JPH02281721A - Manufacture of magnet - Google Patents

Manufacture of magnet

Info

Publication number
JPH02281721A
JPH02281721A JP10378589A JP10378589A JPH02281721A JP H02281721 A JPH02281721 A JP H02281721A JP 10378589 A JP10378589 A JP 10378589A JP 10378589 A JP10378589 A JP 10378589A JP H02281721 A JPH02281721 A JP H02281721A
Authority
JP
Japan
Prior art keywords
magnetic part
magnet
magnetic
powder
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10378589A
Other languages
Japanese (ja)
Other versions
JPH0628215B2 (en
Inventor
Masakuni Kamiya
神谷 昌邦
Kazuo Matsui
一雄 松井
Hirofumi Nakano
廣文 中野
Yoshio Matsuo
良夫 松尾
Yoshiteru Nakagawa
吉輝 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1103785A priority Critical patent/JPH0628215B2/en
Publication of JPH02281721A publication Critical patent/JPH02281721A/en
Publication of JPH0628215B2 publication Critical patent/JPH0628215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide a thick cylindrical magnet by pressurizing magnet powder in a magnetic part and transferring the same to a non-magnetic part, and further supplying magnet powder to the magnetic part anew for pressurization and transferring a resulting thicker molding to the non-magnetic part, and furthermore repeating said operation several times. CONSTITUTION:A die is formed of an upper layer magnetic part 13 and a lower layer non-magnetic part 14. Magnet powder 15 is supplied to a space surrounded by the upper magnetic part 13 of the dice and pressurized, and a resulting thicker molding is transferred to the space in the direction of the non-magnetic part 14. The operation is repeated arbitrary times to form a thicker cylindrical magnet. Hereby, a thick cylindrical magnet can be yielded with ease without any bonding and any processing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な磁石の製造方法、特に厚みの大なる円筒
状永久磁石を製造するのに適当な磁石の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel method for manufacturing a magnet, particularly a method for manufacturing a magnet suitable for manufacturing a thick cylindrical permanent magnet.

〔従来の技術〕[Conventional technology]

従来、ラジアル配向された永久磁石の寸法条件として、
外径をA1内径をB1厚みをCとするとき、 でなくてはならなかった。従って厚みについては自ら限
界があり、厚みのより大きな磁石を必要とするときは厚
みの小さな成型品を必要な個数だけ段積みせねばならな
かった。たとえば外径30鰭、内径26mm、厚み25
III11の円筒状磁石を必要とするときは厚み5mm
の同径の磁石成型品を5個段積みせねばならなかった。
Conventionally, the dimensional conditions for radially oriented permanent magnets are as follows:
When the outer diameter is A1, the inner diameter is B1, and the thickness is C, it had to be. Therefore, there is a limit to the thickness, and when a thicker magnet is required, the required number of thinner molded products must be stacked. For example, the outer diameter is 30 fins, the inner diameter is 26 mm, and the thickness is 25 mm.
When a III11 cylindrical magnet is required, the thickness is 5 mm.
It was necessary to stack five molded magnets with the same diameter.

段積みするときはエポキシ樹脂の如き接着剤を用いて厚
みの小さな成型品を接着しながら重ねていくのであるが
、その際接着面はきれいでなくてはならず、もし接着面
間に隙間ができると強度の低下、磁束量の低下を招くの
で隙間のないよう注意せねばならず、また段積みすると
ズレが生ずるためこれをなおすため加工が必要となって
くる。
When stacking, small-thick molded products are glued together using an adhesive such as epoxy resin, but the bonding surfaces must be clean, and if there are any gaps between the bonding surfaces. If this happens, the strength and magnetic flux will decrease, so care must be taken to ensure that there are no gaps, and when stacked, misalignment will occur, which will require processing to correct.

たとえ加工しない場合でもズレを見込むため磁束量が低
下する。
Even if it is not processed, the amount of magnetic flux will decrease because misalignment is expected.

このような厚みの小さな成型品を段積みすることなく厚
みの大きなものを1回の成型でつくろうとしても成型す
るときの金型磁気回路条件の変化によって発生磁場が低
下し結局配向度が低下し磁気的特性のすぐれたものはえ
られなかった。
Even if you try to make a thick product in one molding without stacking such small-thick molded products, the magnetic field generated will decrease due to changes in the mold magnetic circuit conditions during molding, and the degree of orientation will eventually decrease. No material with excellent magnetic properties could be obtained.

〔発明の目的及び構成〕[Object and structure of the invention]

かくて、本発明はかかる従来の円筒状永久磁石の寸法条
件によるときの難点を解決してAC 32″′1 の寸法条件をも満足させる厚みの大なる円筒状の磁石を
製造する方法を提供することを目的とするものである。
Thus, the present invention provides a method for manufacturing a thick cylindrical magnet that solves the problems caused by the dimensional conditions of conventional cylindrical permanent magnets and satisfies the dimensional conditions of AC 32'''1. The purpose is to

従って本発明は円柱状ロッドとコイルとヨークを有する
金型を用い上記金型のダイスとロッドの間の空間に磁石
粉末を供給し、磁場をかけつつ上記磁石粉末に圧力を加
えて成形して磁石を製造する方法において、上記ダイス
を上層の磁性部と下層の非磁性部で構成し、磁石粉末を
ダイスの上方磁性部に囲まれた前記空間に供給して加圧
しえられた成型体を下方の非磁性部の方向の空間に移し
更に磁性部の空間に新しい磁石粉末を供給し、加圧し、
新たに得られた厚みの増した成型体を非磁性部の方向の
空間に移し、これを任意回数繰返すことによって厚みの
大なる円筒状磁石を製造することを特徴とする、磁石の
製造方法を提供するものである。
Therefore, the present invention uses a mold having a cylindrical rod, a coil, and a yoke, supplies magnet powder to the space between the die and the rod of the mold, and applies pressure to the magnetic powder while applying a magnetic field to form the powder. In the method for manufacturing a magnet, the die is composed of an upper magnetic part and a lower non-magnetic part, and magnet powder is supplied into the space surrounded by the upper magnetic part of the die and pressurized. Transfer it to the space in the direction of the non-magnetic part below, and then supply new magnet powder to the space of the magnetic part, pressurize it,
A method for producing a magnet, which is characterized in that a newly obtained thickened molded body is transferred to a space in the direction of the non-magnetic part, and this process is repeated an arbitrary number of times to produce a thicker cylindrical magnet. This is what we provide.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明を図面を参照しつつ以下に詳細に説明する。 The invention will be explained in detail below with reference to the drawings.

第1図に本発明方法を実施する除用いるのに適当なラジ
アル配向プレスの一例を示す。1,1′2、2’ 、 
3. 3’ 、 4.4’ 、  5. 5’は上下の
磁性ヨーク、6は磁束線を示す。7,7′は上方コイル
、下方コイルを夫々示す。8.9は夫々中心部に設けら
れた円柱状の上ロッド、下ロッド(磁性)を示し、10
.11は夫々非磁性体でつくられた上パンチ、下パンチ
であり、いずれも上記両ロッド8.9の周囲に上下運動
可能に設けられている。下ロッド9の上部周囲のダイス
は上方磁性部13、下方非磁性部14からなっており、
下ロッド9、下パンチ11、ダイス13.14によって
囲まれた空間12が磁石材料粉末が供給さ。
FIG. 1 shows an example of a radial orientation press suitable for use in carrying out the method of the present invention. 1,1'2,2',
3. 3', 4.4', 5. 5' indicates upper and lower magnetic yokes, and 6 indicates lines of magnetic flux. 7 and 7' indicate an upper coil and a lower coil, respectively. 8.9 indicates the cylindrical upper rod and lower rod (magnetic) provided at the center, and 10
.. Reference numeral 11 denotes an upper punch and a lower punch, each made of a non-magnetic material, both of which are provided around the rods 8.9 so as to be movable up and down. The die around the upper part of the lower rod 9 consists of an upper magnetic part 13 and a lower non-magnetic part 14.
A space 12 surrounded by the lower rod 9, lower punch 11, and dies 13 and 14 is supplied with magnet material powder.

れる磁石成型空間である。矢印Aによって示される高さ
は一番初めに磁石粉末が供給されるときの下バンチ11
の高さを示し、以下矢印B−Fは第一回から以降の回の
ときの下パンチの高さを示している。
This is the magnet molding space. The height indicated by arrow A is the height of the lower bunch 11 when magnet powder is first supplied.
The arrows B-F below indicate the heights of the lower punches from the first punch to the subsequent punches.

第1図のような金型を用いて本発明に従って磁石材料供
給、成型を繰返して厚みの大なる磁石成型体を製造する
方法を、要部の構成、動きを示す第2図について順次説
明する。第2図においては第1図と同じ符号は同じ部位
を示す。
A method of manufacturing a thick molded magnet by repeatedly supplying magnet material and molding according to the present invention using a mold as shown in FIG. 1 will be explained in sequence with reference to FIG. 2 showing the configuration and movement of the main parts. . In FIG. 2, the same reference numerals as in FIG. 1 indicate the same parts.

本発明方法を実施するに当っては、先ず下パンチ11の
高さを上方磁性部13、下方非磁性部14からなるダイ
スの上方磁性部13の位置Aにおき、ここに囲まれた磁
石成型空間12に磁石材料粉末15を一定量供給する(
第2図の1)。次いで上パンチ10を下降して磁場をか
けながら前記粉末15を加圧して成型して成型体16を
得る(第2図の2)。脱磁後、下バンチ11を成型体1
6とともに非磁性部14の高さBまで下方に移動させる
が成型体16の上面はダイス上方磁性部13の前記位置
Aの高さにとどめ、その成型体16の上面に新たなさき
と同量の磁石材料粉末15を供給する(第2図の3)。
In carrying out the method of the present invention, first, the height of the lower punch 11 is placed at position A of the upper magnetic part 13 of the die, which consists of the upper magnetic part 13 and the lower non-magnetic part 14, and the magnet molded therein is A certain amount of magnet material powder 15 is supplied to the space 12 (
1) in Figure 2. Next, the upper punch 10 is lowered to press and mold the powder 15 while applying a magnetic field to obtain a molded body 16 (2 in FIG. 2). After demagnetizing, lower bunch 11 is molded into molded body 1
6 and move it downward to the height B of the non-magnetic part 14, but the upper surface of the molded body 16 remains at the height of the position A of the upper magnetic part 13 of the die, and the same amount as the new part is placed on the upper surface of the molded body 16. of magnet material powder 15 is supplied (3 in FIG. 2).

再度上パンチ10を下降して磁場をかけつつ粉末15を
加圧するとさきの成型体の2倍の厚みの成型体16がえ
られる(第2図の4)。
When the upper punch 10 is lowered again and the powder 15 is pressed while applying a magnetic field, a molded body 16 with twice the thickness of the previous molded body is obtained (4 in FIG. 2).

以上のような操作を順次所要回数この第2図においては
5回繰返す(第2図の5〜10)。第3回目〜!f!5
回目の粉末供給時には夫々下パンチの高さを非磁性部1
4内のC,D、Fの高さまで下降させ、そして順次厚さ
の増した成型体の上面はいつも第1回の下パンチ11の
磁性部13内の高さAと同じ高さに位置させるようにす
る。所望の厚みになった最終成型体は下バンチ11をダ
イス磁性部13の上面の高さFまで押上げ(第2図の1
1)取り出して1回のサイクルが終了する。
The above-mentioned operations are sequentially repeated the required number of times, 5 times in FIG. 2 (5 to 10 in FIG. 2). 3rd time~! f! 5
When feeding the powder for the first time, the height of the lower punch is set to 1 in the non-magnetic part.
4, and the upper surface of the molded body whose thickness increases sequentially is always positioned at the same height as the height A inside the magnetic part 13 of the first lower punch 11. do it like this. When the final molded product has the desired thickness, the lower bunch 11 is pushed up to the height F of the upper surface of the die magnetic part 13 (1 in Fig. 2).
1) One cycle is completed by taking it out.

このようにして圧力分布、密度分布を均一にするように
し配向しながら少しづつ加圧することにより、接着した
り、ズレをなおす加工などすることなく完全にラジアル
配向された厚みの大なる磁石成型体を容易に廉価に得る
ことができる。
In this way, the pressure distribution and density distribution are made uniform, and by applying pressure little by little while oriented, a large molded magnet with a thickness that is completely radially oriented without gluing or processing to correct misalignment is achieved. can be obtained easily and inexpensively.

この際ダイスの下方非磁性部を大きくとることによって
、非磁性部を設けることなく給粉、成型を繰返す場合と
比べて厚みCの大きな磁石成型体を製造することができ
る。しかもえられた磁石成型体の磁気的特性は従来の多
段精品のそれに比べてすぐれたものである。
At this time, by making the lower non-magnetic part of the die large, it is possible to produce a molded magnet having a larger thickness C than when feeding and molding are repeated without providing a non-magnetic part. Moreover, the magnetic properties of the obtained molded magnet are superior to those of conventional multi-stage precision products.

〔実施例〕〔Example〕

本発明の方法を永久磁石を製造する実施例について更に
説明する。
The method of the present invention will be further explained with reference to an embodiment for manufacturing a permanent magnet.

平均粒径1000μmのサマリウムコバルト(S m 
2 Co t7)系合金をジェットミル(超微粉砕機)
により平均粒径3μmに粉砕し、その粉体を磁場中成形
した後に焼結、時効し原料とした。
Samarium cobalt (S m
2 Co t7) alloy by jet mill (ultra fine grinder)
The powder was pulverized to an average particle size of 3 μm, and the powder was compacted in a magnetic field, then sintered and aged to obtain a raw material.

この原料焼結体をショークラッシャー(粗粉砕機)によ
り粉砕し、篩分して平均粒径300μm以下の粉体を得
た。
This raw material sintered body was crushed with a show crusher (coarse crusher) and sieved to obtain a powder having an average particle size of 300 μm or less.

この永久磁石粉体をカップリング剤で処理した後、エポ
キシ樹脂と混合した。この混合物を用いてラジアル異方
性ボンド磁石を製造した。
This permanent magnet powder was treated with a coupling agent and then mixed with an epoxy resin. A radially anisotropic bonded magnet was manufactured using this mixture.

ここで使用した金型並びに磁気回路の構造は第1図に示
すものである。まず磁性ダイス13内の磁石成形空間1
2へ粉体を供給する。次に上パンチ10を下降させなが
ら、コイル7.7′に電流を印加して磁石成形空間12
内にラジアル方向の磁場(磁束線6,6′のように流れ
る方向)を発生させて、磁石粉体を3トン/C−の圧力
で加圧、成形する。この時即ち成形特上パンチと同等も
しくは遅いスピードで下パンチも下降し、成形後の下パ
ンチの位置は第1図のBラインまで下がるものとする。
The structures of the mold and magnetic circuit used here are shown in FIG. First, the magnet forming space 1 inside the magnetic die 13
Supply powder to 2. Next, while lowering the upper punch 10, a current is applied to the coil 7.7' to form the magnet forming space 12.
A radial magnetic field (flowing direction like magnetic flux lines 6, 6') is generated inside the magnet, and the magnet powder is pressed and molded at a pressure of 3 tons/C-. At this time, the lower punch also descends at a speed equal to or slower than that of the special forming punch, and the position of the lower punch after forming falls to line B in FIG. 1.

この時成形体の上面は第1回給粉時の下パンチの上面と
一致することが必要である。そして成形体のプレス圧力
を3トン/C−に維持しながら、反転電流を印加して、
成形体を脱磁する。
At this time, the upper surface of the compact needs to match the upper surface of the lower punch during the first powder feeding. Then, while maintaining the press pressure of the molded body at 3 tons/C-, a reversal current was applied,
Demagnetize the compact.

そして同様に給粉、成形を繰り返し5段階で成形を行う
。給粉時の下パンチ上面の位置はA−B−C→D→Eと
変化する。第5回目の成形が終ると、下パンチ上面の位
置がFまで上昇して(第2図の11参照)成形体がダイ
ス上に出てくる。これで1サイクルが終了する。
Then, powder feeding and molding are repeated in the same manner, and molding is performed in five stages. The position of the upper surface of the lower punch during powder feeding changes from ABC to D to E. When the fifth molding is completed, the position of the upper surface of the lower punch rises to F (see 11 in FIG. 2), and the molded product comes out onto the die. This completes one cycle.

また比較のために従来方法によって成形したものと、本
発明方法によるものにって得られたラジアルリング状ボ
ンド磁石の磁気的特性について第1表に示す。
For comparison, Table 1 shows the magnetic properties of radial ring-shaped bonded magnets obtained by molding by the conventional method and by the method of the present invention.

第1表 この結果から明らかのように従来方法によって、本発明
法と同等の高さのものを作ろうとすると、D、E、Fの
ような値となってしまう。そのため、従来方法では、個
々に成形したものを、接着して5段積とし、加工して製
品としていた。
Table 1 As is clear from the results, if an attempt was made to make a product with the same height as the method of the present invention using the conventional method, values such as D, E, and F would be obtained. Therefore, in the conventional method, individually molded pieces were glued together to form a five-tier stack and processed into a product.

本発明方法を利用すると、接着工程、加工工程が省かれ
るために、大幅なコストダウンが可能となる。
When the method of the present invention is used, the bonding process and the processing process can be omitted, making it possible to significantly reduce costs.

また本発明方法はサマリウムコバルト系ボンド磁石の他
、フェライト系、アルニコ系、更にはネオジウム−鉄−
ボロン系等のいずれであっても同様の結果が得られる。
In addition to samarium-cobalt bonded magnets, the method of the present invention also applies to ferrite-based, alnico-based, and even neodymium-iron-based magnets.
Similar results can be obtained with any boron-based material.

従って本発明方法は、磁石全般に適用することができる
Therefore, the method of the present invention can be applied to magnets in general.

〔発明の効果〕〔Effect of the invention〕

上述のところから明らかなように、本発明方法によると
きは、従来の寸法条件にとられれることなく、従来のよ
うに接着、加工などすることなく、また磁気的特性を低
下させることなく、厚みの大なる円筒状磁石を容易に廉
価に製造することができて誠に有効である。
As is clear from the above, when using the method of the present invention, the thickness can be increased without being bound by conventional dimensional conditions, without adhesion or processing as in conventional methods, and without deteriorating magnetic properties. This method is very effective because it allows a large cylindrical magnet to be manufactured easily and inexpensively.

1.1’、2.2’、3.3’、4.4’、5゜5′・
・・磁性ヨーク、6・・・磁束線、7. 7’・・・上
コイル、下コイル、8,9・・・上ロッド、下ロッド(
磁性)、10.11・・・上パンチ、下パンチ(非磁性
)、12・・・磁石成形空間、13・・・ダイス(磁性
)、14・・・ダイス(非磁性)、15・・・磁石粉末
、16・・・成型体、A・・・初期における下パンチの
高さ、B・・・第1回プレスにおける下パンチの高さ、
C・・・第2回プレスにおける下パンチの高さ、D・・
・第3回プレスにおける下パンチの高さ、E・・・第4
回プレスにおける下パンチの高さ、F・・・第5回プレ
スにおける下パンチの高さ。
1.1', 2.2', 3.3', 4.4', 5°5'・
... Magnetic yoke, 6... Lines of magnetic flux, 7. 7'... Upper coil, lower coil, 8, 9... Upper rod, lower rod (
10.11... Upper punch, lower punch (non-magnetic), 12... Magnet forming space, 13... Dice (magnetic), 14... Dice (non-magnetic), 15... Magnet powder, 16... Molded body, A... Height of lower punch at initial stage, B... Height of lower punch at first press,
C...height of the lower punch in the second press, D...
・Height of the lower punch in the 3rd press, E...4th
The height of the lower punch in the second press, F...the height of the lower punch in the fifth press.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明方法に用いるに適当な金型の説明図
であり、第2図は本発明方法を逐次説明するための説明
図である。
FIG. 1 is an explanatory diagram of a mold suitable for use in the method of the present invention, and FIG. 2 is an explanatory diagram for sequentially explaining the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 円柱状ロッドとコイルとヨークを有する金型を用い上記
金型のダイスとロッドの間の空間に磁石粉末を供給し、
磁場をかけつつ上記磁石粉末に圧力を加えて成形して磁
石を製造する方法において、上記ダイスを上層の磁性部
と下層の非磁性部で構成し、磁石粉末をダイスの上方磁
性部に囲まれた前記空間に供給して加圧しえられた成型
体を下方の非磁性部の方向の空間に移し更に磁性部の空
間に新しい磁石粉末を供給し、加圧し、新たに得られた
厚みの増した成型体を非磁性部の方向の空間に移し、こ
れを任意回数繰返すことによって厚みの大なる円筒状磁
石を製造することを特徴とする、磁石の製造方法。
Using a mold having a cylindrical rod, a coil, and a yoke, supplying magnet powder to the space between the die and the rod of the mold,
In the method of manufacturing a magnet by applying pressure to the magnetic powder while applying a magnetic field and molding it, the die is composed of an upper magnetic part and a lower non-magnetic part, and the magnet powder is surrounded by the upper magnetic part of the die. The molded body supplied to the above-mentioned space and pressurized is transferred to the space below in the direction of the non-magnetic part, and new magnet powder is further supplied to the space of the magnetic part and pressurized to increase the newly obtained thickness. A method for manufacturing a magnet, which comprises moving the molded body into a space in the direction of the non-magnetic part and repeating this process an arbitrary number of times to manufacture a thick cylindrical magnet.
JP1103785A 1989-04-24 1989-04-24 Manufacturing method of radial oriented magnet Expired - Lifetime JPH0628215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103785A JPH0628215B2 (en) 1989-04-24 1989-04-24 Manufacturing method of radial oriented magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103785A JPH0628215B2 (en) 1989-04-24 1989-04-24 Manufacturing method of radial oriented magnet

Publications (2)

Publication Number Publication Date
JPH02281721A true JPH02281721A (en) 1990-11-19
JPH0628215B2 JPH0628215B2 (en) 1994-04-13

Family

ID=14363066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103785A Expired - Lifetime JPH0628215B2 (en) 1989-04-24 1989-04-24 Manufacturing method of radial oriented magnet

Country Status (1)

Country Link
JP (1) JPH0628215B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913255A (en) * 1996-08-09 1999-06-15 Hitachi Metals Ltd. Radially anisotropic sintered R-Fe-B-based magnet and production method thereof
JP2003347143A (en) * 1999-10-25 2003-12-05 Sumitomo Special Metals Co Ltd Rare-earth magnet
US6756010B2 (en) 1999-10-25 2004-06-29 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
US7201809B2 (en) 2002-08-29 2007-04-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic ring magnet and method of manufacturing the ring magnet
JP2008045148A (en) * 2006-08-10 2008-02-28 Nippon Ceramic Co Ltd Method for producing magnet and production apparatus therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257004A (en) * 1975-11-06 1977-05-11 Riken Piston Ring Ind Co Ltd Method of producing cylinder liner made of sintered alloy
JPS60240112A (en) * 1984-05-14 1985-11-29 Seiko Epson Corp Metal mold for compression forming in magnetic field
JPS6264499A (en) * 1985-09-18 1987-03-23 Nec Kansai Ltd Formation of powder press
JPS62276812A (en) * 1986-05-23 1987-12-01 Kobe Steel Ltd Method and apparatus for molding anisotropic magnet
JPS63310356A (en) * 1988-05-19 1988-12-19 Seiko Epson Corp Cylindrical permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257004A (en) * 1975-11-06 1977-05-11 Riken Piston Ring Ind Co Ltd Method of producing cylinder liner made of sintered alloy
JPS60240112A (en) * 1984-05-14 1985-11-29 Seiko Epson Corp Metal mold for compression forming in magnetic field
JPS6264499A (en) * 1985-09-18 1987-03-23 Nec Kansai Ltd Formation of powder press
JPS62276812A (en) * 1986-05-23 1987-12-01 Kobe Steel Ltd Method and apparatus for molding anisotropic magnet
JPS63310356A (en) * 1988-05-19 1988-12-19 Seiko Epson Corp Cylindrical permanent magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913255A (en) * 1996-08-09 1999-06-15 Hitachi Metals Ltd. Radially anisotropic sintered R-Fe-B-based magnet and production method thereof
DE19734225C2 (en) * 1996-08-09 2003-07-31 Hitachi Metals Ltd Radial anisotropic sintered magnet based on SE-Fe-B, and manufacturing process for the same
JP2003347143A (en) * 1999-10-25 2003-12-05 Sumitomo Special Metals Co Ltd Rare-earth magnet
US6756010B2 (en) 1999-10-25 2004-06-29 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
US7201809B2 (en) 2002-08-29 2007-04-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic ring magnet and method of manufacturing the ring magnet
JP2008045148A (en) * 2006-08-10 2008-02-28 Nippon Ceramic Co Ltd Method for producing magnet and production apparatus therefor

Also Published As

Publication number Publication date
JPH0628215B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPH1022153A (en) Manufacture of magnetically anisotropic resin bond magnet
JPH1055929A (en) R-fe-b radially anisotropic sintered magnet and manufacture thereof
JP2007180368A (en) Method for manufacturing magnetic circuit part
JP4490292B2 (en) Method for manufacturing ring magnet
US3085291A (en) Device for manufacturing magnetically anisotropic bodies
CN107978443A (en) Elevating type radiation oriented moulding method and mechanism
JPH02281721A (en) Manufacture of magnet
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
JP2005268385A (en) Magnetic field forming apparatus and method, ring type magnet forming apparatus, ring type magnet manufacturing method, and ring type sintered magnet
CN111112605B (en) Powder magnetic field forming method of rare earth permanent magnet
JPS59103309A (en) Manufacture of permanent magnet
JPH08250357A (en) Manufacturing device and method of thin-walled ring magnet
JP2000012359A (en) Magnet and its manufacture
JPH01111303A (en) Manufacture of rare earth magnet
JPH03235311A (en) Manufacture of anisotropic plastic magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
KR20200061979A (en) Magnetic powder, compressed powder core and method of preparation thereof
JP2003272942A (en) Method of manufacturing permanent magnet
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
JPH04112504A (en) Manufacture of pare-earth magnet
JPH09233776A (en) Manufacturing method for lengthy radial anisotropic ring magnet
JPH0314215A (en) Manufacturing process and device for magnetic anisotropical magnet
JPH07211567A (en) Method of molding cylindrical radial anisotropic bonded magnet
JPH10256021A (en) Manufacture of pressed powder magnetic core and mold used for the same