JP2008045148A - Method for producing magnet and production apparatus therefor - Google Patents

Method for producing magnet and production apparatus therefor Download PDF

Info

Publication number
JP2008045148A
JP2008045148A JP2006218609A JP2006218609A JP2008045148A JP 2008045148 A JP2008045148 A JP 2008045148A JP 2006218609 A JP2006218609 A JP 2006218609A JP 2006218609 A JP2006218609 A JP 2006218609A JP 2008045148 A JP2008045148 A JP 2008045148A
Authority
JP
Japan
Prior art keywords
magnetic
molding die
magnet
powder
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218609A
Other languages
Japanese (ja)
Inventor
Yoshiharu Taniguchi
義晴 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2006218609A priority Critical patent/JP2008045148A/en
Publication of JP2008045148A publication Critical patent/JP2008045148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of a conventional method that an expensive large-scale magnetic-field molding machine is necessary, a die life is short, a large amount of expensive Dy is used which is small in absolute magnitude on the earth, and treatment for preventing a surface from being oxidized and from forming rust is necessary. <P>SOLUTION: This production method includes steps for: charging a molded workpiece in a molding die of a magnetic-field molding machine which utilizes a magnetic attractive force; and temporarily baking the workpiece. Then, the method does not need to consider mechanical strength, does not need to charge adhesives, accordingly can align directions of easy axes of magnetization, and can produce a high-performance magnet at a low cost. In addition, the molding die is not used at a high temperature in a sintering process, and has the long life and an economical advantage, because the workpiece is temporarily baked at a low temperature and the temporarily baked workpiece is immediately taken out of the die so as not to be exposed to the high temperature. Furthermore, the method includes steps for using Al, Ni, Co, an alloy or the like together with the expensive Dy, and simultaneously alloying them with the temporarily-baked workpiece in a full-sintering step to improve magnetic performance and conduct rust prevention treatment. Accordingly, the method can omit a vapor deposition process or a plating process thus increasing an economical effect. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁石の製造方法とその装置に関するものである。   The present invention relates to a magnet manufacturing method and apparatus.

従来は大型の高価な磁場プレスを必要とする欠点があったが、その改善策として、成型を行わない方法が発明された。しかし、この方法は原料が所定の密度になる充填過程で、磁界を施すことなく、後工程で磁界を与える為に、粉体粒子が磁化容易軸方向に整列する際に自由に移動しにくい、且つ、粉末プレス成型をしないので、製品を取り出すことが出来ない為、容器と共に焼結せざるを得ないので、ケースの消耗が多いという欠点があった。
特許出願公告 昭47−21197 特許出願公告 昭55−26601 特許出願公開番号 特開2006−19521 特許出願公開番号 日本応用磁気学会 第147回研究報告 希土類磁石の最新動向とその応用
Conventionally, there has been a drawback of requiring a large and expensive magnetic field press, but as a measure to improve it, a method of not performing molding has been invented. However, this method is a filling process in which the raw material has a predetermined density, without applying a magnetic field, and in order to give a magnetic field in the subsequent process, the powder particles are difficult to move freely when aligned in the easy magnetization axis direction. In addition, since powder press molding is not performed, the product cannot be taken out and must be sintered together with the container, so that there is a disadvantage that the case is consumed frequently.
Patent Application Notice Sho 47-21197 Patent Application Notice Sho 55-26601 Patent application publication number JP2006-19521 Patent Application Publication Number Japan Society of Applied Magnetics 147th Research Report Latest Trends and Applications of Rare Earth Magnets

高価な大型の100トンクラスの磁場プレスを使用していた為に極めて不経済であった事。成型用金型に粉末原料を充填し、その粒子の自由な運動が出来る状態で、磁界を与えながら成型をする過程がなかった為に、充分に磁化容易軸方向を整えることが出来なかった故、充分なる磁気特性を得る事が出来なかった。成型用金型から成型品を取り出す為に整磁された成型品の磁化を消磁するなどの作業が必要であり、経済的にも磁石の特性的にも問題があった。また、従来の優れた発明の一つでも原料充填容器に入れたままで焼結する方法があるが、この方法は充填容器が成型品の焼結温度に充分耐えることが困難であり、結果的には不経済なる面があった。最後に金属製の磁石は表面に錆が発生する為に多くの費用をかけて、メタライズ或いは、メッキ等の酸化防止処理を行わなければならない欠陥を併せ有していた。これ等の多くの欠陥を課題として有していた。   It was extremely uneconomical because it used an expensive large 100-ton magnetic field press. Because the molding material was filled with powder raw material and the particles could move freely, there was no process of molding while applying a magnetic field, so the easy axis of magnetization could not be adjusted sufficiently It was not possible to obtain sufficient magnetic properties. In order to take out the molded product from the molding die, an operation such as demagnetizing the magnetization of the magnetized molded product is necessary, and there is a problem in terms of economy and magnet characteristics. In addition, there is a method in which one of the excellent inventions of the prior art is sintered in a raw material filled container, but this method makes it difficult for the filled container to sufficiently withstand the sintering temperature of the molded product. Was uneconomical. Finally, metal magnets have many defects due to the occurrence of rust on the surface, and have defects that require oxidation treatment such as metallization or plating. Many of these defects were present as problems.


まず大型の100トンクラスの磁場成型機を用いることが常識的であったが、本発明では磁場の吸引力で充分に成型が出来る程度の加圧力にとどめ、成型用金型から成型品を取り出すことなく、成型用金型に成型品が入ったままで仮焼成を行う事を特徴とする。この作業によって、本焼結に比較してはるかに低い温度で仮焼成をした後に成型品を金型より取り出し、改めて所定の表面処理を行った後に本焼結を行うものとする為に、金型は本焼結温度よりはるかに低い温度に晒されるのみで耐久性が高くなり経済的である。また、磁石の原料である微粉末は図1に示す如く、強磁性体からなる外枠1の底部に同じく強磁性体からなる下盤20を備え、その中に粉末3を充填し、セパレータ4を挿入し、再度粉末原料3を入れ、繰り返し成型品の形状により適当なる枚数を選択する訳であるが、図面では、便宜上4枚を同時に磁界中成型をする場合について示した。

First, it was common sense to use a large 100-ton class magnetic field molding machine. However, in the present invention, the applied pressure is limited to a level that allows sufficient molding with a magnetic field attractive force, and the molded product is taken out from the molding die. Without any problem, temporary firing is performed while the molded product remains in the molding die. In order to perform the main sintering after removing the molded product from the mold after pre-baking at a temperature much lower than that of the main sintering by this work and performing a predetermined surface treatment again, The mold is highly durable and economical only by being exposed to a temperature much lower than the main sintering temperature. Further, as shown in FIG. 1, the fine powder as the raw material of the magnet is provided with a lower plate 20 made of ferromagnetic material at the bottom of the outer frame 1 made of ferromagnetic material, filled with powder 3 therein, and separator 4 The powder raw material 3 is inserted again, and an appropriate number of sheets is selected depending on the shape of the repetitively molded product. In the drawing, for convenience, four sheets are simultaneously molded in a magnetic field.

図2は4回目の粉末原料3を最上部に充填した状態を示し、図3は上蓋21をかぶせたことにより、その蓋と個々の原料3並びにセパレータ4の自重により粉末原料が圧縮された状態を示している。この状態では個々の粉末粒子の磁化容易軸方向を外部からの励磁界によって揃える際に、粒子を自由に移動させる事が困難となる為、結果として磁気特性の劣化を招く事になる。この問題を解決する為に図4に示す如く上下に磁極51、50を設け、上蓋21並びに下蓋20に磁界を与え粒子の存在する空間を引き伸ばし、磁界原料粒子の自由運動の空隙を広くし、充分に磁界の強度を高めて磁気吸着力を増強して、図5に示す如く上下の磁極51、50を磁気吸着力により近づける。   FIG. 2 shows a state in which the powder raw material 3 is filled at the top for the fourth time, and FIG. 3 shows a state in which the powder raw material is compressed by the weight of the lid, the individual raw materials 3 and the separator 4 by covering the upper lid 21. Is shown. In this state, it is difficult to move the particles freely when aligning the easy axis directions of the individual powder particles with an external excitation field, resulting in deterioration of magnetic characteristics. In order to solve this problem, magnetic poles 51 and 50 are provided on the upper and lower sides as shown in FIG. 4, and a magnetic field is applied to the upper lid 21 and the lower lid 20 to extend the space where the particles are present, thereby widening the space for free movement of the magnetic raw material particles. As shown in FIG. 5, the upper and lower magnetic poles 51 and 50 are brought closer to the magnetic attractive force by sufficiently increasing the magnetic field strength to enhance the magnetic attractive force.

この過程で色々な型の励磁界を、例えば斜めから或いは、パルス型など色々と成型用金型の周辺部に励磁コイルを設ける事によって自由に補強することが出来る。古くには、潤滑性と接着性を兼ね備えた特許出願公告昭47−21179など多くの文献があるが、残念乍、接着剤を添加して、成型物の強度を強めようと試みれば接着剤によって充分に粒子が移動出来にくくなる為に、磁化容易軸を充分に整列する事が困難な結果となり、充分な磁気特性が得られないと同時に、多くの接着剤を含む成型物を焼結する際に多くのガスを発生すると同時に、その接着剤の分解された残痕が空孔になり磁石の密度を低下させる欠陥があり、理想的には接着剤をなくした状態で自由に粒子に運動させながら、成型物の機械的強度を心配する事なく、成型金型のまま仮焼成をする本発明は、磁石生産上、大きく経済性並びに、性能向上という観点から貢献できる。   In this process, various types of excitation fields can be freely reinforced by, for example, obliquely or by providing excitation coils around the periphery of the molding die such as a pulse type. In the old days, there are many documents such as patent application publication 47-21179 having both lubricity and adhesion, but unfortunately, if you try to increase the strength of the molding by adding an adhesive, the adhesive As a result, it becomes difficult to sufficiently align the easy magnetization axis, and sufficient magnetic properties cannot be obtained. At the same time, a molded product containing many adhesives is sintered. At the same time, a large amount of gas is generated, and at the same time, there is a defect that the decomposed residue of the adhesive becomes vacancies and decreases the density of the magnet, and ideally moves freely to the particles without the adhesive However, the present invention in which the molding is temporarily fired without worrying about the mechanical strength of the molded product can greatly contribute to the production of magnets from the viewpoints of economy and performance.

最後に、本発明の特徴の一つは、図6に示す如く、磁場中で成型された成型物3(粉末粒子の圧縮されたもの)の残留磁束から発生する磁束を極力乱す事のない様に、その磁束流Fを矢印の如く維持させた状態で、成型物3を金型から取り出しても、充分崩壊しない温度まで還元雰囲気中で上昇させて仮焼をする。この温度は粉末原料の組成分、或いは、粒子の大きさなどによって相違するが、一般的には900℃以下で仮焼を終えるべきである。この事によって、成型金型の寿命が本焼成まで行う場合と比較出来ない程、長くもち経済的である。   Finally, one of the features of the present invention is that as shown in FIG. 6, the magnetic flux generated from the residual magnetic flux of the molded product 3 (compressed powder particles) molded in a magnetic field is not disturbed as much as possible. In addition, while maintaining the magnetic flux flow F as shown by the arrow, even if the molded product 3 is taken out of the mold, it is raised in a reducing atmosphere to a temperature at which it does not sufficiently collapse and calcined. Although this temperature differs depending on the composition of the powder raw material or the size of the particles, the calcination should generally be completed at 900 ° C. or lower. By this, the life of the molding die is so long and economical that it cannot be compared with the case where it is performed until the main firing.

仮焼成された成型物を予め割型など簡易に内容物が取り出される構造の成型用金型から取り出し、その表面に比較的分解温度の高いポリマー(Polyethyleneglycol 2000 分子構造:H−CH2−CH2−O)n−OH 分子量:2000g/mol)を、溶剤(Diethylene Glycol Monobutyl Ether CH3OCH2CH2OCH2CH2OH 分子量:162.2g/mol 沸点:230.6℃)でもって、適度なる粘度の接着剤を作り、仮焼成物の表面にコートし、その上に抗磁力を高める効果のある金属、例えば、Dyの微粉末と防錆作用のあるAl、Co、Niなどの一種、もしくは、二種以上の微粉末をメカニカルアロイング法などで充分混合した微粉末を付着させた後、真空中、或いは、還元雰囲気中で本焼成を行う事により、Dyは仮焼結体の主相に対して、優先的に拡散をする性質が知られている様に、粒界相に拡散し高価なDyを効率よく活用し抗磁力を向上させる事が出来ると同時に、Fe並びにNdリッチなる部分の表面に防錆作用の強いAl、Co、Niなどの合金がアロイング作用により、防錆処理を焼結後する必要がなくなる様に、真空中、或いは、還元雰囲気中で本焼結時にアロイングをさせる。   The pre-fired molded product is previously taken out from a molding die having a structure in which the contents can be easily taken out, such as a split mold, and a polymer having a relatively high decomposition temperature (Polyethyleneglycol 2000 molecular structure: H-CH2-CH2-O) ) N-OH molecular weight: 2000 g / mol) with a solvent (Diethylene Glycol Monobutyl Ether CH3OCH2CH2OCH2CH2OH molecular weight: 162.2 g / mol Boiling point: 230.6 ° C.) A mechanical alloying method is applied to a metal having an effect of increasing the coercive force, for example, a fine powder of Dy and one, or two or more kinds of fine powders of Al, Co, Ni, etc. After adhering a fine powder mixed well with By carrying out the main firing in the air or in a reducing atmosphere, Dy diffuses into the grain boundary phase and is expensive as known to preferentially diffuse with respect to the main phase of the temporary sintered body. Can effectively improve the coercive force by efficiently using Dy, and at the same time, the alloy of Al, Co, Ni, etc., which has strong rust prevention action on the surface of the Fe and Nd rich part, is baked by the alloying action. Alloying is performed during the main sintering in a vacuum or in a reducing atmosphere so that it is not necessary to perform the sintering.

前項で詳記した如く、高価な大型の磁場成型機を用いる事なく、経済的な磁場吸着力を活用し、簡易な成型機で成型用金型を用い、粒子の磁化容易軸を接合剤、潤滑剤などを入れて、粒子の移動を妨害することなく整えながら加圧成型し、成型物の磁束流を強磁性体からなる成型金型の構造で磁気継鉄の作用をさせながら、成型物の磁気整列を乱すことなく仮焼成を行い、仮焼成後、金型から成型物を取り出し、磁気特性の向上の為のDy、Mo、Vなどと防錆作用のあるAl、Ni、Coの微粉末を、成型物の表面にアロイングさせる為に、真空中、或いは、還元雰囲気中で本焼結をする事により、経済的に高性能で表面処理が不要なる磁石を製造することが出来る効果がある。   As detailed in the previous section, without using an expensive large-scale magnetic field molding machine, utilizing an economical magnetic field adsorption force, using a molding die with a simple molding machine, the easy axis of particles is a bonding agent, Put a lubricant, etc., and press-mold while adjusting without disturbing the movement of the particles, while the magnetic flux flow of the molding is the structure of the molding die made of a ferromagnetic material, while acting as a magnetic yoke, Temporary firing is performed without disturbing the magnetic alignment of the steel, and after the preliminary firing, the molded product is taken out from the mold, and Dy, Mo, V, etc. for improving the magnetic properties and Al, Ni, Co, which have a rust-proofing effect, are fine. In order to allow powder to be alloyed on the surface of the molded product, by performing main sintering in a vacuum or in a reducing atmosphere, it is possible to produce a magnet that is economically efficient and does not require surface treatment. is there.

本発明では磁石のエネルギー積が高く、高価なDyを含まない代表的な組成を質量%で示すと31Nd−68Fe−1B(w%)である組成をベースにし、所定の方法で合金原料を作成し、溶解し粉砕した粉末原料を作成し、本発明の成型後、被成型物から発生する磁気の継鉄機能を備えた強磁性体のNi、Co、Alなどからなる合金材料を主なる構成部材とした成型用金型に図1から図3に模型的に断面図で示す如く、原料粉末3を順次セパレータ4を介しながら充填し、図4に示す如く上下の磁極51、50を固定した状態でパルスや交番磁界を成型用金型の上下の蓋21、20を貫通させて、被成型物の粒子に与え、磁化容易軸を揃え、その整磁された状態を維持させながら、磁化の吸着力を用いて加圧し、上下の蓋21、20を近づけた状態を維持し、成型用の金型内に被成型物を入れたまま900℃以下の真空又は還元雰囲気で仮焼処理を施した後、仮焼物の表面に抗磁力を高めるDyや防錆作用のあるAl、Ni、Coの一種又はそれ以上の合金を付着させる為に、上述の有機接着剤をコートした後、所定のDyやAl、Ni、Co等の合金微粉末を付着させ、仮焼温度以上の本焼結温度で真空又は還元雰囲気中で処理すると、本発明の効果を最大に発揮出来る。   In the present invention, the energy composition of the magnet is high, and a typical composition not containing expensive Dy is expressed in mass%, and the alloy raw material is prepared by a predetermined method based on the composition of 31Nd-68Fe-1B (w%). The main component is an alloy material made of Ni, Co, Al, etc. of a ferromagnetic material having a magnetic yoke function that is generated from the molding after the molding of the present invention, after forming a melted and pulverized powder raw material As shown in a schematic cross-sectional view in FIGS. 1 to 3, the raw material powder 3 is sequentially filled through the separator 4 and the upper and lower magnetic poles 51 and 50 are fixed as shown in FIG. 4. In this state, a pulse or an alternating magnetic field is passed through the upper and lower lids 21 and 20 of the molding die, applied to the particles of the molding object, the easy magnetization axis is aligned, and the magnetized state is maintained while maintaining the magnetized state. Pressurize using the suction force and close the upper and lower lids 21 and 20 Dy and rust prevention to increase the coercive force on the surface of the calcined product after maintaining the digitized state and performing the calcining treatment in a vacuum or reducing atmosphere at 900 ° C. or lower with the molding object placed in the molding die In order to deposit one or more alloys of Al, Ni, and Co that have an effect, after coating the above-mentioned organic adhesive, a predetermined alloy fine powder such as Dy, Al, Ni, Co, etc. is deposited. When the treatment is performed in a vacuum or a reducing atmosphere at a main sintering temperature equal to or higher than the firing temperature, the effect of the present invention can be maximized.

前述した主原料の配合組成、即ち、31Nd−68Fe−1B重量比なる組成からなる5μm以下の微粉末原料を、Ni合金からならる強磁性材料を図1〜図6に断面図で示す様に、中空の外枠1を作成し、その内側に挿入可能な厚み10mmの蓋と5mm厚のセパレータを用意して、図で前述した手順で成型用金型に充填した次に、蓋や原料並びにセパレータの自重で充填された原料粉末が、圧縮され粒子の磁化容易軸方向を整え難い状態になったので、図4に示す如く成型用金型の外枠のトップに上蓋が来る位置に、上磁極を固定し10KOe以上の交番磁界を外枠の外周部にパルス励磁用の空心コイルを(図には割愛した)設けて整磁し、磁力の吸着力を成型圧源として応用し、磁界を印加しながら加圧成型を行った。次に、被成型物を成型用金型に入れたまま水素雰囲気炉で870℃で仮焼成を行い、仮焼成物を金型から取り出し表面に接着剤をコートした後、2Dy−98Ni重量比からなる合金微粉末を付着させ、900℃以上の水素雰囲気炉で、本焼結させると同時に、これ等のDyとNiをアロイングさせた結果、Dyは粒界相に優先的に拡散し、抗磁力の向上に作用し、同時に、Niは焼結体の表面を一種のメタライズする型となり、表面発錆防止が出来た。   As shown in the cross-sectional views of FIG. 1 to FIG. Then, a hollow outer frame 1 is prepared, a lid having a thickness of 10 mm and a separator having a thickness of 5 mm, which can be inserted inside, are prepared, and filled in a molding die in accordance with the procedure described above with reference to FIG. Since the raw material powder filled with the separator's own weight is compressed and it is difficult to align the direction of the easy magnetization axis of the particles, the upper lid is positioned at the top of the outer frame of the molding die as shown in FIG. A magnetic pole is fixed, an alternating magnetic field of 10 KOe or more is provided on the outer periphery of the outer frame to provide a pulse excitation air core coil (not shown in the figure), and the magnetic force is applied as a molding pressure source. While applying, pressure molding was performed. Next, pre-baking is performed at 870 ° C. in a hydrogen atmosphere furnace while the object to be molded is placed in a molding die, the pre-baked product is taken out from the die and the surface is coated with an adhesive, and then the 2Dy-98Ni weight ratio is determined. As a result of adhering the alloy fine powder and sintering it in a hydrogen atmosphere furnace at 900 ° C. or higher and simultaneously alloying these Dy and Ni, Dy diffuses preferentially in the grain boundary phase, and the coercive force At the same time, Ni became a kind of metallizing mold for the surface of the sintered body, and surface rusting was prevented.

本発明の磁石製造用の装置の一つである成型用金型を断面図で示す。成型用金型に順次、下部から磁石粉末原料3をセパレータ4を介して充填する経緯を示している。The molding die which is one of the apparatuses for magnet manufacture of this invention is shown with sectional drawing. The process of filling the magnetic powder raw material 3 through the separator 4 sequentially from the lower part to the molding die is shown. 本実施例として4個の成型物を得るべく、粉末原料を第4段まで充填した状態を示す。This example shows a state where powder raw materials are filled up to the fourth stage in order to obtain four molded products. 上蓋21やセパレータ4と粉末原料3の自重で総ての粉末原料が圧縮された状態で粉末の磁化容易軸を揃える際に、粉末の移動が困難な状態を示している。This shows a state where it is difficult to move the powder when aligning the easy magnetization axis of the powder in a state where all the powder raw materials are compressed by the weight of the upper lid 21 and the separator 4 and the powder raw material 3. 成型用金型の外枠の上下面に磁極51、50を固定し、種々磁気吸着力で上蓋を引き上げ、同時に順次粉末原料の充填されている空間を広げ、粉末の磁化容易軸を揃える為の粉末粒子の移動を容易ならしめた状態を示している。Magnetic poles 51 and 50 are fixed to the upper and lower surfaces of the outer frame of the molding die, and the upper lid is pulled up by various magnetic attraction forces. At the same time, the space filled with the powder raw material is sequentially expanded to align the easy magnetization axis of the powder. The state where the movement of the powder particles is made easy is shown. 磁極51並びに52の固定を解き、磁化の吸着力を応用して成型用金型の上下の蓋を加圧した状態を示している。It shows a state where the magnetic poles 51 and 52 are unfixed and the upper and lower lids of the molding die are pressed by applying the magnetic attraction force. 上下磁極51、50を抜き取り、成型用金型内の成型物から発生する磁束線Fが、成型時に磁化の容易軸方向に整えられた状態に維持されている様子を模型的に示したものである。The upper and lower magnetic poles 51 and 50 are extracted, and the magnetic flux lines F generated from the molded product in the molding die are schematically shown in a state where they are maintained in the state of easy magnetization in the direction of magnetization. is there.

符号の説明Explanation of symbols

1 強磁性体材料からなる外枠

20 強磁性体材料からなる下蓋

21 強磁性体材料からなる上蓋

3 微粉末原料

4 強磁性材料からなるスペーサー

50 下磁極

51 上磁極

F 磁束の流れ
1 Outer frame made of ferromagnetic material

20 Lower lid made of ferromagnetic material

21 Top cover made of ferromagnetic material

3 Fine powder raw material

4 Spacer made of ferromagnetic material

50 Bottom pole

51 Upper magnetic pole

F Magnetic flux flow

Claims (5)

磁力で粒子の磁化容易軸方向を揃えつつ、その吸引力を応用して成型する事を特徴とした磁石の製造方法。   A method for producing a magnet, characterized by forming the particles by applying the attractive force while aligning the easy axis of magnetization of the particles with a magnetic force. 磁石粉末を成型用金型に充填した後、磁気の吸引力を加圧源とした成型機に装着して、交流(パルスを含む)並びに直流電源より、励磁力と吸着力を発揮させ、金型内の磁石粉末の磁化容易軸の方向を揃えたる状態で加圧成型をする事を特徴とした磁石の製造方法。   After the magnet powder is filled into the molding die, it is mounted on a molding machine that uses a magnetic attraction force as a pressurizing source, and an excitation force and an attraction force are exerted from an alternating current (including pulse) and direct current power source. A method for producing a magnet, characterized in that pressure molding is performed in a state where the directions of easy magnetization axes of magnet powder in the mold are aligned. 強磁性体を含む材料から構成された成型用金型は、磁化の容易軸方向が整えられた粒子群からなる加圧成型体の磁化方向が、所望の方向からずれない様に磁束が流れる磁気継鉄としての機能を備えたことを特徴とする磁石製造装置。   A molding die made of a material containing a ferromagnetic material is a magnetic material in which a magnetic flux flows so that the magnetization direction of a pressure-molded body made of a group of particles in which the easy axis direction of magnetization is aligned does not deviate from a desired direction. A magnet manufacturing apparatus having a function as a yoke. 請求項3に記載の成型用金型は、成型体の仮焼成の温度に耐えるNi、Co等の合金材料から構成される事を特徴とした成型用金型。   4. The molding die according to claim 3, wherein the molding die is made of an alloy material such as Ni or Co that can withstand the temperature of temporary firing of the molded body. 仮焼成された製品の表面に予備接着剤等を用いて、良く知られている磁気改善の為のDyやMo、Vの微粉末Aと、本発明のAl、Ni、Co等の一種もしくは複数から構成される微粉末Bを充分に微細混合し、A+B粉末を作成し、製品の表面に接着させ、本焼結の熱処理を行う際に、焼結体の表面にアロイングさせながらDy等を粒界相に拡散させて抗磁力の改善と同時にAl、Ni、Coの合金により発錆防止を行う事を特徴とした磁石の製造方法。   Using a pre-adhesive or the like on the surface of the pre-fired product, well-known fine powder A of Dy, Mo, V for magnetic improvement, and one or more of Al, Ni, Co, etc. of the present invention The fine powder B composed of the above is sufficiently finely mixed to prepare an A + B powder, which is adhered to the surface of the product and subjected to heat treatment for the main sintering. A magnet manufacturing method characterized by diffusing into a field phase to improve coercive force and simultaneously preventing rusting with an alloy of Al, Ni, and Co.
JP2006218609A 2006-08-10 2006-08-10 Method for producing magnet and production apparatus therefor Pending JP2008045148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218609A JP2008045148A (en) 2006-08-10 2006-08-10 Method for producing magnet and production apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218609A JP2008045148A (en) 2006-08-10 2006-08-10 Method for producing magnet and production apparatus therefor

Publications (1)

Publication Number Publication Date
JP2008045148A true JP2008045148A (en) 2008-02-28

Family

ID=39179176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218609A Pending JP2008045148A (en) 2006-08-10 2006-08-10 Method for producing magnet and production apparatus therefor

Country Status (1)

Country Link
JP (1) JP2008045148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062541A (en) * 2010-09-17 2012-03-29 Daihatsu Motor Co Ltd Method for manufacturing magnetic material
CN104368810A (en) * 2014-10-30 2015-02-25 太仓市锦立得粉末冶金有限公司 Die for machining powder metallurgy multi-step part
JP2018504769A (en) * 2014-12-19 2018-02-15 北京中科三環高技術股▲ふん▼有限公司 Manufacturing method of RTB permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281721A (en) * 1989-04-24 1990-11-19 Fuji Elelctrochem Co Ltd Manufacture of magnet
JP2006019521A (en) * 2004-07-01 2006-01-19 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281721A (en) * 1989-04-24 1990-11-19 Fuji Elelctrochem Co Ltd Manufacture of magnet
JP2006019521A (en) * 2004-07-01 2006-01-19 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062541A (en) * 2010-09-17 2012-03-29 Daihatsu Motor Co Ltd Method for manufacturing magnetic material
CN104368810A (en) * 2014-10-30 2015-02-25 太仓市锦立得粉末冶金有限公司 Die for machining powder metallurgy multi-step part
JP2018504769A (en) * 2014-12-19 2018-02-15 北京中科三環高技術股▲ふん▼有限公司 Manufacturing method of RTB permanent magnet
US10714245B2 (en) 2014-12-19 2020-07-14 Beijing Zhong Ke San Huan Hi-Tech Co., Ltd. Method for preparing an R-T-B permanent magnet

Similar Documents

Publication Publication Date Title
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
KR101624245B1 (en) Rare Earth Permanent Magnet and Method Thereof
JP2008263208A (en) Corrosion-resistant rare earth magnet
CN103839640B (en) Permanent magnet, and motor and power generator using the same
WO2013146073A1 (en) Process for producing sintered r-t-b magnet
WO2002089153A1 (en) Solid material for magnet
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
CN110942881B (en) Rare earth magnet and method for producing same
Li et al. Bulk amorphous powder cores with low core loss by spark-plasma sintering Fe76Si9. 6B8. 4P6 amorphous powder with small amounts of SiO2
KR101744403B1 (en) Manufacturing method of rare-earth magnet
CN110211796B (en) Radially anisotropic multi-pole solid magnet and method and apparatus for producing the same
JP2001230108A (en) Method of manufacturing corrosion-resistant rare earth magnet
JP2019075493A (en) Magnet junction body
JP2007129106A (en) Rare-earth alloy system binderless magnet and its manufacturing method
JP2008045148A (en) Method for producing magnet and production apparatus therefor
KR102356630B1 (en) Rare-earth magnet
JP2021038463A (en) R-tm-b sintered magnet
JPH07169633A (en) Manufacture of yoke-united permanent magnet, and yoke-united permanent magnet manufactured by that manufacture
JP2007129105A (en) Rare-earth alloy system binderless magnet and its manufacturing method
JP4556236B2 (en) Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same
CN116612956A (en) Cerium-containing neodymium-iron-boron magnet with core-shell structure and preparation method and application thereof
WO2016035670A1 (en) Radially anisotropic sintered ring magnet and manufacturing method therefor
JP2001230107A (en) Corrosion-resistant rare earth magnet
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Effective date: 20110322

Free format text: JAPANESE INTERMEDIATE CODE: A02