JPS63171605A - Carbon dioxide cleaning method for hollow yarn membrane filter - Google Patents

Carbon dioxide cleaning method for hollow yarn membrane filter

Info

Publication number
JPS63171605A
JPS63171605A JP166987A JP166987A JPS63171605A JP S63171605 A JPS63171605 A JP S63171605A JP 166987 A JP166987 A JP 166987A JP 166987 A JP166987 A JP 166987A JP S63171605 A JPS63171605 A JP S63171605A
Authority
JP
Japan
Prior art keywords
carbon dioxide
membrane
dissolved
membranes
hollow yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP166987A
Other languages
Japanese (ja)
Inventor
Toshio Sawa
俊雄 沢
Tetsuro Adachi
安達 哲朗
Kiichi Shindo
新藤 紀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP166987A priority Critical patent/JPS63171605A/en
Publication of JPS63171605A publication Critical patent/JPS63171605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To safely remove the deposits on the surfaces of hollow yarn membranes, by feeding water into which carbon dioxide is force-fed to filter surfaces on which particles stick from the inside thereof and stripping the deposits by the gas bubbles generated when the carbon dioxide-contg. liquid permeates the membranes. CONSTITUTION:The carbon dioxide from a carbon dioxide cylinder 15 is previously force-fed into a carbon dioxide force feeding tank 14 and is dissolved therein and such soln. is circulated in the hollow yarn membrane filter as back washing water from the inside of the hollow yarn in the case of back washing said filter in order to remove the clads sticking to the outside surfaces thereof. A pressure drop is generated during the flow through the membranes and the gas bubbles are formed by the dissolved carbon dioxide in the soln. according to the pressure difference between the inside and outside of the membranes. The deposits are stripped by such gas and the clads are simultaneously dissolved by the acidic liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電プラントの復水浄化のために用いら
れる中空糸膜フィルタの洗浄方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for cleaning hollow fiber membrane filters used for purifying condensate in nuclear power plants.

〔従来の技術〕[Conventional technology]

原子力発電プラントでは放射線量の上昇を防止するため
に、復水中の不純物であるクラッドと称する鉄酸化物成
分と各種溶存イオンを予め除去しておく必要があり、除
去装置として濾過脱塩器。
In order to prevent increases in radiation levels at nuclear power plants, it is necessary to remove impurities in condensate, such as iron oxide components called crud and various dissolved ions, in advance, and a filtration demineralizer is used as a removal device.

脱塩器等がv1f!されている。濾過脱塩器は棒状のエ
レメントに粉末状イオン交換樹脂をプリコートし、この
プリコート部でクラッドを捕捉している。
Desalters etc. are v1f! has been done. In the filtration demineralizer, a rod-shaped element is precoated with powdered ion exchange resin, and the cladding is captured in the precoated portion.

ところがこの方式ではプリコート操作等の運用面の頻雑
さと逆洗頻度が短い等の問題と何よりも廃樹脂が多量に
でてくる問題があった。一方、プリコート助剤を使用し
ない方式として中空糸膜フィルタがある。このフィルタ
はl朧程度の径で中空状の膜を数千水束にしたモジュー
ルで構成されており、各層の表面には、0.01〜0.
1μ−の細孔をもつ精密濾過膜と細孔径がさらに小さい
限外濾過膜に分けられる。
However, this method has problems such as frequent operations such as pre-coating operations, short backwashing frequency, and above all, a large amount of waste resin is produced. On the other hand, a hollow fiber membrane filter is available as a method that does not use a precoating aid. This filter is composed of a module with a hollow membrane with a diameter of approximately 100 ml and several thousand water bundles, and the surface of each layer is coated with 0.01 to 0.0 ml of water.
There are two types of membranes: precision filtration membranes with pores of 1 μm and ultrafiltration membranes with even smaller pores.

この中空糸膜モジュールはクラッドを水から分離するの
に適しているが、他の分離装置と同じように付着物が多
くなると濾過差圧上昇を招く、このような事態になると
運転中でも付着物を洗浄する必要がある。洗浄法として
は、膜の外表面の付着物を空気泡でバブリングする方法
、さらには。
This hollow fiber membrane module is suitable for separating crud from water, but like other separation devices, if there is a lot of deposits, the filtration differential pressure will increase. Needs to be washed. Cleaning methods include bubbling the deposits on the outer surface of the membrane with air bubbles;

膜の内側から水を逆通水する方法があり、単独あるいは
組合せて行う、しかし、付着物の粒径が小さく、吸着性
のある成分の場合には洗浄後も膜表面に残留する場合が
見られる。
There is a method of back-flowing water from inside the membrane, which can be carried out either alone or in combination. However, if the particle size of the deposit is small and the components are adsorbent, they may remain on the membrane surface even after cleaning. It will be done.

このように、膜自身が汚染された場合の洗浄法は、付着
物を溶解する洗浄液、たとえば、酸性液や錯化剤溶液の
適用が考えられる。しかし、供用中の原子カプラントで
は薬液廃棄物の発生の点から使用できないとされている
。これにかわるものとしては先に出願した特願昭60−
226784号明細書があげられる。ここでは酸性液の
かわりに炭酸ガス含有液を膜の外面からバブリングして
付着物の溶解性を高めようとするものである。この発明
も大きい効果がえるられが、さらに膜内面からの水透過
法に変わるものとして本発明が効果を有する。
As a cleaning method when the membrane itself is contaminated in this way, it is possible to use a cleaning solution that dissolves the deposits, such as an acidic solution or a complexing agent solution. However, it is said that the atomic couplants currently in use cannot be used due to the generation of chemical waste. As an alternative to this, the patent application filed earlier in 1986-
Specification No. 226784 is mentioned. Here, a carbon dioxide-containing liquid is bubbled from the outer surface of the membrane instead of an acidic liquid to improve the solubility of deposits. Although this invention also has great effects, the present invention is also effective as an alternative to the water permeation method from the inner surface of the membrane.

すなわち、膜の細孔に目詰りしたクラッドを膜内からの
炭酸ガス含有液で膜内の透過時にガス化する作用で剥離
させようとするものである。
In other words, the cladding clogging the pores of the membrane is attempted to be removed by the action of gasifying the carbon dioxide gas-containing liquid from within the membrane as it permeates through the membrane.

〔発明が解決しようとする問題点〕 上記従来技術は中空糸膜表面の付着物を安全に除去する
ことが難しい問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology has a problem in that it is difficult to safely remove deposits on the surface of the hollow fiber membrane.

本発明の目的は膜表面付着物を内側から流入する炭酸の
炭酸ガスへの発泡作用により除去する方法を提供するこ
とにある。
An object of the present invention is to provide a method for removing deposits on a membrane surface by the foaming effect of carbon dioxide flowing from the inside into carbon dioxide gas.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、中空糸膜フイルタ表面に付着した固形分を
分離する場合に、溶液中に溶解した炭酸ガスを炭酸ガス
分圧を変えることによりガス気泡とし、これにて付着物
を剥離させることができる原理に基づいて達成される。
The above purpose is to separate the solid matter adhering to the surface of the hollow fiber membrane filter by changing the partial pressure of the carbon dioxide gas dissolved in the solution to form gas bubbles, thereby peeling off the adhering material. This is achieved based on the principle that it is possible.

〔作用〕[Effect]

液中に炭酸ガスは次のように溶解して解離している。 Carbon dioxide gas is dissolved and dissociated in the liquid as follows.

α COz+HzO−+ HzCOa    ”(1)〈− (1)式により炭酸ガスCO工は吸収係数αで炭酸ガス
分圧Pcozに比例して溶解する。さらに(2)式のよ
うに溶解した炭酸Hzcoδは第一解離定数に1の基で
H+と重炭酸イオンHCOa−に解離する。さらに(3
)式でHCO3−が第二解離定数に2の下で解離する。
α COz + HzO−+ HzCOa ”(1)〈− According to equation (1), carbon dioxide gas is dissolved in proportion to carbon dioxide partial pressure Pcoz with absorption coefficient α.Furthermore, as shown in equation (2), dissolved carbonate Hzcoδ is Dissociates into H+ and bicarbonate ion HCOa- with a first dissociation constant of 1.Furthermore, (3
), HCO3− dissociates under the second dissociation constant of 2.

したがって溶液中への炭酸ガスの溶解量は炭酸ガス分圧
を大きくすればそれに比例して大きくなり、同時にPH
が低下する。
Therefore, as the partial pressure of carbon dioxide increases, the amount of carbon dioxide dissolved in the solution increases in proportion to it, and at the same time, the pH
decreases.

この反応を利用してクラッドを剥離、溶解させる時の状
態を第2図で説明する。中空糸膜1の外表面にクラッド
2が濾過とともに付着する。これを逆洗する時には、炭
酸ガスを溶解した逆洗水が膜の細孔3を通関する間に圧
力損失が生じ、膜出口では溶解炭酸ガスがガス気泡とな
る。このガスにより付着物を剥離できるのとさらに酸性
液でのクラッドの溶解が同時に起こる。
The state when the cladding is peeled off and dissolved using this reaction will be explained with reference to FIG. The cladding 2 adheres to the outer surface of the hollow fiber membrane 1 during filtration. When this is backwashed, a pressure loss occurs while the backwash water in which carbon dioxide gas is dissolved passes through the pores 3 of the membrane, and the dissolved carbon dioxide gas becomes gas bubbles at the membrane outlet. This gas allows the deposits to be removed and the acidic liquid dissolves the cladding at the same time.

〔実施例〕〔Example〕

本発明を中空糸膜フィルタへ適用した時の装置構成とし
て第1図に示す、装置本体6は円筒状の上・下フランジ
をもつ容器であり、筒内に上部フランジ7に固定された
中空糸を束にしたモジュール8が設置されている。モジ
ュールには膜が流動しないように外とう9が設けられる
。原水10は装置の下部流水管11より入り、中空糸膜
の外部から透過する際に固形分を除去して、膜の内部を
通って上部流出管より出る。このような装置構造と浄化
系統において、原水中の固形分が膜の外表面に蓄積され
ると、これによる圧力損失が大きくなり、浄化装置とし
て運転ができなくなる。そこで、この付着物を必要に応
じて除去する必要がある。これが逆洗と云われる操作で
ある0通常の方法は、装置の下部より空気をバブリング
する方法、さらには膜内から逆洗水を流通する方法等の
組合せで付着物を除去する。
The device configuration when the present invention is applied to a hollow fiber membrane filter is shown in FIG. 1. The device body 6 is a container with cylindrical upper and lower flanges, and the hollow fibers are fixed to the upper flange 7 inside the cylinder. A module 8 is installed, which is a bundle of . The module is provided with a jacket 9 to prevent the membrane from flowing. Raw water 10 enters the apparatus through a lower flow pipe 11, removes solids as it permeates from the outside of the hollow fiber membrane, passes through the inside of the membrane, and exits from the upper flow pipe. In such an apparatus structure and purification system, if solid content in the raw water accumulates on the outer surface of the membrane, the resulting pressure loss will increase, making it impossible to operate the purification apparatus. Therefore, it is necessary to remove this deposit as necessary. This is an operation called backwashing.The usual method is to remove deposits by a combination of methods such as bubbling air from the bottom of the device and further circulating backwash water from within the membrane.

これに対して本発明では装置外部に炭酸ガス圧入槽14
が装置されている。この圧入槽は炭酸ガスボンベ15に
よる圧入系統16と圧入水の送入管17、さらには圧入
槽への純水のとりこみ系統18、ポンプ19を備えてい
る0本装置を用いて行う逆洗操作は、炭酸ガス圧入槽に
所定の炭酸ガスを圧入溶解しておき、この溶液を中空糸
内部から流通する。膜を流通する間で圧力損失が生じ、
膜の内外の圧力差に応じて溶液中の炭酸が炭酸ガスに変
わる。このガスが付着物を剥離するのに役立つ、なお、
この逆洗時、あるいは逆洗前に通常の空気バブリングを
行うことも必要である。
On the other hand, in the present invention, a carbon dioxide gas pressure injection tank 14 is provided outside the device.
is installed. This press-in tank is equipped with a press-in system 16 using a carbon dioxide gas cylinder 15, a press-in water supply pipe 17, a system 18 for introducing pure water into the press-in tank, and a pump 19. A predetermined amount of carbon dioxide gas is pressurized and dissolved in a carbon dioxide gas injection tank, and this solution is distributed from inside the hollow fiber. Pressure loss occurs while flowing through the membrane,
Carbon dioxide in the solution changes to carbon dioxide gas depending on the pressure difference between the inside and outside of the membrane. This gas helps remove deposits;
It is also necessary to perform normal air bubbling during or before backwashing.

次に炭酸ガス圧入水による膜出口での炭酸ガス量につい
ての実験結果を示す、使用した装置の概略を第3図に示
す、装置は中空糸膜を束にした膜面積0.3−のフィル
タ20.炭酸ガス圧入装置21、炭酸ガス捕集器22よ
りなっている。フィルタに所定の炭酸ガスを溶解させた
純水を送り、膜より発生した炭酸ガスをフィルタ上部の
捕集器で測定する。測定条件は、膜透過時の圧力損失を
変えるために、透過水量と変えた。結果を第4図に示す
、横軸には膜入口と出口の圧力差ΔPをとっており、縦
軸に発生した炭酸ガス量Cotをとっている。同図から
ΔPに比例してCo1量が比例することがわかる。従っ
て、炭酸ガス溶解量一定の水から炭酸ガスを放散させる
には膜透過水量を大きくすればよいことになる。
Next, we will show the results of an experiment on the amount of carbon dioxide gas at the membrane outlet using water injected with carbon dioxide gas. Figure 3 shows the outline of the equipment used. 20. It consists of a carbon dioxide gas injection device 21 and a carbon dioxide gas collector 22. Pure water with a certain amount of carbon dioxide dissolved in it is sent through the filter, and the carbon dioxide generated from the membrane is measured using a collector above the filter. The measurement conditions varied with the amount of permeated water in order to change the pressure loss during membrane permeation. The results are shown in FIG. 4, where the horizontal axis shows the pressure difference ΔP between the membrane inlet and outlet, and the vertical axis shows the amount of carbon dioxide gas generated Cot. It can be seen from the figure that the amount of Co1 is proportional to ΔP. Therefore, in order to diffuse carbon dioxide gas from water where the amount of dissolved carbon dioxide gas is constant, it is sufficient to increase the amount of water that permeates through the membrane.

次に本発明の逆洗法をクラッドの付着したフィルタを用
いて洗浄した効果を第5図に示す、実験装置は第4図に
示した炭酸ガス発生量測定装置を用いた。実験方法は中
空糸膜にクラッドを付着させておき、各種の洗浄法での
回収量の変化を求めている。(A)の空気サージ法は膜
内から水を膜外へ透過させる通常の方法である。(B)
と(C)が本発明になる炭酸ガス圧入水透過法で、透過
水量が異なっている。同表かられかるように(B)と(
C)は(A)より回収率が天きくなっており。
Next, the effect of cleaning using the backwashing method of the present invention using a filter with cladding is shown in FIG. 5. The experimental device used was the carbon dioxide gas production measuring device shown in FIG. 4. In the experimental method, cladding was attached to the hollow fiber membrane, and changes in the amount recovered by various cleaning methods were determined. The air surge method (A) is a normal method for permeating water from inside the membrane to the outside of the membrane. (B)
and (C) are the carbon dioxide injection water permeation method of the present invention, and the amounts of permeated water are different. As shown in the same table, (B) and (
C) has a higher recovery rate than (A).

優れた除去効果があった。It had an excellent removal effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、中空糸の膜細孔を閉塞するクラッドを
ガス気泡による剥離効果、溶解作用により効果的に除去
できる。
According to the present invention, the cladding that blocks the membrane pores of the hollow fiber can be effectively removed by the peeling effect and dissolution effect of gas bubbles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の中空糸膜フィルタの洗浄装
置の説明図、第2図は本発明の中空糸膜フィルタの洗浄
方法の説明図、第3図は本発明を実証するのに用いた炭
酸ガス発生量測定と逆洗効果判定のための実験装置の系
統図、第4図は炭酸ガス発生量と膜の圧力損失の関係図
、第5図は従来の逆洗法と本発明になる方法との洗浄効
果の比較図である。 2・・・クラッド。
Fig. 1 is an explanatory diagram of a hollow fiber membrane filter cleaning device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of a hollow fiber membrane filter cleaning method of the present invention, and Fig. 3 is an explanatory diagram of a hollow fiber membrane filter cleaning device of the present invention. Fig. 4 is a diagram of the relationship between the amount of carbon dioxide gas generated and membrane pressure loss, and Fig. 5 shows the conventional backwashing method and It is a comparison diagram of the cleaning effect with the method according to the invention. 2...Clad.

Claims (1)

【特許請求の範囲】 1、微細粒子を分離する中空糸膜分離装置の逆洗方法に
おいて、 粒子が付着したフイルタ面の内側より炭酸ガスを圧入し
た水を送入することにより、付着物を剥離溶解すること
を特徴とする中空糸膜フイルタの炭酸ガス洗浄法。
[Claims] 1. In a backwashing method for a hollow fiber membrane separator that separates fine particles, adhering substances are removed by introducing water pressurized with carbon dioxide gas from the inside of the filter surface to which particles have adhered. A method for cleaning hollow fiber membrane filters with carbon dioxide gas, which is characterized by dissolving.
JP166987A 1987-01-09 1987-01-09 Carbon dioxide cleaning method for hollow yarn membrane filter Pending JPS63171605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP166987A JPS63171605A (en) 1987-01-09 1987-01-09 Carbon dioxide cleaning method for hollow yarn membrane filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP166987A JPS63171605A (en) 1987-01-09 1987-01-09 Carbon dioxide cleaning method for hollow yarn membrane filter

Publications (1)

Publication Number Publication Date
JPS63171605A true JPS63171605A (en) 1988-07-15

Family

ID=11507925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP166987A Pending JPS63171605A (en) 1987-01-09 1987-01-09 Carbon dioxide cleaning method for hollow yarn membrane filter

Country Status (1)

Country Link
JP (1) JPS63171605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812805A3 (en) * 1996-06-15 1998-01-28 Hans-Hermann Letzner Process and apparatus for treating cold water
WO2002004100A1 (en) * 2000-07-07 2002-01-17 Zenon Environmental Inc. Multi-stage filtration and softening module and reduced scaling operation
WO2009000693A1 (en) * 2007-06-28 2008-12-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of treating water
JP2016515045A (en) * 2013-03-15 2016-05-26 ナノストーン ウォーター ゲーエムベーハー System for cleaning membranes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812805A3 (en) * 1996-06-15 1998-01-28 Hans-Hermann Letzner Process and apparatus for treating cold water
WO2002004100A1 (en) * 2000-07-07 2002-01-17 Zenon Environmental Inc. Multi-stage filtration and softening module and reduced scaling operation
WO2009000693A1 (en) * 2007-06-28 2008-12-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of treating water
JP2016515045A (en) * 2013-03-15 2016-05-26 ナノストーン ウォーター ゲーエムベーハー System for cleaning membranes

Similar Documents

Publication Publication Date Title
JP5366316B2 (en) Hollow fiber membrane module and method for purifying suspended water using the same
JPH0657302B2 (en) Backwashing method for hollow fiber membrane filters
JPS61291007A (en) Hollow yarn type separation membrane element
JPS62163708A (en) Method for backwashing hollow yarn filter
JPH0217924A (en) Method for backwashing hollow yarn membrane filter apparatus
JPS63171605A (en) Carbon dioxide cleaning method for hollow yarn membrane filter
JPS61181507A (en) Method for washing hollow yarn filter module
JPS6245301A (en) Method for separating and removing ion from organic solvent
JPS58163406A (en) Filtration of liquid
JP2794304B2 (en) Cleaning method for hollow fiber membrane module
JPH0464727B2 (en)
JPH0957261A (en) Two-stage type reverse osmosis membrane treatment
JP2009148696A (en) Iron-manganese removing apparatus, iron-manganese removing method, iron-manganese removing oxidation catalyst, and manufacturing method of iron-manganese removing oxidation catalyst
JPH119914A (en) Back washing method for pleat type filter
JP2807856B2 (en) Treatment method for radioactive ultrasonic cleaning waste liquid
JP2013002971A (en) Method of treating radioactive waste water and treating apparatus
JPH03131311A (en) Method for concentrating backwashing water of precoat type filter
JPS6043162B2 (en) Method and device for filtering liquids containing suspended matter
JPH01180205A (en) Operation of hollow yarn membrane filter device
JPH05168866A (en) Hollow-fiber membrane filter and membrane module device
JP2677380B2 (en) Method for collecting backwash wastewater from condensate demineralizer
JP2708043B2 (en) Plant operation method
JP2001079364A (en) Method for washing membrane
JP2794303B2 (en) Cleaning method for hollow fiber membrane module
JPS61157306A (en) Method for washing hollow yarn membrane