JPH02284468A - Gate-array type semiconductor integrated circuit - Google Patents

Gate-array type semiconductor integrated circuit

Info

Publication number
JPH02284468A
JPH02284468A JP10626989A JP10626989A JPH02284468A JP H02284468 A JPH02284468 A JP H02284468A JP 10626989 A JP10626989 A JP 10626989A JP 10626989 A JP10626989 A JP 10626989A JP H02284468 A JPH02284468 A JP H02284468A
Authority
JP
Japan
Prior art keywords
cells
wiring
driving capability
cell
gate array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10626989A
Other languages
Japanese (ja)
Inventor
Tadashi Maeda
正 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10626989A priority Critical patent/JPH02284468A/en
Publication of JPH02284468A publication Critical patent/JPH02284468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain a high speed and large scale gate array type integrated circuit without increasing the total cell size and power consumption by a method wherein cells whose driving capability is improved are arranged in the arrangement of basic cells into a lattice form or stripe form and the interconnection is changed in accordance with the wiring length. CONSTITUTION:I/O buffers 2 are provided along the circumferential part of a gate array. Bonding pads 4 are provided outside the I/O buffers 2. Basic cells 1 are arranged in the center part into the forms of arrays. Wiring channels 3 are provided between the cells 1 and serve for I/O's between the cells 1 if necessary. A high driving capability cell 6 is a cell composed of an FET whose gate width is designed to be large to improve the wiring driving capability. The high driving capability cells 6 are arranged in the arrangement of the basic cells 1 into a lattice form and the spacings of the lattice are so predetermined as not to change the wiring delay of a GaAs MES-FET so much compared to that of a conventional device and the cell driving capability is changed in accordance with the wiring length. With this constitution, the increase of the total cell size and power consumption can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゲートアレイ型半導体集積回路に利用され、特
に、チップ面積が大きくなる数千〜敵方ゲートを有する
GaAs集積回路においても、動作速度を犠牲にするこ
となしに低消費電力化が達成できるゲートアレイ型半導
体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applied to gate array type semiconductor integrated circuits, and is particularly applicable to GaAs integrated circuits having thousands or more enemy gates, which increase the chip area. The present invention relates to a gate array type semiconductor integrated circuit that can achieve low power consumption without sacrificing power consumption.

〔半既要〕[Semi-required]

本発明は、アレイ状に配列された複数の基本セルを備え
たゲートアレイ型半導体集積回路において、 前記基本セルは、定められた形式により所定の位置に配
列された、セルを構成するトランジスタの駆動能力を高
くした複数の高起動能力セルを含み、配線長がある長さ
以上になった場合この高駆動能力セルを用いて機能ブロ
ックを構成できるようにすることにより、 セルザイズおよび消費電力の増大なしに、高速で大規模
なゲートアレイ半導体集積回路が得られるようにしたも
のである。
The present invention provides a gate array type semiconductor integrated circuit comprising a plurality of basic cells arranged in an array, wherein the basic cells drive transistors constituting the cells, which are arranged at predetermined positions in a predetermined format. It includes multiple high activation capacity cells with increased capacity, and when the wiring length exceeds a certain length, the high drive capacity cells can be used to configure a functional block, thereby eliminating increases in cell size and power consumption. Furthermore, it is possible to obtain a high-speed, large-scale gate array semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

GaAs半導体はSlに比べ電子の移動度が数倍速く、
さらに半絶縁性基板を容易に得ることができるために、
集積化を図る際に回路の寄生容量を低減でき、高速論理
動作が可能である。現在GaAs素子の集積化はショッ
トキ接合を用いたMESFfETが主流であり量産化を
目指して各所で精力的な研究がなされてきている。Ga
As半導体集積回路は一部市販が開始されているが、そ
の品種は主としてSSI XMSIクラスであり、次期
開発品種としてIKビットから4にビットのメモリや数
千ゲート規模のメモリに期待が集まっている。特に、ゲ
ートアレイ型半導体集積回路はエンジニアリングサンプ
ルが完成するまでの期間を短くてきることからユーザ側
からの要望が高い。
The electron mobility of GaAs semiconductor is several times faster than that of Sl,
Furthermore, since semi-insulating substrates can be easily obtained,
Parasitic capacitance of the circuit can be reduced when integrating the circuit, and high-speed logic operation is possible. Currently, the mainstream integration of GaAs devices is MESFfET using Schottky junctions, and vigorous research is being carried out in various places with the aim of mass production. Ga
Although some As semiconductor integrated circuits have begun to be commercially available, they are mainly of the SSI and XMSI class, and expectations are high for next-generation developed products such as IK-bit to 4-bit memories and memories with a scale of several thousand gates. . In particular, gate array type semiconductor integrated circuits are in high demand from users because they shorten the time it takes to complete an engineering sample.

GaAs素子においてもゲートアレイの構成は、Siと
同様に第4図に示すように、周辺に入出力ハッファ2が
配置され、チップの中央部には基本セル1が規則正しく
配置され、配線チャネル3が格子状に走っている。基本
セル1はゲートアレイの機能を作るための基本領域で、
トランジスタおよび抵抗などの基本素子から構成され、
基本セル1単独または基本セル1の集合によって有用な
機能をもつ機能ブo ツク5が形成される。通常、機能
ブロック5は、単純なゲートからマルチプレクサ、デニ
ータ、フリップフロップおよびΔLUの一部など複雑な
機能のものまで各種用意されている。
As shown in FIG. 4, the structure of the gate array in GaAs devices is similar to that of Si, with input/output huffers 2 arranged around the periphery, basic cells 1 arranged regularly in the center of the chip, and wiring channels 3 It runs in a grid pattern. Basic cell 1 is the basic area for creating gate array functions.
Consists of basic elements such as transistors and resistors,
A function block 5 having useful functions is formed by the basic cell 1 alone or by a collection of basic cells 1. Usually, the functional blocks 5 are prepared in various ways, from simple gates to complex functions such as multiplexers, deniters, flip-flops, and part of ΔLU.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来のゲートアレイ型半導体集積回路において
は、格子状に走る配線チャネル部だけに配線が限定され
るため、ゲート規模の増大に伴いセル間を接続する配線
長が長くなる結果、配線遅延が増大する。また、ゲート
アレイ型半導体集積回路の設31当初から配線を十分高
速に駆動させるために、基本セル1を構成するFETの
ゲート幅を大きくする等の対策では、セルザイズそのも
のが大きくなり、やはり全体の配線長が長くなる結果と
なり、さらに消費電力が増大してしまう欠点がある。G
aAs素子では、単体の動作速度はSlに比べ十分に高
速であるが、第3図に示すように、駆動能力が81バイ
ポーラデバイスに比べ劣っていることから、ゲートアレ
イ型半導体集積回路をGaAsMESFBTで構成する
場合、前述した欠点が特に顕著に現れる。
In the conventional gate array type semiconductor integrated circuit described above, wiring is limited to the wiring channel section running in a grid pattern, so as the gate scale increases, the length of wiring connecting cells increases, resulting in wiring delays. increase In addition, in order to drive wiring at a sufficiently high speed from the beginning of the construction of a gate array type semiconductor integrated circuit, measures such as increasing the gate width of the FET that constitutes the basic cell 1 will increase the cell size itself, which will also increase the overall This results in an increase in wiring length, which has the disadvantage of further increasing power consumption. G
Although the operating speed of an aAs element is sufficiently high compared to that of Sl, as shown in Figure 3, its driving ability is inferior to that of an 81 bipolar device. In this case, the above-mentioned drawbacks become particularly noticeable.

本発明の目的は、前記の欠点を除去することにより、数
千〜致方ゲートを有するGaAsゲートアレイ型半導体
集積回路においても、動作速度を犠牲にすることなしに
低消費電力化が図れるゲートアレイ型半導体集積回路を
提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, thereby achieving a gate array that can reduce power consumption without sacrificing operating speed even in a GaAs gate array type semiconductor integrated circuit having several thousand or more gates. The purpose of this invention is to provide a type semiconductor integrated circuit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、アレイ状に配列された複数の基本セルを備え
たゲートアレイ型半導体集積回路において、前記基本セ
ルは、定められた形式により所定の位置に配列された、
セルを構成するトランジスタの駆動能力を高くした複数
の高駆動能力セルを含むことを特徴とする。
The present invention provides a gate array type semiconductor integrated circuit including a plurality of basic cells arranged in an array, wherein the basic cells are arranged at predetermined positions in a predetermined format.
It is characterized by including a plurality of high driving capacity cells in which the driving capacity of transistors forming the cells is increased.

〔作用〕[Effect]

機能ブロックを構成する際に、配線長がある長さ以下の
場合は低消費電力の通常の基本セルを用い、配線長があ
る長さより大となり配線遅延が問題になる場合には高駆
動能力セルを用いる。そして、セルを通常の基本セルか
ら高駆動能力セルへ切り替える配線長は、機能ブロック
全体の消費電力と配線遅延との増大が押さえられよう、
高駆動能力セルの配列も含めて定められる。
When configuring a functional block, if the wiring length is less than a certain length, use a normal basic cell with low power consumption, and if the wiring length is greater than a certain length and wiring delay becomes a problem, use a high drive capacity cell. Use. The wiring length for switching the cell from a normal basic cell to a high drive capacity cell will reduce the increase in power consumption and wiring delay of the entire functional block.
It is determined including the arrangement of high driving capacity cells.

従って、より低消費電力でより高速な大規模のゲートア
レイ型半導体集積回路を実現することが可能となる。
Therefore, it becomes possible to realize a large-scale gate array type semiconductor integrated circuit with lower power consumption and higher speed.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例を示すパターンレイアウト
図である。
FIG. 1 is a pattern layout diagram showing a first embodiment of the present invention.

第1図において、入出カバソファ2はゲートアレイの周
辺部に配置され、さらに、その外側にポンディングパッ
ド4が配置され、基本セル1は中央部にアレイ状に配列
される。配線チャネル3は基本セル1間に設けられ、必
要に応じてセル間の人力または出力をこのチャネルを通
して接続することで機能ブロックを構成することができ
る。そして、本発明の特徴とするところの、セルを構成
するFETのゲート幅を大きく設計し配線駆動能力を高
めた高駆動能力セル6は、基本セル配列の中に格子状に
配列される。
In FIG. 1, the input/output cover sofa 2 is arranged at the periphery of the gate array, the bonding pad 4 is further arranged outside the gate array, and the basic cells 1 are arranged in an array in the central part. A wiring channel 3 is provided between the basic cells 1, and a functional block can be configured by connecting human power or output between cells through this channel as necessary. The high driving capacity cells 6, which are characterized by the present invention and in which the gate width of the FET constituting the cell is designed to be large and the wiring driving capacity is increased, are arranged in a lattice shape in the basic cell arrangement.

ここて、GaAsMESFBTてゲートアレイを構成す
る場合を考える。第3図に示すように、配線長が短い場
合においてはSiバイポーラトランジスタに比較して十
分高速であるが、配線が長くなるにつれて伝搬遅延が大
きくなり、Siバイポーラトランジスタの速度より遅く
なることを考慮する必要がある。また、基本セルのFE
Tのゲート幅を大きくするなどして配線駆動能力を高め
た高駆動能力セルをゲートアレイの基本セルとした場合
には、第3図の一点鎖線が示すように、駆動能力は向上
するが、セルザイズが大きくなり、また、消費電力も大
きくなってしまう。以上の点から配線の長さに応じてセ
ルの駆動能力の切替えが有効な手段であるとわかる。例
えば、第3図に示すように、配線長の比較的長いA点お
よび3点でのみセルの駆動能力の切替えを行うと全体の
セルザイズの増大や消費電力の増大を回避することが可
能となる。
Now, let us consider a case where a gate array is constructed using GaAs MESFBTs. As shown in Figure 3, when the wiring length is short, it is sufficiently faster than a Si bipolar transistor, but as the wiring becomes longer, the propagation delay increases and the speed becomes slower than that of a Si bipolar transistor. There is a need to. In addition, the FE of the basic cell
If a high-driving-ability cell with increased wiring driving ability by increasing the gate width of T is used as the basic cell of the gate array, the driving ability will improve, as shown by the dashed line in FIG. Cell size increases and power consumption also increases. From the above points, it can be seen that switching the driving capacity of the cell according to the length of the wiring is an effective means. For example, as shown in Figure 3, if the cell drive capacity is switched only at point A and three points, which have relatively long wiring lengths, it is possible to avoid an increase in the overall cell size and power consumption. .

具体的には第1図に示すように、高駆動能力セル6を通
常の低消費電力の基本セル1の配列の中に格子状に配置
し、格子の間隔は、第3図に示すように、S1バイポー
ラトランジスタ等の従来デバイスと比較してGaAsM
ESFETの配線遅延があまり変わらなくなるような長
さに設定する。
Specifically, as shown in FIG. 1, the high driving capacity cells 6 are arranged in a lattice pattern within the array of ordinary low power consumption basic cells 1, and the intervals between the lattices are as shown in FIG. 3. , GaAsM compared to conventional devices such as S1 bipolar transistors.
Set the length so that the ESFET wiring delay does not change much.

第2図は本発明の第二実施例を示すパターンレイアウト
図である。
FIG. 2 is a pattern layout diagram showing a second embodiment of the present invention.

本第二実施例は、高駆動能力セル6を縞状に配置したも
のである。縞状の間隔は、第一実施例で説明したように
配線伝搬遅延が大きくなる点に設定する。この場合でも
第一実施例とほぼ同様の効果が期待でき、さらにチップ
サイズをやや小さくできる利点がある。
In the second embodiment, high driving capacity cells 6 are arranged in a striped pattern. The striped spacing is set at a point where the wiring propagation delay becomes large, as explained in the first embodiment. Even in this case, substantially the same effects as in the first embodiment can be expected, and there is also the advantage that the chip size can be made slightly smaller.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、基本セルの配列の中に
配線駆動能力を高めた高駆動能力セルを例えば、格子状
または縞状に配置し、配線長に応じて接続を変えること
で、全体としてのセルザイズおよび消費電力の増大を押
さえて、高速で大規模なゲートアレイ型半導体集積回路
を得ることができる効果がある。
As explained above, the present invention arranges high driving capacity cells with increased wiring driving capacity in an array of basic cells, for example, in a grid pattern or striped pattern, and changes the connection according to the wiring length. This has the effect of suppressing increases in overall cell size and power consumption, and making it possible to obtain a high-speed, large-scale gate array type semiconductor integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例を示すパターンレイアウト
図。 第2図は本発明の第二実施例を示すパターンレイアウト
図。 第3図はS1バイポーラトランジスタとGaAsMεS
F[ETの配線長対伝搬遅延特性図。 第4図は従来例を示すパターンレイアウト図。 ■・・基本セル、2・・・人出カバソファ、3・・・配
線チャネル、4・・・ボンディングパント、5・・機能
ブロック、6・・・高駆動能力セル。
FIG. 1 is a pattern layout diagram showing a first embodiment of the present invention. FIG. 2 is a pattern layout diagram showing a second embodiment of the present invention. Figure 3 shows the S1 bipolar transistor and GaAsMεS
F[ET wiring length versus propagation delay characteristic diagram. FIG. 4 is a pattern layout diagram showing a conventional example. ■...Basic cell, 2...Cover sofa, 3...Wiring channel, 4...Bonding punt, 5...Functional block, 6...High drive capacity cell.

Claims (1)

【特許請求の範囲】 1、アレイ状に配列された複数の基本セルを備えたゲー
トアレイ型半導体集積回路において、前記基本セルは、
定められた形式により所定の位置に配列された、セルを
構成するトランジスタの駆動能力を高くした複数の高駆
動能力セルを含む ことを特徴とするゲートアレイ型半導体集積回路。
[Claims] 1. In a gate array type semiconductor integrated circuit comprising a plurality of basic cells arranged in an array, the basic cells include:
1. A gate array type semiconductor integrated circuit comprising a plurality of high drivability cells arranged in a predetermined position in a predetermined format in which the drivability of transistors constituting the cells is increased.
JP10626989A 1989-04-26 1989-04-26 Gate-array type semiconductor integrated circuit Pending JPH02284468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10626989A JPH02284468A (en) 1989-04-26 1989-04-26 Gate-array type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10626989A JPH02284468A (en) 1989-04-26 1989-04-26 Gate-array type semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH02284468A true JPH02284468A (en) 1990-11-21

Family

ID=14429366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10626989A Pending JPH02284468A (en) 1989-04-26 1989-04-26 Gate-array type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH02284468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022924A1 (en) * 1991-06-18 1992-12-23 Siarc Basic cell architecture for mask programmable gate array
US5341041A (en) * 1990-05-15 1994-08-23 Siarc Basic cell for BiCMOS gate array
US6369412B1 (en) 1998-01-29 2002-04-09 Sanyo Electric Co., Ltd. Semiconductor integrated device comprising a plurality of basic cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289021A (en) * 1990-05-15 1994-02-22 Siarc Basic cell architecture for mask programmable gate array with 3 or more size transistors
US5341041A (en) * 1990-05-15 1994-08-23 Siarc Basic cell for BiCMOS gate array
WO1992022924A1 (en) * 1991-06-18 1992-12-23 Siarc Basic cell architecture for mask programmable gate array
US6369412B1 (en) 1998-01-29 2002-04-09 Sanyo Electric Co., Ltd. Semiconductor integrated device comprising a plurality of basic cells

Similar Documents

Publication Publication Date Title
US4733288A (en) Gate-array chip
US4727493A (en) Integrated circuit architecture and fabrication method therefor
US4884118A (en) Double metal HCMOS compacted array
JPH03165061A (en) Semiconductor integrated circuit device
US5635737A (en) Symmetrical multi-layer metal logic array with extension portions for increased gate density and a testability area
JPS63304641A (en) Master slice integrated circuit
JPH02284468A (en) Gate-array type semiconductor integrated circuit
EP0046197B1 (en) Fet convolved logic
JPH03120743A (en) Semiconductor device
JPH01211945A (en) Semiconductor device
JPS5836501B2 (en) Semiconductor integrated circuit device
JPS6059818A (en) Semiconductor integrated circuit device
US6917074B1 (en) Multiplexer structure with interdigitated gates and shared diffusion
JPH03155669A (en) Gate array device
JPH0296371A (en) Semiconductor device
JPS63306641A (en) Semiconductor integrated circuit
JPS63265446A (en) Gate array integrated circuit
JPH06334042A (en) Semiconductor integrated circuit
JPH05343649A (en) Semiconductor device
JPH04246858A (en) Gate array semiconductor integrated circuit device
JPS63194348A (en) Gate array
JPH01244642A (en) Semiconductor integrated circuit device
JPH05343650A (en) Semiconductor device
JP2776513B2 (en) Semiconductor integrated circuit
JPH02290042A (en) Semiconductor integrated circuit