JPH02282417A - Production of 40kg/mm2 high toughness steel excellent in ssc resistance - Google Patents

Production of 40kg/mm2 high toughness steel excellent in ssc resistance

Info

Publication number
JPH02282417A
JPH02282417A JP10144889A JP10144889A JPH02282417A JP H02282417 A JPH02282417 A JP H02282417A JP 10144889 A JP10144889 A JP 10144889A JP 10144889 A JP10144889 A JP 10144889A JP H02282417 A JPH02282417 A JP H02282417A
Authority
JP
Japan
Prior art keywords
steel
ssc resistance
toughness
less
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10144889A
Other languages
Japanese (ja)
Inventor
Akira Yagi
明 八木
Hitoshi Asahi
均 朝日
Masakatsu Ueno
正勝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10144889A priority Critical patent/JPH02282417A/en
Publication of JPH02282417A publication Critical patent/JPH02282417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the high-toughness steel with the SSC resistance improved even if a nonmetallic inclusion is present and having high joint strength by controlling the steel composition, working condition after hot rolling, heat- treating condition, etc. CONSTITUTION:A billet contg., by weight, 0.05-0.35% C, 0.01-0.5% Si, 0.15-1.5% Mn, <=0.01% S, <=0.02% P, 0.005-0.1% Al 0.0020-0.0250% N and the balance Fe is hot-rolled. The hot-rolled steel is normalized, as required, and then worked below the Ac1 point at 0.5-10.0% draft, or the steel is further aged at 100-400 deg.C. Consequently, microscopic plastic deformation is controlled by the strengthening of the ferrite structure even if the nonmetallic inclusion, deposit, pearlite, etc., are present, the SSC resistance is improved, and a 40kg/mm<2> high-toughness steel is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐SSC性に優れた鋼板、鋼管、形鋼等高靭
性40キロ級鋼材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing high-toughness 40 kg class steel materials such as steel plates, steel pipes, and shaped steels having excellent SSC resistance.

(従来の技術) 耐硫化物応力割れ性(以下、耐SSC性と記す)を有す
る鋼材は、例えば「鉄とM ’80−3503 Jでは
SSC発生要因となるMnS 、 fiJz(h等非金
属系介在物の低減化、「日本鋼管技報No、87 (1
9B?) JではQT処理による組織の均質化により製
造されることが報告されている。しかしながら、強度4
0kgf/−以下のQT処理鋼は比較的低C当量となる
ため継手溶接熱影響部の軟化が太き(なり構造物の使用
設計上問題となることがある。一方、SSCの発生は本
発明者らの推測によると、応力下でのフェライトと非金
属系介在物との界面の水素脆化現象により起ると考えら
れる。つまり、鋼の腐食反応により生成した水素が鋼中
に侵入し、非金属系介在物との界面で水素分子を形成し
その圧力でマトリックスに応力集中域が発生する。その
ような領域は、水素濃度が高くなりマトリックスは脆化
する。この場合、外心力の存在下でフェライトの強度が
パーライトに比べ極端に低いとフェライトのミクロな塑
性変形が大きくなり水素脆化はより加速されるものと判
断している。
(Prior art) Steel materials with sulfide stress cracking resistance (hereinafter referred to as SSC resistance) are made of nonmetallic materials such as MnS, fiJz (h, etc.), which cause SSC in iron and M'80-3503 Reduction of inclusions, “Japan Steel Pipe Technical Report No. 87 (1)
9B? ) J is reported to be manufactured by homogenizing the structure by QT treatment. However, strength 4
Since QT-treated steel below 0 kgf/- has a relatively low C equivalent, the heat-affected zone of the joint weld tends to soften (which may cause problems in the design of structures.On the other hand, the occurrence of SSC can be prevented by the present invention). According to their speculations, this is thought to be caused by hydrogen embrittlement at the interface between ferrite and non-metallic inclusions under stress.In other words, hydrogen generated by the corrosion reaction of the steel penetrates into the steel. Hydrogen molecules are formed at the interface with nonmetallic inclusions, and the resulting pressure generates a stress concentration region in the matrix. In such a region, the hydrogen concentration increases and the matrix becomes brittle. In this case, the presence of eccentric force It is determined below that if the strength of ferrite is extremely lower than that of pearlite, the microscopic plastic deformation of ferrite will increase and hydrogen embrittlement will be accelerated.

しかるに、硫化物腐食環境に使用される40キロ級鋼材
には耐SSC性が優れた高靭性鋼が要求されるが、その
製造法においては非金属系介在物の低減化を図らねばな
らない厄介な問題が鋼の製造作業にあった。
However, high toughness steel with excellent SSC resistance is required for 40kg steel materials used in sulfide corrosive environments, but the manufacturing method requires the reduction of non-metallic inclusions, which are troublesome. The problem was in the steel manufacturing operation.

(発明が解決しようとする課題) 本発明の目的は、耐SSC性高靭性鋼材を製造する上で
の前記の如き問題点を考慮することなしに、耐SSC性
が優れた40キロ級の高靭性鋼材を合目的的に製造し得
る方法を提供するにある。
(Problems to be Solved by the Invention) The object of the present invention is to produce a 40 kg class steel material with excellent SSC resistance, without taking into account the above-mentioned problems in producing SSC-resistant high-toughness steel materials. The object of the present invention is to provide a method for purposefully manufacturing tough steel materials.

(課題を解決するための手段) 本発明は、耐SSC性の優れた高靭性40キロ級鋼材を
製造することを目的に多くの実験を行ない検討した結果
、鋼の成分、熱間圧延後あるいは焼準し後の加工条件、
熱処理条件などを制御することによって、非金属系介在
物、析出物あるいはパーライト等が存在する場合におい
ても、フェライト組織の強化により前記のようなミクロ
な塑性変形が制御されて耐SSC性が著しく向上し、高
い継手強度を有する高靭性の鋼材が製造されることを知
見した。
(Means for Solving the Problems) As a result of many experiments and studies aimed at producing high-toughness 40 kg-class steel materials with excellent SSC resistance, the present invention has been developed based on the results of many experiments and studies on the composition of steel, after hot rolling, or after hot rolling. Processing conditions after normalizing,
By controlling the heat treatment conditions, etc., even in the presence of nonmetallic inclusions, precipitates, pearlite, etc., the above-mentioned microscopic plastic deformation is controlled by strengthening the ferrite structure, and SSC resistance is significantly improved. It was discovered that a high-toughness steel material with high joint strength can be produced.

本発明は、この知見に基づいて構成したもので、その要
旨は、C: 0.05〜0.35%、 Si : 0.
01〜0.5%、 Mn : 0.15〜1.5%、s
:0.01%以下、P:0.02%以下、 A7: 0
.005〜0.1%、 N : 0.0020〜0.0
250%を含有し、あるいはさらにNb : 0.00
5〜0.1%、 Mo : 0.05〜0.4%、 C
r : 0.1〜1.5%。
The present invention was constructed based on this knowledge, and the gist thereof is: C: 0.05 to 0.35%, Si: 0.
01-0.5%, Mn: 0.15-1.5%, s
: 0.01% or less, P: 0.02% or less, A7: 0
.. 005~0.1%, N: 0.0020~0.0
250% or further Nb: 0.00
5-0.1%, Mo: 0.05-0.4%, C
r: 0.1-1.5%.

Ni:0.1〜2.0%、V:0.01〜0.1%、 
Ti : 0.01〜0.1%、 B : 0.000
3〜0.003%、REM(希土類元素)  70.0
01〜0.05%、 Ca : 0.001〜0.02
%。
Ni: 0.1-2.0%, V: 0.01-0.1%,
Ti: 0.01-0.1%, B: 0.000
3-0.003%, REM (rare earth element) 70.0
01-0.05%, Ca: 0.001-0.02
%.

Cu:0.1〜0.5%の1種または2種以上を含有し
残部が実質的にFeからなる鋼片を熱間圧延後或いはさ
らに焼串処理後、圧下率0.5〜10.0%の加工を綱
のAc1点以下の温度で実施するか、あるいはさらに1
00〜400℃の温度で時効処理を行うことを特徴とす
る耐SSC性の優れた高靭性40キロ級鋼材の製造法で
ある。
After hot rolling a steel piece containing one or more of Cu: 0.1 to 0.5% and the remainder substantially consisting of Fe, or after further skewering treatment, a reduction rate of 0.5 to 10.0 % processing is carried out at a temperature below the Ac1 point of the steel, or further
This is a method for producing high-toughness 40 kg class steel with excellent SSC resistance, which is characterized by performing aging treatment at a temperature of 00 to 400°C.

(作用) 以下、本発明の製造法について詳細に説明する。(effect) Hereinafter, the manufacturing method of the present invention will be explained in detail.

本発明において上記の様な鋼成分に限定した理由につい
て先ず説明する。
The reason why the present invention is limited to the above-mentioned steel components will be explained first.

Cは鋼の強化に必要な成分で少ないと溶接継手強度の低
下をきたし多過ぎると加工による硬化が大きくなり靭性
が著しく低下する。また溶接性にも悪影響をおよぼすた
め0.05〜0.35%とした。
C is a component necessary for strengthening steel, and if it is too little, the strength of the welded joint will be reduced, and if it is too much, hardening due to working will increase and the toughness will drop significantly. Further, since it has an adverse effect on weldability, it is set at 0.05 to 0.35%.

S4は、固溶効果により強度の増大を図るため必要な成
分である。しかし少な過ぎると効果がなく多過ぎると靭
性劣化をきたし、溶接性にも悪影響をおよぼすため効果
と他への影響を考慮して0.01〜0.5%とした。
S4 is a necessary component for increasing the strength due to the solid solution effect. However, if it is too small, it will not be effective, and if it is too large, it will cause deterioration of toughness and have a negative effect on weldability.

Mnは、結晶粒を微細化し靭性を向上させる有効な成分
であるが、少な過ぎるとその効果はなく、多過ぎると低
温変態生成物をつくり靭性の劣化をきたす。したがって
Mnの含有量は0,15〜1.5%とした。
Mn is an effective component that refines crystal grains and improves toughness, but if it is too small, it has no effect, and if it is too large, it creates low-temperature transformation products and deteriorates toughness. Therefore, the Mn content was set to 0.15 to 1.5%.

Pは、パーライトに偏析してSSC発生を促進させ耐S
SC性を著しく劣化させる有害な成分であるためその含
有量を0.02%以下とした。
P segregates into pearlite to promote SSC generation and improve S resistance.
Since it is a harmful component that significantly deteriorates SC properties, its content was set to 0.02% or less.

Sは、延伸した硫化物を生成してSSCの発生を促進さ
せ耐SSC性を著しく劣化させるのでその上限を0.0
1%以下とした。
S produces stretched sulfides, promotes the generation of SSC, and significantly deteriorates SSC resistance, so the upper limit should be set at 0.0.
It was set to 1% or less.

M含有量の増加は、クラスター状のAL(hを生成して
耐SSC性を著しく劣化させるためその含有量はo、o
os〜0.1%とした。
An increase in the M content produces cluster-like AL (h), which significantly deteriorates SSC resistance, so its content is reduced to o, o.
os~0.1%.

Nは、加工によって生じた転位に拡散、固着し、フェラ
イトの強化を図る重要な元素である。少ないとその効果
がなく多過ぎてもその効果は飽和するため0.0020
〜0.0250%とした。
N is an important element that diffuses and adheres to dislocations generated by processing and strengthens the ferrite. 0.0020 because if it is too small, the effect will not be effective, and if it is too large, the effect will be saturated.
~0.0250%.

上記のような成分組成で構成された鋼は、本発明に従い
、耐SSC性に優れ、かつ高い継手強度を有する高靭性
の鋼材を製造するための出発材となる。
According to the present invention, the steel having the above-mentioned composition becomes a starting material for manufacturing a high-toughness steel material having excellent SSC resistance and high joint strength.

前記出発材は、前記の成分の他にCu、REM。In addition to the above-mentioned components, the starting materials include Cu and REM.

Caなどの耐SSC改善成分やNb、 Mo、 Cr、
 Ni、 V。
SSC resistance improving components such as Ca, Nb, Mo, Cr,
Ni, V.

Ti、 Bなどの強化成分の少量を選択的に含有し得る
Small amounts of reinforcing components such as Ti, B, etc. may optionally be included.

Cuは、鋼中への水素侵入抑制効果があり、耐SSC性
の向上に有効に働くが少ないと効果がなく、多過ぎると
その効果は飽和し、また溶接性にも悪影響をおよばす。
Cu has the effect of suppressing hydrogen penetration into steel and works effectively to improve SSC resistance, but if it is too little, it is ineffective, and if it is too much, the effect is saturated and it also has a negative effect on weldability.

したがってCuの含有量は0、1〜0.5%とした。Therefore, the Cu content was set to 0.1 to 0.5%.

REM、Caは硫化物の延伸防止およびクラスター状の
Alz Oxの生成を防止し耐SSC性に有効な成分で
あるが、少ないとその効果がなく多過ぎると鋼の清浄度
を低下させ耐SSC性を低下させる。
REM and Ca are effective components for SSC resistance by preventing the stretching of sulfides and the formation of clustered AlzOx, but if there is too little, there is no effect, and if there is too much, the cleanliness of the steel decreases and the SSC resistance is reduced. decrease.

したがってそれぞれの成分の含有量を0.001〜0.
05%、  0.001〜0.02%とした。
Therefore, the content of each component is 0.001 to 0.
05% and 0.001 to 0.02%.

Tiは、窒化物を生成し結晶粒を微細化し靭性を向上さ
せる成分である。しかし含有量が0.01%未満ではそ
の効果はなく、また0、1%を超える過剰な含有量では
巨大な窒化物を生成して耐SSC性を劣化させる。した
がってTi成分の含有量を0.O1〜0.1%とした。
Ti is a component that generates nitrides, refines crystal grains, and improves toughness. However, if the content is less than 0.01%, there is no effect, and if the content exceeds 0.1%, giant nitrides are formed and the SSC resistance is deteriorated. Therefore, the content of Ti component should be reduced to 0. O was set at 1% to 0.1%.

Bは、自然冷却中のフェライト変態抑制効果があり強度
上昇に有効な成分であるが、少ないとその効果がなく多
過ぎてもその効果は飽和するため0.0003〜0.0
03%とした。
B is a component that has the effect of suppressing ferrite transformation during natural cooling and is effective in increasing strength, but if it is too small, it will not have this effect, and if it is too large, the effect will be saturated, so 0.0003 to 0.0
03%.

Niは、結晶粒の微細化により靭性の向上に有効に働ら
くが、少ないとその効果はなく多過ぎてもその効果は飽
和し、また高価であるため0.1〜2.0%とした。
Ni works effectively to improve toughness by refining the crystal grains, but if it is too little, it has no effect, and if it is too much, the effect is saturated, and it is expensive, so it was set at 0.1 to 2.0%. .

Nbは鋼中に炭窒化物として析出しオーステナイト結晶
粒の粗大化を阻止しα変態後のフェライト結晶粒の微細
化による靭性の向上に有効に作用する。しかし、少な過
ぎると効果がなく多過ぎてもその効果は飽和するため0
.005〜0.1%とした。
Nb precipitates in the steel as carbonitrides, prevents austenite crystal grains from becoming coarser, and effectively acts to improve toughness by refining ferrite crystal grains after α transformation. However, too little will have no effect, and too much will saturate the effect, so 0
.. 0.005 to 0.1%.

■は、VCとしてフェライト中に微細析出してフェライ
トの強化により耐SSC性を向上させる。
(2) finely precipitates in the ferrite as VC and strengthens the ferrite to improve SSC resistance.

少な過ぎるとその効果がなく多過ぎてもその効果が飽和
するため0.01〜0.1%とした。
If it is too small, the effect will not be achieved, and if it is too large, the effect will be saturated, so it was set at 0.01 to 0.1%.

Cr、 Moは強度の増大を目的とするが、少ないと効
果がなく多過ぎると溶接性、靭性の劣化をきたすためそ
れぞれ0.1〜1.5%、 0.05〜0.4%とした
The purpose of Cr and Mo is to increase strength, but too little will have no effect, and too much will cause deterioration of weldability and toughness, so they were set at 0.1 to 1.5% and 0.05 to 0.4%, respectively. .

次に本発明の製造法について説明する。Next, the manufacturing method of the present invention will be explained.

上記のような成分組成の鋼は転炉、電気炉等の溶解炉で
溶製され、連続鋳造法または造塊、分塊法で鋼片とされ
、直ちにあるいは一旦冷却された後再加熱されて、鋼板
、鋼管、形鋼なと必要な形状に熱間圧延され、あるいは
さらに規準処理される。このようにして製造された鋼は
、高い継手強度、高靭性は達成できるが耐SSC性は低
く UZSガス等を含んだような厳しい腐食環境での使
用に問題があった。したがって、本発明はこの問題を解
決するために熱間圧延後或いはさらに規準処理後、圧下
率0.5〜10.0%の加工を綱のAcn点以下の温度
で実施するか、あるいはさらに100〜400℃で時効
処理を行う。
Steel with the above composition is melted in a melting furnace such as a converter or electric furnace, made into steel slabs by continuous casting, ingot making, or blooming, and then reheated immediately or after being cooled once. , steel plates, steel pipes, and sections are hot-rolled into the required shape or further subjected to standard processing. Steel manufactured in this manner can achieve high joint strength and high toughness, but has low SSC resistance, and has problems in use in severe corrosive environments containing UZS gas and the like. Therefore, in order to solve this problem, the present invention proposes to carry out processing at a reduction rate of 0.5 to 10.0% at a temperature below the Acn point of the steel after hot rolling or further standard treatment, or to further perform processing at a temperature below the Acn point of the steel. Aging treatment is performed at ~400°C.

本発明における冷間加工率は第1図に示す如く0.5%
以上の加工率で既に耐SSC性の向上要因と考えられて
いるフェライト硬さの向上効果があられれるが、10.
0%を超える加工率では靭性の低下が著しくなるため、
その範囲を0.5〜10.0%とした。上記加工率の加
工方法は、特に限定する必要はなく引張り、ねじり、ロ
ールによる圧延、拡管などの何れを用いてもよい。これ
らの処理は圧延ままあるいは焼準し処理ままの鋼材の耐
SSC性の著しい低下を防止するために行うものである
The cold working rate in the present invention is 0.5% as shown in Figure 1.
The above processing rate can already have the effect of improving ferrite hardness, which is considered to be a factor in improving SSC resistance.
If the processing rate exceeds 0%, the decrease in toughness will be significant.
The range was set to 0.5 to 10.0%. The processing method with the above-mentioned processing rate does not need to be particularly limited, and any of tension, twisting, rolling with rolls, tube expansion, etc. may be used. These treatments are performed to prevent a significant decrease in the SSC resistance of the as-rolled or as-normalized steel material.

すなわち、フェライトの強度が耐SSC性に直接影響す
ることから、フェライト塑性変形開始応力を上昇させる
ことが必要である。加工温度は、高すぎると加工硬化量
が小さくなるため鋼のAc1点以下とした。時効処理は
、加工により生じた転位へのC,N等を拡散、固着させ
フェライト組織の強化を図るために行うもので、低いと
その効果が小さく高すぎると転位の回復現象により効果
が低下する。よってその温度は100〜400℃とした
That is, since the strength of ferrite directly affects SSC resistance, it is necessary to increase the stress at which ferrite plastic deformation starts. The working temperature was set to 1 point or less of the Ac of the steel because if it was too high, the amount of work hardening would be small. Aging treatment is performed to strengthen the ferrite structure by diffusing and fixing C, N, etc. to dislocations generated by processing. If the aging treatment is too low, the effect will be low; if the aging treatment is too high, the effect will decrease due to dislocation recovery phenomenon. . Therefore, the temperature was set at 100 to 400°C.

保定時間は特に限定しないが、100分以上行ってもそ
の効果は飽和する。
The retention time is not particularly limited, but the effect will be saturated even if the retention time is 100 minutes or more.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

第1表は、転炉で溶製し連続鋳造法を経て製造された鋼
片を板圧延および継目無し鋼管に熱間圧延した鋼あるい
は熱間圧延後規準処理を行った鋼で、いずれも自然冷却
後0.5〜10.0%の加工を施し、100〜400℃
で時効処理を行ったときの強度、継手強度、靭性、フェ
ライト硬さを示す。規準温度は880〜980℃で行っ
た。尚、耐SSC性はNACE  TMOI−77に従
った定荷重方式によりa th(Threshold 
5tress)を求めて評価した。
Table 1 shows steels produced by melting in a converter and hot-rolling steel slabs into seamless steel pipes through the continuous casting method, or steels subjected to standard treatment after hot rolling, both of which are natural. After cooling, process 0.5-10.0% and heat to 100-400℃.
Shows the strength, joint strength, toughness, and ferrite hardness after aging treatment. The standard temperature was 880 to 980°C. In addition, SSC resistance was determined using a constant load method according to NACE TMOI-77.
5tress) was calculated and evaluated.

継手強度は入熱10〜30kJ/cmで突き合せ溶接し
た継手部の引張試験により求めた。
The joint strength was determined by a tensile test of a joint portion butt welded at a heat input of 10 to 30 kJ/cm.

本発明によって製造した40キロ級鋼は、比較法に比し
耐SSC性はσいて0.2σ、程向上し、しかも高い継
手強度を示すことがわかる。一方、靭性値においては、
従来法に比し若干低下するが実用上はとんど問題となら
ない程度であり、耐サワー性等他の緒特性を考慮すると
有用な製造法と言える。
It can be seen that the 40 kg class steel manufactured by the present invention has SSC resistance improved by 0.2σ compared to the comparative method, and also exhibits high joint strength. On the other hand, in terms of toughness value,
Although it is slightly lower than the conventional method, it is hardly a problem in practice, and considering other properties such as sour resistance, it can be said to be a useful manufacturing method.

(発明の効果) 本発明によれば、耐SSC性に優れ、かつ高い継手強度
及び高靭性を有する鋼材を提供することができる。
(Effects of the Invention) According to the present invention, a steel material having excellent SSC resistance, high joint strength, and high toughness can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋼材のフェライト硬さと靭性に及ぼす加工率
の影響を示す図である。 第1図 加工率 (%)
FIG. 1 is a diagram showing the influence of processing rate on the ferrite hardness and toughness of steel materials. Figure 1 Processing rate (%)

Claims (7)

【特許請求の範囲】[Claims] (1)C:0.05〜0.35%、Si:0.01〜0
.5%、Mn:0.15〜1.5%、S:0.01%以
下、P:0.02%以下、Al:0.005〜0.1%
、N:0.0020〜0.0250%を含有し、残部が
実質的にFeからなる鋼片を、熱間圧延後、圧下率0.
5〜10.0%の加工を鋼のAc_1点以下の温度で行
うことを特徴とする耐SSC性の優れた高靭性40キロ
級鋼材の製造法。
(1) C: 0.05-0.35%, Si: 0.01-0
.. 5%, Mn: 0.15-1.5%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%
, N: 0.0020 to 0.0250%, and the remainder substantially consists of Fe, after hot rolling, a rolling reduction ratio of 0.
A method for producing a high-toughness 40kg steel material with excellent SSC resistance, characterized in that processing of 5 to 10.0% is carried out at a temperature below the Ac_1 point of the steel.
(2)C:0.05〜0.35%、Si:0.01〜0
.5%、Mn:0.15〜1.5%、S:0.01%以
下、P:0.02%以下、Al:0.005〜0.1%
、N:0.0020〜0.0250%を含有し、さらに
Nb:0.005〜0.1%、Mo:0.05〜0.4
%、Cr:0.1〜1.5%、Ni:0.1〜2.0%
。 V:0.01〜0.1%、Ti:0.01〜0.1%、
B:0.0003〜0.003%の1種または2種以上
を含有し、残部が実質的にFeからなる鋼片を熱間圧延
後、圧下率0.5〜10.0%の加工を鋼のAc_1点
以下の温度で行うことを特徴とする耐SSC性の優れた
高靭性40キロ級鋼材の製造法。
(2) C: 0.05-0.35%, Si: 0.01-0
.. 5%, Mn: 0.15-1.5%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%
, N: 0.0020-0.0250%, further Nb: 0.005-0.1%, Mo: 0.05-0.4
%, Cr: 0.1-1.5%, Ni: 0.1-2.0%
. V: 0.01-0.1%, Ti: 0.01-0.1%,
B: After hot rolling a steel piece containing one or more of 0.0003 to 0.003% and the remainder substantially consisting of Fe, processing is performed at a reduction rate of 0.5 to 10.0%. A method for manufacturing a high toughness 40 kg class steel material with excellent SSC resistance, characterized in that the manufacturing method is carried out at a temperature below the Ac_1 point of steel.
(3)C:0.05〜0.35%、Si:0.01〜0
.5%、Mn:0.15〜1.5%、S:0.01%以
下、P:0.02%以下、N:0.005〜0.1%、
N:0.0020〜0.0250%を含有し、さらに、
REM:0.001〜0.05%、Ca:0.001〜
0.02%、Cu:0.1〜0.5%の1種または2種
以上を含有し、残部が実質的にFeからなる鋼片を熱間
圧延後、圧下率0.5〜10.0%の加工を鋼のAc_
1点以下の温度で行うことを特徴とする耐SSC性の優
れた高靭性40キロ級鋼材の製造法。
(3) C: 0.05-0.35%, Si: 0.01-0
.. 5%, Mn: 0.15-1.5%, S: 0.01% or less, P: 0.02% or less, N: 0.005-0.1%,
Contains N: 0.0020 to 0.0250%, and
REM: 0.001~0.05%, Ca: 0.001~
After hot rolling a steel piece containing Cu: 0.02%, Cu: 0.1 to 0.5%, and the remainder substantially consisting of Fe, a reduction rate of 0.5 to 10. 0% machining of steel Ac_
A method for producing high-toughness 40 kg class steel with excellent SSC resistance, characterized in that the process is carried out at a temperature of 1 point or less.
(4)C:0.05〜0.35%、Si:0.01〜0
.5%、Mn:0.15〜1.5%、S:0.01%以
下、P:0.02%以下、N:0.005〜0.1%、
N:0.0020〜0.0250%とNb:0.005
〜0.1%、Mo:0.05〜0.4%、Cr:0.1
〜1.5%、Ni:0.1〜2.0%、V:0.01〜
0.1%、Ti:0.01〜0.1%、B:0.000
3〜0.003%の1種または2種以上を含有し、さら
に、REM:0.001〜0.05%、Ca:0.00
1〜0.02%、Cu:0.1〜0.5%の1種または
2種以上を含有し残部が実質的にFeからなる鋼片を熱
間圧延後、圧下率0.5〜10.0%の加工を鋼のAc
_1点以下の温度で行うことを特徴とする耐SSC性の
優れた高靭性40キロ級鋼材の製造法。
(4) C: 0.05-0.35%, Si: 0.01-0
.. 5%, Mn: 0.15-1.5%, S: 0.01% or less, P: 0.02% or less, N: 0.005-0.1%,
N: 0.0020-0.0250% and Nb: 0.005
~0.1%, Mo: 0.05~0.4%, Cr: 0.1
~1.5%, Ni: 0.1~2.0%, V: 0.01~
0.1%, Ti: 0.01-0.1%, B: 0.000
Contains one or more of 3 to 0.003%, furthermore, REM: 0.001 to 0.05%, Ca: 0.00
After hot rolling a steel piece containing one or more of Cu: 1 to 0.02% and Cu: 0.1 to 0.5%, with the remainder substantially consisting of Fe, a rolling reduction of 0.5 to 10 .0% machining of steel Ac
A method for producing high-toughness 40 kg class steel with excellent SSC resistance, characterized by carrying out the process at a temperature of _1 point or less.
(5)請求項1〜4記載の鋼片を熱間圧延後、焼準処理
し、次いで圧下率0.5〜10.0%の加工を鋼のAc
_1点以下の温度で行うことを特徴とする耐SSC性の
優れた高靭性40キロ級鋼材の製造法。
(5) After hot rolling the steel billet according to claims 1 to 4, normalization treatment is performed, and then processing is performed at a reduction rate of 0.5 to 10.0% to obtain the Ac
A method for producing high-toughness 40 kg class steel with excellent SSC resistance, characterized by carrying out the process at a temperature of _1 point or less.
(6)請求項1〜4記載の鋼片を熱間圧延後、圧下率0
.5〜10.0%の加工を鋼のAc_1点以下の温度で
行い、次いで100〜400℃の温度で時効処理を施す
ことを特徴とする耐SSC性の優れた高靭性40キロ級
鋼材の製造法。
(6) After hot rolling the steel billet according to claims 1 to 4, the reduction rate is 0.
.. Production of high-toughness 40 kg-class steel material with excellent SSC resistance, characterized by performing 5 to 10.0% processing at a temperature below the Ac_1 point of the steel, and then subjecting it to aging treatment at a temperature of 100 to 400°C. Law.
(7)請求項1〜4記載の鋼片を熱間圧延後、焼準処理
し、次いで圧下率0.5〜10.0%の加工を鋼のAc
_1点以下の温度で行い、次いで100〜400℃の温
度で時効処理を施すことを特徴とする耐SSC性の優れ
た高靭性40キロ級鋼材の製造法。
(7) After hot rolling the steel billet according to claims 1 to 4, normalization treatment is performed, and then processing is performed at a reduction rate of 0.5 to 10.0% to obtain the Ac
A method for producing a high-toughness 40 kg class steel material with excellent SSC resistance, characterized by carrying out aging treatment at a temperature of _1 point or less, and then aging treatment at a temperature of 100 to 400°C.
JP10144889A 1989-04-20 1989-04-20 Production of 40kg/mm2 high toughness steel excellent in ssc resistance Pending JPH02282417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10144889A JPH02282417A (en) 1989-04-20 1989-04-20 Production of 40kg/mm2 high toughness steel excellent in ssc resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10144889A JPH02282417A (en) 1989-04-20 1989-04-20 Production of 40kg/mm2 high toughness steel excellent in ssc resistance

Publications (1)

Publication Number Publication Date
JPH02282417A true JPH02282417A (en) 1990-11-20

Family

ID=14300974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10144889A Pending JPH02282417A (en) 1989-04-20 1989-04-20 Production of 40kg/mm2 high toughness steel excellent in ssc resistance

Country Status (1)

Country Link
JP (1) JPH02282417A (en)

Similar Documents

Publication Publication Date Title
EP2484792B1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
CA2775031C (en) Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP2003253331A (en) Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP2023045253A (en) Steel plate and method for producing the same
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP4461589B2 (en) Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity
JPH01234521A (en) Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JPH02282417A (en) Production of 40kg/mm2 high toughness steel excellent in ssc resistance
JPS62202052A (en) Steel material for chain having high strength and high fracture toughness
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
KR910003883B1 (en) Making process for high tension steel
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPS63250416A (en) Manufacture of steel material excellent in stress corrosion cracking resistance and having low yield ratio in sulfide-rich circumstances
JP2003321729A (en) High strength steel sheet having excellent weld heat affected zone toughness and production method thereof
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH0681032A (en) Heat treated ht590 steel excellent in uniform elongation and its production
JPS6021326A (en) Production of tempered high tensile steel having exellent toughness
JP2004003013A (en) High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor