected to quantitative filtration. In the figure, the horizontal axis represents the total amount of undissolved solids captured by the hollow fiber membrane per unit membrane area (g/rrr), and the vertical axis represents the filtration differential pressure. According to this graph, the filtration differential pressure reliably decreases and recovers to the value at the start of use with each backwash, and the filtration differential pressure does not increase even if the number of backwashes increases. Therefore, the first
Comparing with Figure 1, it can be seen that the backwashing performance has improved dramatically.

■ ろ過動率の向上および中空糸の劣化防止を図ること
ができる。
■ It is possible to improve the filtration rate and prevent deterioration of hollow fibers.

つまり、ろ過室7内の廃液液面は、中空糸膜モジュール
9の結束部28下端よりさらに上方がまたは同一水平面
に位置する。したがって、中空糸51の全体が液中に浸
漬されることになり。
That is, the liquid level of the waste liquid in the filtration chamber 7 is located further above the lower end of the binding part 28 of the hollow fiber membrane module 9 or on the same horizontal plane. Therefore, the entire hollow fiber 51 is immersed in the liquid.

中空糸膜モジュール9の全体をろ過に寄与させることが
できるので有効膜面積が拡大され、ろ過動率を向上させ
ることができる。これと同時に中空糸51の上端部が空
気に接触しないので、中空糸51の洗化を防止すること
ができる。
Since the entire hollow fiber membrane module 9 can contribute to filtration, the effective membrane area can be expanded and the filtration rate can be improved. At the same time, since the upper end portions of the hollow fibers 51 do not come into contact with air, washing of the hollow fibers 51 can be prevented.

■ 前述のように、オーバーフロー管での圧力損失が少
なくなるので、オーバーフロー管27の口径を小さくし
ても逆洗性能を向上させることができる・このため、容
器本体5のオーバーフロー管27用の慣性孔を小径にで
き、容器本体5の強度の低下を招くことはない、またこ
れに伴い、容器本体5の補強等を行なう必要は生じない
■ As mentioned above, since the pressure loss in the overflow pipe is reduced, the backwashing performance can be improved even if the diameter of the overflow pipe 27 is made small. The hole can be made small in diameter without causing a decrease in the strength of the container body 5, and accordingly, there is no need to reinforce the container body 5.

さらに、同様の理由から、オーバーフロー管27の本数
を少なくできるので、容器本体5に接続される配管のレ
イアウトが単純となる。
Furthermore, for the same reason, the number of overflow pipes 27 can be reduced, so the layout of the piping connected to the container body 5 can be simplified.

(イ)本実施例では、第4従来例(第9図)のようなせ
き板29を用いないため、せき板29内に不溶解固形分
が堆積するという事態が生じない。したがって、本実施
例を原子力発電プラントに適用した場合には、中空糸膜
ろ過装置1の放射線量が低く、メンテナンス時における
作業員の被曝量を大幅に低減することができる。
(a) In this embodiment, since the weir plate 29 as in the fourth conventional example (FIG. 9) is not used, a situation in which undissolved solid content is deposited in the weir plate 29 does not occur. Therefore, when this embodiment is applied to a nuclear power plant, the radiation dose of the hollow fiber membrane filtration device 1 is low, and the radiation exposure of workers during maintenance can be significantly reduced.

さらに本発明では第5図に示すように容器本体5のろ過
室7の部分の側壁の廃液供給配管3より高い位置に部分
排出管35を設け、逆洗時における処理室11の加圧に
先立つ廃液の一部排出の工程をこの部分排出管35によ
り行なうようにしてもよい。
Furthermore, in the present invention, as shown in FIG. 5, a partial discharge pipe 35 is provided on the side wall of the filtration chamber 7 portion of the container body 5 at a position higher than the waste liquid supply pipe 3, so that a partial discharge pipe 35 is provided at a position higher than the waste liquid supply pipe 3, so that a partial discharge pipe 35 is provided in the side wall of the filtration chamber 7 portion of the container body 5. The partial discharge pipe 35 may be used to partially discharge the waste liquid.

この方法によれば、空気層の量は部分排出管35の位置
によって自動的に定まり、前述した実施例で必要であっ
た液位計あるいはタイマによるバルブ開閉装置は不要と
なる。なおこれ以外の作用・効果は前述した実施例と全
く同じである。
According to this method, the amount of the air layer is automatically determined by the position of the partial discharge pipe 35, and the valve opening/closing device using a liquid level gauge or a timer, which was necessary in the above-described embodiment, becomes unnecessary. Note that the other functions and effects are exactly the same as those of the embodiment described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係る中空糸膜ろ過装置
の逆洗方法によれば、逆洗のための逆流開始前に予めろ
過内に空気層を形成した後に逆洗を行なうため、逆洗時
にオーバーフロー管内を流れる流体が気体となり、圧力
損失が充分小さくなるとともに逆洗流速を増大させるこ
とが可能となり、その結果、逆洗性能を向上させること
ができるという効果がある。
As explained above, according to the method for backwashing a hollow fiber membrane filtration device according to the present invention, backwashing is performed after forming an air layer in the filtration before starting backflow for backwashing. At times, the fluid flowing in the overflow pipe becomes a gas, and the pressure loss becomes sufficiently small, and the backwash flow rate can be increased, resulting in an effect that the backwash performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の一実施例を工程順に示す縦
断面図、第5図は本発明の他の実施例を示す断面図、第
6図は従来の中空糸膜ろ過装置の逆洗方法を説明するた
めの中空糸膜ろ過装置の断面図、第7図乃至第9図は従
来の中空糸膜ろ過装置の要部を拡大して断面図、第10
図は本発明の一実施例の効果を説明するための線図、第
11図は従来の中空糸膜ろ過装置の逆洗方法の効果を説
明するための線図、第12図は中空糸膜モジュールを示
す斜視図である。 1・・・中空糸膜ろ過装置 5・・・容器本体 7・・・ろ過室 9・・・中空糸膜モジュール 11・・・処理室 21・・・仕切板 17、26゜ 27・・・オーバーフロー管 51・・・中空糸 35・・・部分排出管
Figures 1 to 4 are longitudinal sectional views showing one embodiment of the present invention in the order of steps, Figure 5 is a sectional view showing another embodiment of the present invention, and Figure 6 is a diagram of a conventional hollow fiber membrane filtration device. A sectional view of a hollow fiber membrane filtration device for explaining the backwashing method, FIGS. 7 to 9 are enlarged sectional views of main parts of a conventional hollow fiber membrane filtration device, and FIG.
The figure is a line diagram for explaining the effect of one embodiment of the present invention, Figure 11 is a line diagram for explaining the effect of the conventional backwashing method for hollow fiber membrane filtration equipment, and Figure 12 is a line diagram for explaining the effect of the conventional hollow fiber membrane filtration device. It is a perspective view showing a module. 1... Hollow fiber membrane filtration device 5... Container body 7... Filtration chamber 9... Hollow fiber membrane module 11... Processing chamber 21... Partition plate 17, 26° 27... Overflow Pipe 51...Hollow fiber 35...Partial discharge pipe

Claims (1)

【特許請求の範囲】 1、密閉された容器本体内を上下に処理室とろ過室とに
仕切る仕切板に垂設された中空糸膜モジュールの中空糸
膜を通過させて被処理液を前記ろ過室から前記処理室に
流して前記被処理液のろ過を行なう中空糸膜ろ過装置の
前記被処理液の流れを一時中断し、前記処理室を加圧し
て前記ろ過室に設けられたオーバーフロー管から前記ろ
過室の内容物を排出しながら前記被処理液を逆流させ、
前記中空糸膜を逆洗して再生する中空糸膜ろ過装置の逆
洗方法において、前記被処理液の流れを一時中断する工
程と前記処理室を加圧する工程との間に、前記ろ過室内
の前記被処理液の一部を予め排出する工程を挿入したこ
とを特徴とする中空糸膜ろ過装置の逆洗方法。 2、予め一部を排出する前記ろ過室内の前記被処理液は
前記容器本体の前記ろ過室部分の側壁に設けられた部分
排出管を経由させて排出することを特徴とする特許請求
の範囲第1項記載の中空糸膜ろ過装置の逆洗方法。 3、予め一部を排出する前記ろ過室内の前記被処理液の
量は前記処理室内を満たす前記被処理液の量と同量とす
ることを特徴とする特許請求の範囲第1項記載の中空糸
膜ろ過装置の逆洗方法。
[Claims] 1. The liquid to be treated is filtered by passing through the hollow fiber membrane of a hollow fiber membrane module installed vertically on a partition plate that vertically divides the inside of the sealed container body into a processing chamber and a filtration chamber. Temporarily interrupting the flow of the liquid to be treated in a hollow fiber membrane filtration device that flows from the chamber to the treatment chamber to filter the liquid to be treated, pressurizing the treatment chamber and passing from an overflow pipe provided in the filtration chamber. causing the liquid to be treated to flow back while discharging the contents of the filtration chamber;
In the method for backwashing a hollow fiber membrane filtration device in which the hollow fiber membrane is backwashed and regenerated, between the step of temporarily interrupting the flow of the liquid to be treated and the step of pressurizing the processing chamber, A method for backwashing a hollow fiber membrane filtration device, characterized in that a step of previously discharging a portion of the liquid to be treated is inserted. 2. The liquid to be treated in the filtration chamber, which is partially discharged in advance, is discharged through a partial discharge pipe provided on a side wall of the filtration chamber portion of the container body. A method for backwashing a hollow fiber membrane filtration device according to item 1. 3. The hollow space according to claim 1, characterized in that the amount of the liquid to be treated in the filtration chamber from which a portion is discharged in advance is the same as the amount of the liquid to be treated that fills the processing chamber. Backwashing method for thread membrane filtration equipment.
JP16510588A 1988-07-04 1988-07-04 Method for backwashing hollow yarn membrane filter apparatus Pending JPH0217924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16510588A JPH0217924A (en) 1988-07-04 1988-07-04 Method for backwashing hollow yarn membrane filter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16510588A JPH0217924A (en) 1988-07-04 1988-07-04 Method for backwashing hollow yarn membrane filter apparatus

Publications (1)

Publication Number Publication Date
JPH0217924A true JPH0217924A (en) 1990-01-22

Family

ID=15805990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16510588A Pending JPH0217924A (en) 1988-07-04 1988-07-04 Method for backwashing hollow yarn membrane filter apparatus

Country Status (1)

Country Link
JP (1) JPH0217924A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512219A (en) * 2004-09-07 2008-04-24 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838248B2 (en) * 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
JP2008512219A (en) * 2004-09-07 2008-04-24 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
US5209852A (en) Process for scrubbing porous hollow fiber membranes in hollow fiber membrane module
US5151191A (en) Filtration process using hollow fiber membrane module
JPH0657302B2 (en) Backwashing method for hollow fiber membrane filters
JPH0217924A (en) Method for backwashing hollow yarn membrane filter apparatus
JPS62163708A (en) Method for backwashing hollow yarn filter
JPH06509501A (en) Concentration of solids in suspension using hollow fiber membranes
US3520805A (en) Method of disposal of radioactive solids
JP2000051669A (en) Hollow fiber membrane module fitted with lower cap
JPH05137909A (en) Method and device for back washing
JPH0231200A (en) Backwash method of hollow-string film filter
JPH0217925A (en) Method for backwashing hollow yarn membrane filter apparatus
JPS6032499B2 (en) How to clean particulate impurities
US4148727A (en) Method of decontaminating liquids
JP2709026B2 (en) Membrane separation device and cleaning method thereof
JPS62149304A (en) Filter
JPH119914A (en) Back washing method for pleat type filter
JPS63302910A (en) Method for washing porous filter
JPS63171605A (en) Carbon dioxide cleaning method for hollow yarn membrane filter
JPH01266809A (en) Method for backwashing hollow yarn membrane filter
JPS58183906A (en) Method and apparatus for filtrating liquid containing suspended substance
JP2519319B2 (en) Filtration device
JPS61157306A (en) Method for washing hollow yarn membrane
JP2723323B2 (en) Ceramic filtration equipment
JPH01254208A (en) Method for backwashing hollow yarn membrane filter equipment
JP2740613B2 (en) Membrane treatment method