JP2007129106A - Rare-earth alloy system binderless magnet and its manufacturing method - Google Patents

Rare-earth alloy system binderless magnet and its manufacturing method Download PDF

Info

Publication number
JP2007129106A
JP2007129106A JP2005321451A JP2005321451A JP2007129106A JP 2007129106 A JP2007129106 A JP 2007129106A JP 2005321451 A JP2005321451 A JP 2005321451A JP 2005321451 A JP2005321451 A JP 2005321451A JP 2007129106 A JP2007129106 A JP 2007129106A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
alloy
powder
binderless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005321451A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshimura
吉村  公志
Hirokazu Kanekiyo
裕和 金清
Toshio Mitsugi
敏夫 三次
Ikuo Uemoto
育男 上本
Kazuo Ishikawa
和男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kagaku Yakin Co Ltd
Proterial Ltd
Original Assignee
Nippon Kagaku Yakin Co Ltd
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kagaku Yakin Co Ltd, Neomax Co Ltd filed Critical Nippon Kagaku Yakin Co Ltd
Priority to JP2005321451A priority Critical patent/JP2007129106A/en
Publication of JP2007129106A publication Critical patent/JP2007129106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet excellent in a dimensional accuracy and a degree of freedom of shape, and excellent in a heat resistance and magnetic characteristic than a bond magnet. <P>SOLUTION: A method for manufacturing a rare-earth alloy binderless magnet comprises the steps of preparing the rare-earth system quenching alloy magnetic powder (A), forming an compression molding having a volume percentage of not less than 70% nor more than 95% of the rare-earth system quenching alloy magnetic powder sharing to total by cool compression molding the rare-earth system quenching alloy magnetic powder without the use of a resin binder (B), heat treating the compression molding at the temperature of not less than 350°C nor more than 800°C after the step (B) and forming a magnetic body (C), and forming a vapor metal plating film on the surface of the magnet body (D). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、強度に優れた希土類合金系バインダレス磁石およびその製造方法に関し、希土類急冷合金磁石粉末を超高圧下で圧縮成形することによって作製され、表面に気相めっき被膜が形成された磁石に関する。   The present invention relates to a rare earth alloy binderless magnet having excellent strength and a method for producing the same, and relates to a magnet produced by compression molding rare earth quenched alloy magnet powder under an ultrahigh pressure and having a vapor phase plating film formed on the surface. .

希土類系急冷合金磁石の粉末に樹脂からなるバインダを加えたボンド磁石は、寸法精度および形状の自由度に優れ、電子機器や電装部品などの用途に広く使用されている。しかしながら、このようなボンド磁石の耐熱温度は、使用される磁石粉末の磁気的な耐熱温度に加えて、磁石粉末の結合に使用される樹脂バインダの耐熱温度に制約される。例えば熱硬化性エポキシ樹脂を使用する圧縮ボンド磁石の場合、熱硬化性エポキシ樹脂の耐熱温度が低いため、磁石の常用が可能となる上限温度は最高でも100℃程度と低い。また、希土類系急冷合金磁石粉末を用いたボンド磁石は、酸化しやすい鉄や希土類を含むため、何の表面処理も行わずそのまま用いた場合には、酸化腐食による磁気特性の劣化や錆の発生などにより、必要とされる特性を満たさないことがあるため、何らかの表面処理を施されることが好ましいが、通常のボンド磁石は絶縁性を有する樹脂バインダを含有するため、電気めっき処理や金属蒸着被膜処理などの表面処理を行うことも困難である。   Bond magnets in which a resin binder is added to powders of rare-earth quenched alloy magnets are excellent in dimensional accuracy and flexibility in shape, and are widely used in applications such as electronic equipment and electrical components. However, the heat resistance temperature of such a bonded magnet is limited by the heat resistance temperature of the resin binder used for bonding the magnet powder in addition to the magnetic heat resistance temperature of the magnet powder used. For example, in the case of a compression bonded magnet using a thermosetting epoxy resin, since the heat resistant temperature of the thermosetting epoxy resin is low, the upper limit temperature at which the magnet can be used regularly is as low as about 100 ° C. at the maximum. In addition, bond magnets using rare earth-based rapidly quenched alloy magnet powder contain iron and rare earths that are easily oxidized, so when used as they are without any surface treatment, magnetic properties are deteriorated and rust is generated due to oxidative corrosion. It may be necessary to perform some surface treatment because it may not meet the required characteristics, but a normal bonded magnet contains an insulating resin binder, so electroplating or metal deposition It is also difficult to perform surface treatment such as coating treatment.

更に、通常のボンド磁石では、樹脂バインダを含むため、磁石粉末の体積比率を83%超に高めることができない。樹脂バインダは、磁石特性の発現に寄与しないため、焼結磁石に比べてボンド磁石の磁気特性は低くならざるを得ない。   Furthermore, since a normal bonded magnet includes a resin binder, the volume ratio of the magnet powder cannot be increased to more than 83%. Since the resin binder does not contribute to the manifestation of magnet characteristics, the magnetic characteristics of the bonded magnet must be lower than that of the sintered magnet.

なお、磁石粉末の体積比率が比較的高い圧縮ボンド磁石では、磁石粉末の体積比率は83%程度であるが、それでも、その最大エネルギー積は96kJ/m3(12MGOe)程度が限界である。 In the case of a compression bonded magnet having a relatively high volume ratio of magnet powder, the volume ratio of magnet powder is about 83%, but the maximum energy product is still limited to about 96 kJ / m 3 (12 MGOe).

近年、小型のスピンドルモータやステッピングモータや各種の小型センサには、例えば直径が10mm以下の超小型リング状磁石が用いられる。このような用途では、優れた成形性を有し、かつ磁気特性を向上させた永久磁石の実現が強く望まれているが、ボンド磁石の磁気特性では不充分になりつつある。   In recent years, for example, micro ring magnets having a diameter of 10 mm or less are used for small spindle motors, stepping motors, and various small sensors. In such applications, realization of permanent magnets having excellent moldability and improved magnetic properties is strongly desired, but the magnetic properties of bonded magnets are becoming insufficient.

ボンド磁石に比べて磁石粉末の体積比率が高い磁石として、フルデンス磁石が知られている。特許文献1は、ナノコンポジット急冷合金から作製したフルデンス磁石を開示している。フルデンス磁石は、樹脂バインダを用いずに急冷合金磁石粉末を圧縮し、高密度化することにより製造される。   As a magnet having a volume ratio of magnet powder higher than that of a bond magnet, a full-density magnet is known. Patent Document 1 discloses a full-density magnet made from a nanocomposite quenched alloy. A full-density magnet is manufactured by compressing a rapidly cooled alloy magnet powder without using a resin binder and increasing the density.

特許文献2は、ナノコンポジット磁石粉末に対して550℃以上720℃以下の温度で20MPa以上80MPa以下の圧力を印加し、圧縮成形することを開示している。こうして作製されたフルデンス磁石の密度は、磁石真密度の92%以上を達成する。   Patent Document 2 discloses compression molding by applying a pressure of 20 MPa or more and 80 MPa or less to a nanocomposite magnet powder at a temperature of 550 ° C. or more and 720 ° C. or less. The density of the full-density magnet thus produced achieves 92% or more of the true magnet density.

特許文献3は、包み材によって囲まれた磁粉純度99%のバインダレス磁石を開示し、特許文献4は、ナノ結晶磁性粉末から製造される圧粉磁心を開示している。
特開2004−14906号公報 特開2000−348919号公報 特開平10−270236号公報 特開2004−349585号公報
Patent Document 3 discloses a binderless magnet having a magnetic powder purity of 99% surrounded by a wrapping material, and Patent Document 4 discloses a powder magnetic core manufactured from nanocrystalline magnetic powder.
JP 2004-14906 A JP 2000-348919 A JP-A-10-270236 JP 2004-349585 A

特許文献1に開示されているようなフルデンス磁石は、磁石粉末の体積比率が高いので、ボンド磁石より高特性が期待されるが、ホットプレス等の熱間プレス技術を用いるため、プレスサイクルが長く、量産性に劣る。その結果、磁石の製造コストが大きく上昇するため、実用化が難しい。   A fluence magnet as disclosed in Patent Document 1 is expected to have higher characteristics than a bonded magnet because of its high volume ratio of magnet powder, but a hot press technology such as hot pressing is used, so that the press cycle is long. Inferior to mass productivity. As a result, the production cost of the magnet is greatly increased, so that practical application is difficult.

特許文献2に開示されている磁石は、放電プラズマ焼結法などにより、磁石粉末を高温に加熱しながら圧縮して作製される。この技術も、ホットプレスと同様にプレスサイクルが長く、量産性に劣る。   The magnet disclosed in Patent Document 2 is manufactured by compressing a magnet powder while heating it to a high temperature by a discharge plasma sintering method or the like. This technology also has a long press cycle and is inferior in mass productivity as in hot press.

特許文献3は、具体的な製造方法を開示しておらず、どのようにして高い磁粉体積比率が実現されるか不明である。また、特許文献4に開示される圧粉磁心では、磁石粉末粒子同士がガラスによって結合されている。ガラスの体積比率は、従来のボンド磁石における樹脂バインダの体積比率と同程度であると考えられる。   Patent Document 3 does not disclose a specific manufacturing method, and it is unclear how a high magnetic powder volume ratio is realized. Moreover, in the powder magnetic core disclosed in Patent Document 4, the magnet powder particles are bonded together by glass. The volume ratio of glass is considered to be approximately the same as the volume ratio of the resin binder in the conventional bonded magnet.

このように樹脂バインダを用いることなく磁石粉末を成形する従来技術では、量産性が低いか、あるいはボンド磁石と同程度の磁粉体積比率しか実現できない。   As described above, the conventional technique of forming magnet powder without using a resin binder can achieve low mass productivity or only a magnetic powder volume ratio comparable to that of a bonded magnet.

一方、実質的に磁粉が隙間無く結合した焼結磁石を製造するためには、1000〜1200℃という高温の焼結工程が不可欠である。焼結過程では液相が形成され、希土類リッチ相を含む粒界相が生じる。粒界相は、保磁力発現のために重要な働きを行うが、グリーン状態の粉末成形体は、焼結工程で大きく収縮するため、プレス工程後における形状変化が大きく、寸法精度や形状形成の自由度の点でボンド磁石に大きく劣る。   On the other hand, a high-temperature sintering process of 1000 to 1200 ° C. is indispensable in order to produce a sintered magnet in which magnetic powders are bonded substantially without gaps. In the sintering process, a liquid phase is formed, and a grain boundary phase including a rare earth-rich phase is generated. The grain boundary phase plays an important role for the development of coercive force, but since the green powder compact shrinks greatly in the sintering process, the shape change after the pressing process is large, resulting in dimensional accuracy and shape formation. Inferior to bonded magnets in terms of freedom.

本発明は、上記問題を解決するためになされたものであり、その主たる目的は、寸法精度や形状自由度に優れ、かつ、ボンド磁石よりも耐熱性や磁気特性に優れた磁石を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its main purpose is to provide a magnet that is excellent in dimensional accuracy and freedom of shape, and that is superior in heat resistance and magnetic properties than a bonded magnet. It is in.

本発明の希土類合金系バインダレス磁石は、希土類系急冷合金磁石粉末の粒子が樹脂バインダを介さずに結合した磁石体と、前記磁石体の表面に設けられた気相めっき被膜とを有する磁石であって、前記磁石体の全体に占める前記希土類系急冷合金磁石粉末の体積比率が70%以上95%以下である。   The rare earth alloy binderless magnet of the present invention is a magnet having a magnet body in which particles of a rare earth quenching alloy magnet powder are bonded without a resin binder, and a vapor phase plating film provided on the surface of the magnet body. The volume ratio of the rare earth-based rapidly quenched alloy magnet powder in the entire magnet body is 70% or more and 95% or less.

好ましい実施形態において、前記急冷合金磁石粉末の粒子は、前記急冷合金磁石粉末粒子からの析出物によって結合している。   In a preferred embodiment, the quenched alloy magnet powder particles are bonded by precipitates from the quenched alloy magnet powder particles.

好ましい実施形態において、前記急冷合金磁石粉末の粒子は、ホウ素を含有する鉄基希土類合金から形成されており、前記析出物は、鉄、希土類、およびホウ素からなる群から選択された少なくとも1種類の元素から構成されている。   In a preferred embodiment, the quenched alloy magnet powder particles are formed of an iron-based rare earth alloy containing boron, and the precipitate is at least one selected from the group consisting of iron, rare earth, and boron. It is composed of elements.

好ましい実施形態において、前記急冷合金磁石粉末の粒子にはクラックが形成されており、前記析出部の少なくとも一部は前記クラック内に存在している。   In a preferred embodiment, cracks are formed in the particles of the quenched alloy magnet powder, and at least a part of the precipitation portion is present in the cracks.

好ましい実施形態において、前記気相金属めっき被膜は、Al、Zn、Sn、Ni、Ti、Cuからなる群から選択された少なくとも1種の元素からなる金属、または前記金属の合金、酸化物、若しくは窒化物からなる少なくとも1層を含む。   In a preferred embodiment, the vapor phase metal plating film is a metal composed of at least one element selected from the group consisting of Al, Zn, Sn, Ni, Ti, and Cu, or an alloy, oxide, or the like of the metal. It includes at least one layer made of nitride.

好ましい実施形態において、前記希土類系急冷合金磁石粉末の粒子は、1種以上の強磁性結晶相を含有し、その平均結晶粒径が10nm以上300nm以下の範囲にある。   In a preferred embodiment, the particles of the rare earth-based quenched alloy magnet powder contain one or more ferromagnetic crystal phases and have an average crystal grain size in the range of 10 nm to 300 nm.

好ましい実施形態において、前記希土類系急冷合金磁石粉末の粒子は、硬磁性相および軟磁性相を含有するナノコンポジット磁石組織を有している。   In a preferred embodiment, the particles of the rare earth rapidly quenched alloy magnet powder have a nanocomposite magnet structure containing a hard magnetic phase and a soft magnetic phase.

好ましい実施形態において、密度が5.5g/cm3〜7.0g/cm3である。 In a preferred embodiment, a density of 5.5g / cm 3 ~7.0g / cm 3 .

好ましい実施形態において、組成式T100-x-y-zxyz(TはFe、または、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、QはBおよびCからなる群から選択された少なくとも1種の元素、RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素、Mは、Ti、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された少なくとも1種の金属元素)で表現され、組成比率x、y、およびzが、それぞれ、10<x≦35原子%、2≦y≦10原子%、および0≦z≦10原子%を満足する組成を有している。 In a preferred embodiment, the composition formula T 100-xyz Q x R y M z (T is a transition metal element including Fe or one or more elements selected from the group consisting of Co and Ni and Fe, Q is At least one element selected from the group consisting of B and C, R is at least one rare earth element substantially free of La and Ce, M is Ti, Al, Si, V, Cr, Mn, Cu Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, and at least one metal element selected from the group consisting of Pb) and a composition ratio x, y, and Each z has a composition satisfying 10 <x ≦ 35 atomic%, 2 ≦ y ≦ 10 atomic%, and 0 ≦ z ≦ 10 atomic%.

好ましい実施形態において、組成式T100-x-y-zxyz(TはFe、または、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、QはBおよびCからなる群から選択された少なくとも1種の元素、RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素、Mは、Ti、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された少なくとも1種の金属元素)で表現され、組成比率x、y、およびzが、それぞれ、4<x≦10原子%、6≦y<12原子%、および0≦z≦10原子%を満足する組成を有している。 In a preferred embodiment, the composition formula T 100-xyz Q x R y M z (T is a transition metal element including Fe or one or more elements selected from the group consisting of Co and Ni and Fe, Q is At least one element selected from the group consisting of B and C, R is at least one rare earth element substantially free of La and Ce, M is Ti, Al, Si, V, Cr, Mn, Cu Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, and at least one metal element selected from the group consisting of Pb) and a composition ratio x, y, and Each z has a composition satisfying 4 <x ≦ 10 atomic%, 6 ≦ y <12 atomic%, and 0 ≦ z ≦ 10 atomic%.

本発明による希土類合金系バインダレス磁石の製造方法は、希土類系急冷合金磁石粉末を用意する工程(A)と、樹脂バインダを用いずに前記希土類系急冷合金磁石粉末を冷間にて圧縮して成形することにより、全体に占める前記希土類系急冷合金磁石粉末の体積比率が70%以上95%以下の圧縮成形体を形成する工程(B)と、前記工程(B)の後に350℃以上800℃以下の温度で前記圧縮成形体に対して熱処理を施し、磁石体を形成する工程(C)と、前記磁石体の表面に気相金属めっき被膜を形成する工程(D)とを含む。   The method of manufacturing a rare earth alloy binderless magnet according to the present invention includes a step (A) of preparing a rare earth quenching alloy magnet powder, and compressing the rare earth quenching alloy magnet powder cold without using a resin binder. By forming, a step (B) of forming a compression-molded body in which the volume ratio of the rare earth-based quenched alloy powder occupying the whole is 70% to 95%, and 350 ° C to 800 ° C after the step (B). It includes a step (C) of forming a magnet body by heat-treating the compression molded body at the following temperature, and a step (D) of forming a vapor phase metal plating film on the surface of the magnet body.

好ましい実施形態において、前記工程(D)は、成膜装置に前記磁石体を挿入し、減圧下で前記磁石体を運動させながら成膜を行う工程を含む。   In a preferred embodiment, the step (D) includes a step of inserting the magnet body into a film forming apparatus and performing film formation while moving the magnet body under reduced pressure.

好ましい実施形態において、前記工程(B)では、500MPa以上2500MPa以下の圧力で前記希土類系急冷磁石用急冷合金磁石粉末を圧縮する。   In a preferred embodiment, in the step (B), the quenched alloy magnet powder for a rare earth quenched magnet is compressed at a pressure of 500 MPa to 2500 MPa.

好ましい実施形態において、前記工程(C)の熱処理は、圧力が1×10-2Pa以下の不活性ガス雰囲気中で実行する。 In a preferred embodiment, the heat treatment in the step (C) is performed in an inert gas atmosphere having a pressure of 1 × 10 −2 Pa or less.

好ましい実施形態において、前記工程(C)の熱処理は、露点が−40℃以下の不活性ガス雰囲気中で実行する。   In a preferred embodiment, the heat treatment in the step (C) is performed in an inert gas atmosphere having a dew point of −40 ° C. or lower.

本発明によれば、樹脂バインダを用いないため、磁石の耐熱温度が樹脂バインダの耐熱温度に制限されず、優れた耐熱性を発揮することができる。また、磁石粉末を樹脂バインダと混合して混練する工程が不要となるため、製造コストを低減することも可能になる。   According to the present invention, since no resin binder is used, the heat resistance temperature of the magnet is not limited to the heat resistance temperature of the resin binder, and excellent heat resistance can be exhibited. Moreover, since the process of mixing and kneading the magnet powder with the resin binder is not necessary, the manufacturing cost can be reduced.

更に、本発明によれば、磁石粉末の体積比率がボンド磁石よりも高いため、ボンド磁石に比べて磁石特性が向上する。従って、ボンド磁石では充分な磁石特性を得ることが困難であった直径4mm以下の小型磁石でも、本発明によれば優れた磁石特性を発揮することができる。   Furthermore, according to the present invention, since the volume ratio of the magnet powder is higher than that of the bonded magnet, the magnet characteristics are improved as compared with the bonded magnet. Therefore, even with a bonded magnet, it is difficult to obtain sufficient magnet characteristics, and even a small magnet having a diameter of 4 mm or less can exhibit excellent magnet characteristics according to the present invention.

また、本発明のバインダレス磁石は磁石体表面に気相めっき被膜を有しているため、磁石の強度および耐食性が向上している。   Moreover, since the binderless magnet of the present invention has a vapor-phase plating film on the surface of the magnet body, the strength and corrosion resistance of the magnet are improved.

本発明の希土類合金系バインダレス磁石は、希土類系急冷合金磁石粉末の粒子が樹脂バインダを介さずに結合した磁石であって、全体に占める希土類系急冷合金磁石粉末の体積比率が70%以上95%以下である。この希土類系急冷合金磁石粉末の粒子は、通常の高温焼結やホットプレスによってではなく、超高圧下での冷間プレス(冷間圧縮)によって結合している。なお、本発明における冷間プレスとは、プレス装置のダイやパンチに熱を加えない状態で圧縮成形を行うことを意味し、具体的には、熱間成形とはなり得ない温度(例えば500℃以下、典型的には100℃以下)で粉末を圧縮成形することを意味するものとする。   The rare earth alloy binderless magnet of the present invention is a magnet in which particles of a rare earth quenching alloy magnet powder are bonded without a resin binder, and the volume ratio of the rare earth quenching alloy magnet powder in the whole is 70% or more and 95. % Or less. The particles of the rare earth-based rapidly cooled alloy magnet powder are bonded not by ordinary high-temperature sintering or hot pressing but by cold pressing (cold compression) under ultra high pressure. In addition, the cold press in the present invention means that compression molding is performed without applying heat to the die or punch of the press device, and specifically, a temperature that cannot be hot forming (for example, 500). It shall mean that the powder is compression-molded at a temperature of ℃ or less, typically 100 ℃ or less.

このように樹脂バインダを用いることなく希土類系急冷合金磁石粉末粒子を強固に結合し、バルク状に成形するためには、従来、前述したようにホットプレスなどの熱間成形や高温焼結が必要であると考えられてきた。特にNd−Fe−B系急冷磁石のように硬度が極めて高い粉末粒子を対象とする場合は、圧縮成形時に800℃を超える高温に加熱することにより、液相を形成する焼結過程を進行させながら成形することが不可欠であるとの技術常識が存在した。   As described above, hot forming such as hot pressing and high-temperature sintering are conventionally required to firmly bond rare earth-based rapidly quenched alloy magnet powder particles without using a resin binder and to form them in bulk. Has been considered. In particular, when powder particles with extremely high hardness such as Nd—Fe—B type quenching magnets are targeted, the sintering process for forming a liquid phase is advanced by heating to a high temperature exceeding 800 ° C. during compression molding. However, there was technical common sense that molding was indispensable.

しかしながら、本発明者らは、このような技術常識にとらわれることなく、希土類系急冷合金磁石粉末に対する冷間での圧縮成形を種々試みた結果、圧縮に用いる金型の材質を適切に選択した上で、加工精度を高めれば、硬度の高い希土類系急冷合金磁石粉末であっても、500〜2500MPaの超高圧下で冷間圧縮成形を行うことが可能であり、これにより、その後、350℃以上800℃以下の低温で焼結を進行させることができ、バインダレス磁石を形成できること、しかも形成したバインダレス磁石は優れた磁石特性を発揮することを見出して、本発明を完成した。この温度範囲は、従来のセラミックスなどの粉末成形体を固相焼結する場合に必要な温度(典型的には1000℃以上の高温)や、従来の希土類系焼結磁石を液相焼結する場合に必要な温度に比べて格段に低い。このような低温焼結を行うことにより、結晶粒の粗大化を抑制しつつ、バインダレス磁石を形成することができる。   However, the present inventors have made various attempts to perform cold compression molding of rare-earth quenched alloy magnet powder without being bound by such technical common sense, and as a result, appropriately selected the mold material used for compression. If the processing accuracy is increased, it is possible to perform cold compression molding under an ultra-high pressure of 500 to 2500 MPa even with a rare earth-based rapidly cooled alloy magnet powder having a high hardness. It was found that sintering can proceed at a low temperature of 800 ° C. or lower, a binderless magnet can be formed, and that the formed binderless magnet exhibits excellent magnetic properties, and the present invention has been completed. This temperature range is the temperature required for solid-phase sintering of powdered compacts such as conventional ceramics (typically a high temperature of 1000 ° C. or higher) and liquid-phase sintering of conventional rare earth sintered magnets. It is much lower than the required temperature. By performing such low-temperature sintering, a binderless magnet can be formed while suppressing coarsening of crystal grains.

本発明者らは、このように従来成しえなかった超高圧下の冷間圧縮成形により従来成しえなかった低温での焼結を進行させることができるようになった理由を調べたところ、バインダレス磁石を形成する急冷合金磁石粉末の個々の粒子間に、急冷合金磁石粉末に由来する成分が析出しており、この析出物により、各粒子が相互に結合していることを見出した。また、急冷合金磁石粉末の粒子内には超高圧下の冷間圧縮成形によってクラックが発生し、そのクラックも同様の析出物により再結合していることが観察された。   The present inventors have investigated the reason why it has become possible to proceed with sintering at a low temperature that could not be achieved conventionally by cold compression molding under ultra-high pressure that could not be achieved conventionally. The components derived from the quenched alloy magnet powder are deposited between the individual particles of the quenched alloy magnet powder forming the binderless magnet, and the precipitates have found that the particles are bonded to each other. . It was also observed that cracks were generated in the quenched alloy magnet powder particles by cold compression molding under ultra-high pressure, and the cracks were recombined by similar precipitates.

本発明では、急冷合金磁石粉末粒子の表面および内部が超高圧下の冷間圧縮により割れ、それによって急冷合金磁石粉末粒子の表面および内部に非常に活性な新生破面が現れる。そのままでは、機械的強度は不充分なものとなるが、本発明では、超高圧圧縮を行った後に比較的低い温度で熱処理を行うことにより、急冷合金磁石粉末に由来する成分を新生破面から析出させる。こうして形成された析出物が粒子間にあって結合に大きく寄与しているものと推定される。このような析出物の成分は、急冷合金磁石の組成によって異なると考えられるが、発明者らの実験結果によると、少なくともFe、硼素、希土類元素の少なくとも1種類を含んでいる。   In the present invention, the surface and the inside of the quenched alloy magnet powder particles are cracked by cold compression under ultra-high pressure, whereby a very active new fracture surface appears on the surface and inside of the quenched alloy magnet powder particles. As it is, the mechanical strength is insufficient, but in the present invention, by performing heat treatment at a relatively low temperature after performing ultra-high pressure compression, components derived from the quenched alloy magnet powder can be removed from the newly broken surface. Precipitate. It is presumed that the precipitates thus formed are between the particles and greatly contribute to bonding. Such a precipitate component is considered to vary depending on the composition of the quenched alloy magnet, but according to the results of experiments by the inventors, it contains at least one of Fe, boron, and rare earth elements.

このような超高圧圧縮および熱処理によって結合した粒子の間には、微小な空隙が残存しており、そのような空隙の体積比率は、成形された磁石全体の体積に対して5%以上30%以下の範囲にある。圧縮成形後に、このような空隙の一部が封孔などを目的として樹脂や低融点金属(例えば、亜鉛、スズ、Al−Mn)などによって埋められても良いが、そのような樹脂は、主たるバインダとしては機能せず、本願発明の磁石を形成する各々の急冷合金磁石粉末の粒子間の主たる結合は、上記析出物によってなされる。   Microscopic voids remain between particles bonded by such ultra-high pressure compression and heat treatment, and the volume ratio of such voids is 5% or more and 30% with respect to the total volume of the molded magnet. It is in the following range. After compression molding, a part of such voids may be filled with a resin or a low melting point metal (for example, zinc, tin, Al-Mn) for the purpose of sealing or the like, but such a resin is mainly used. The main bond between the particles of each of the quenched alloy magnet powders that does not function as a binder and forms the magnet of the present invention is made by the precipitates.

高温焼結によって作製された従来の希土類焼結磁石では、主相として機能する結晶粒(グレイン)は、ハード磁性を有するNd−Fe−B系化合物から形成されている。一方、結晶粒の間には、非磁性材料からなる粒界相が存在しているため、希土類焼結磁石中に空隙はほとんど存在していない。この希土類焼結磁石では、主相結晶粒が粒界相によって仕切られた核発生型の磁気特性発現機構を有することにより、高い保磁力を発現する上で極めて重要であることが知られている。   In a conventional rare earth sintered magnet produced by high-temperature sintering, crystal grains (grains) functioning as a main phase are formed from an Nd—Fe—B compound having hard magnetism. On the other hand, since a grain boundary phase made of a nonmagnetic material exists between crystal grains, there are almost no voids in the rare earth sintered magnet. This rare earth sintered magnet is known to be extremely important for developing a high coercive force by having a nucleation type magnetic property development mechanism in which main phase crystal grains are partitioned by a grain boundary phase. .

これに対して、本発明の希土類合金系バインダレス磁石では、相互に結合した個々の粉末粒子の間には粒界相として機能する合金は存在していない。それでも高い保磁力を発現することができる理由は、バインダレス磁石に用いられる磁石粉末を構成する微細金属組織の平均結晶粒径が「単磁区結晶粒径」以下の大きさに調整されているからである。平均結晶粒径が単磁区結晶粒径以下であれば、各結晶粒は単磁区構造となりNd−Fe−B系希土類焼結磁石に見られるような多磁区構造を前提とする核発生型の固有保磁力発現ではなく、単磁区の各結晶粒が交換相互作用により結びつき固有保磁力を発現する微細結晶型の磁気特性発現機構を有することになり、従来の希土類焼結磁石のように液相焼結温度以上の高温で焼結工程を行わなくとも、液相焼結によって形成される粒界相が不要であるため、高い固有保磁力と優れた減磁曲線の角形性を実現することができる。   In contrast, in the rare earth alloy binderless magnet of the present invention, there is no alloy that functions as a grain boundary phase between the individual powder particles bonded to each other. The reason why high coercive force can still be exhibited is that the average crystal grain size of the fine metal structure constituting the magnet powder used in the binderless magnet is adjusted to be smaller than the “single domain crystal grain size”. It is. If the average crystal grain size is equal to or less than the single domain grain size, each crystal grain has a single domain structure and is inherent to a nucleation type that assumes a multi-domain structure as found in Nd-Fe-B rare earth sintered magnets. Instead of coercive force, each crystal grain in a single magnetic domain is linked by exchange interaction, and has a fine crystal type magnetic property expression mechanism that expresses intrinsic coercive force. Even if the sintering process is not performed at a temperature higher than the sintering temperature, a grain boundary phase formed by liquid phase sintering is not required, so that high intrinsic coercive force and excellent demagnetization curve squareness can be realized. .

本発明では、平均結晶粒径がナノメートルオーダーであるナノコンポジット磁石の粉末や、結晶化熱処理によってナノメートルオーダーの微細結晶組織が形成される非晶質急冷合金磁石の粉末を好適に用いることができる。   In the present invention, it is preferable to use a nanocomposite magnet powder having an average crystal grain size on the order of nanometers, or an amorphous quenched alloy magnet powder in which a fine crystal structure of nanometer order is formed by crystallization heat treatment. it can.

MQI社から販売されている磁石粉末(いわゆるMQ粉)も本発明の磁石粉末として採用できるが、これらは希土類リッチ相を含有しているため、焼結時に希土類の酸化物が形成し、磁石粉末同士が結合しにくい可能性がある。このため、これらの磁石粉末を焼結する場合は、焼結工程を10-2Pa以下の真空中で実行することが望ましい。 Magnet powder sold by MQI (so-called MQ powder) can also be used as the magnet powder of the present invention. However, since these contain a rare earth-rich phase, rare earth oxides are formed during sintering, and the magnet powder. There is a possibility that it is difficult to bond each other. For this reason, when these magnet powders are sintered, it is desirable to perform the sintering process in a vacuum of 10 −2 Pa or less.

これに対し、硬磁性相及び軟磁性相を含むナノコンポジット磁石であれば、希土類リッチ相が存在しないことから、冷間、超高圧下で圧縮成形した後、不活性雰囲気中でも希土類の酸化を進行させることなく熱処理工程を行うことができる。圧縮成形後の熱処理は不可欠ではないが、このような熱処理を行うことにより、冷間、超高圧下で圧縮成形された磁石体の機械的強度を更に高めることができる。このため、本発明の希土類バインダレス磁石には、希土類含有量の少ない軟磁性相に鉄基硼化物を含有するナノコンポジット磁石粉末を用いることが好ましい。   In contrast, a nanocomposite magnet containing a hard magnetic phase and a soft magnetic phase does not have a rare earth-rich phase. Therefore, after compression molding under cold and ultra-high pressure, oxidation of the rare earth proceeds in an inert atmosphere. The heat treatment step can be performed without causing the heat treatment. Although heat treatment after compression molding is not indispensable, by performing such heat treatment, it is possible to further increase the mechanical strength of the magnet body that is compression molded under cold and ultra high pressure. Therefore, for the rare earth binderless magnet of the present invention, it is preferable to use a nanocomposite magnet powder containing an iron-based boride in a soft magnetic phase with a low rare earth content.

このようなナノコンポジット磁石粉末としては、組成式がT100-x-y-zxyzで表現される希土類系ナノコンポジット磁石粉末を好適に用いることができる。ここで、TはFe、または、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、QはBおよびCからなる群から選択された少なくとも1種の元素、RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素、Mは、Ti、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された少なくとも1種の金属元素である。組成比率x、y、およびzが、それぞれ、10<x≦35原子%、2≦y≦10原子%、および0≦z≦10原子%を満足する。 As such a nanocomposite magnet powder, a rare earth nanocomposite magnet powder whose composition formula is represented by T 100-xyz Q x R y M z can be suitably used. Here, T is a transition metal element containing Fe or one or more elements selected from the group consisting of Co and Ni and Fe, and Q is at least one element selected from the group consisting of B and C , R is at least one rare earth element substantially free of La and Ce, M is Ti, Al, Si, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, At least one metal element selected from the group consisting of Ta, W, Pt, Au, and Pb. The composition ratios x, y, and z satisfy 10 <x ≦ 35 atomic%, 2 ≦ y ≦ 10 atomic%, and 0 ≦ z ≦ 10 atomic%, respectively.

このような組成のナノコンポジット磁石粉末では、磁石を構成する硬磁性相がR2Fe14B型化合物の結晶粒から形成され、軟磁性相が鉄基硼化物またはα−Feの結晶粒から形成される。このコンポジット磁石粉末は、上記組成を有する合金の溶湯を液体急冷法によって急冷凝固させることによって作製される。 In the nanocomposite magnet powder having such a composition, the hard magnetic phase constituting the magnet is formed from crystal grains of R 2 Fe 14 B type compound, and the soft magnetic phase is formed from crystal grains of iron-based boride or α-Fe. Is done. The composite magnet powder is produced by rapidly solidifying a molten alloy having the above composition by a liquid quenching method.

また本発明は、主たる軟磁性相としてα―Fe相を含有するナノコンポジット磁石や粒界に存在する希土類リッチ相が少ないR2Fe14B単相系磁石を用いることもできる。このようなナノコンポジット磁石としては、組成式がT100-x-y-zxyzで表現される希土類系ナノコンポジット磁石粉末を好適に用いることができる。ここでTはFe、または、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、QはBおよびCからなる群から選択された少なくとも1種の元素、RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素、Mは、Ti、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された少なくとも1種の金属元素で表現され、組成比率x、y、およびzが、それぞれ、4<x≦10原子%、6≦y<12原子%、および0≦z≦10原子%を満足する。 In the present invention, a nanocomposite magnet containing an α-Fe phase as a main soft magnetic phase or an R 2 Fe 14 B single-phase magnet with few rare earth-rich phases existing at grain boundaries can also be used. As such a nanocomposite magnet, a rare earth nanocomposite magnet powder whose composition formula is represented by T 100-xyz Q x R y M z can be suitably used. Here, T is a transition metal element including Fe or one or more elements selected from the group consisting of Fe or Co and Ni and Fe, Q is at least one element selected from the group consisting of B and C, R is at least one rare earth element substantially free of La and Ce, M is Ti, Al, Si, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta , W, Pt, Au, and Pb, and the composition ratios x, y, and z are 4 <x ≦ 10 atomic%, 6 ≦ y <, respectively. 12 atomic% and 0 ≦ z ≦ 10 atomic% are satisfied.

本発明によるバインダレス磁石では、磁石粉末の体積比率が全体の70%以上95%以下の範囲内にあるが、従来のボンド磁石よりも優れた永久磁石特性を発揮させるには、この体積比率の下限を75%以上に設定することが好ましい。磁石粉末の体積比率が上昇するほど磁石特性が向上するため、この体積比率の下限は85%以上に設定することが、より好ましい。しかし、成形体の強度や、金型の耐久性、量産性を考慮すれば磁石粉末の体積比率の上限は92%が好ましく、90%が更に好ましい。   In the binderless magnet according to the present invention, the volume ratio of the magnet powder is in the range of 70% to 95% of the whole, but in order to exhibit the permanent magnet characteristics superior to the conventional bonded magnet, It is preferable to set the lower limit to 75% or more. Since the magnet characteristics improve as the volume ratio of the magnet powder increases, the lower limit of the volume ratio is more preferably set to 85% or more. However, the upper limit of the volume ratio of the magnet powder is preferably 92% and more preferably 90% in consideration of the strength of the molded body, the durability of the mold, and mass productivity.

2Fe14B型化合物を主相として含有する磁石粉末を用いる場合、最終的に得られるバインダレス磁石の密度は5.5g/cm3以上7.0g/cm3以下の範囲にある。バインダレス磁石の密度の好ましい範囲は、6.3g/cm3以上6.7g/cm3以下であり、更に好ましい範囲は、6.5g/cm3以上6.7g/cm3以下である。従来の樹脂バインダを用いた圧縮ボンド磁石では、磁石体全体の密度は、5.5g/cm3〜6.2g/cm3程度の範囲にある。両者を比較するとわかるように、本発明のバインダレス磁石の方が相対的に高い密度が得られ、その結果、磁気特性も優れたものとなる。 When a magnet powder containing an R 2 Fe 14 B type compound as a main phase is used, the density of the finally obtained binderless magnet is in the range of 5.5 g / cm 3 to 7.0 g / cm 3 . A preferable range of the density of the binderless magnet is 6.3 g / cm 3 or more and 6.7 g / cm 3 or less, and a more preferable range is 6.5 g / cm 3 or more and 6.7 g / cm 3 or less. The compression bonded magnet using a conventional resin binder, the density of the entire magnet body is in the range of about 5.5g / cm 3 ~6.2g / cm 3 . As can be seen by comparing the two, the binderless magnet of the present invention has a relatively higher density, and as a result, the magnetic properties are also excellent.

本発明のバインダレス磁石では、使用される磁石粉末を構成する微細金属組織の平均結晶粒径が10nm以上300nm以下の範囲にあることが好ましい。平均結晶粒径が、この範囲の加減よりも小さいと、固有保磁力が低下し、この範囲の上限よりも大きいと、各結晶粒間に働く交換相互作用が低下する。ただし、上記の平均結晶粒径が単磁区結晶粒径を超えていても、平均結晶粒径が5μm以下であれば、特定の使用環境下(磁石の動作点が高い場合)で使用することが可能である。   In the binderless magnet of the present invention, the average crystal grain size of the fine metal structure constituting the magnet powder used is preferably in the range of 10 nm to 300 nm. When the average crystal grain size is smaller than this range, the intrinsic coercive force is lowered. When the average grain size is larger than the upper limit of this range, the exchange interaction acting between the crystal grains is lowered. However, even if the above average crystal grain size exceeds the single domain crystal grain size, the average crystal grain size can be used in a specific usage environment (when the operating point of the magnet is high) if the average crystal grain size is 5 μm or less. Is possible.

本発明のバインダレス磁石は、表面に気相めっき被膜を有する。めっき被膜を成膜する前の磁石体は、通常の使用であれば十分耐えうる強度を有しているが、従来の高温焼結磁石に比べると本質的に機械強度が弱く、割れや欠けを生じやすい。そのため、モータなどにめっき被膜を成膜していない磁石体をそのまま用いようとすると、モータ組み込み時に磁石体が破壊したり、モータ動作時に磁石体表面から脱落した粒子が磁石体を組み込んだ部品内に飛散しモータ動作に影響を与えるなど、種々の問題を引き起こす可能性がある。そのために、表面に金属やその酸化物、窒化物などの被膜を有することによって、磁石体の機械的強度を補うことで、モータなどにも好適に使用できる。   The binderless magnet of the present invention has a vapor plating film on the surface. The magnet body before the formation of the plating film has sufficient strength to withstand normal use, but it is inherently weaker in mechanical strength than conventional high-temperature sintered magnets, and does not crack or chip. Prone to occur. For this reason, if you attempt to use a magnet body that does not have a plating coating on the motor, etc., the magnet body will be destroyed when the motor is installed, or particles that have fallen off the surface of the magnet body when the motor is installed inside the part This may cause various problems such as splashing on the motor and affecting motor operation. Therefore, it can be suitably used for a motor or the like by supplementing the mechanical strength of the magnet body by having a coating film of a metal, its oxide or nitride on the surface.

(製造方法)
以下、本発明による希土類合金系バインダレス磁石の製造方法の好ましい実施形態を説明する。
(Production method)
Hereinafter, a preferred embodiment of a method for producing a rare earth alloy binderless magnet according to the present invention will be described.

まず、本発明のバインダレス磁石の製造に使用する希土類系急冷合金磁石粉末を用意する。この粉末は、上述した組成を有する合金の溶湯をメルトスピニング法やストリップキャスト法などのロール急冷法によって急冷した後、粉砕工程を経て製造される。このようなロール急冷法を用いる代わりに、合金の溶湯をアトマイズ法によって急冷しても製造することができる。希土類系急冷合金磁石粉末の平均粒径は300μm以下であることが好ましい。粉末の平均粒径は30μm以上250μm以下の範囲にあることがより好ましく、50μm以上200μm以下の範囲にあることが更に好ましい。また、圧縮成型後における粒子間の隙間空間を減少させ、磁石体の密度を高めるという観点からは、粒度分布が2つのピークを有することが好ましい。   First, a rare earth-based rapidly cooled alloy magnet powder used for manufacturing the binderless magnet of the present invention is prepared. This powder is manufactured through a pulverization step after quenching a molten alloy having the above-described composition by a roll quenching method such as a melt spinning method or a strip casting method. Instead of using such a roll quenching method, the molten alloy can also be manufactured by quenching by an atomizing method. The average particle size of the rare earth quenched alloy magnet powder is preferably 300 μm or less. The average particle size of the powder is more preferably in the range of 30 μm to 250 μm, and still more preferably in the range of 50 μm to 200 μm. Moreover, it is preferable that a particle size distribution has two peaks from a viewpoint of reducing the space between the particles after compression molding and increasing the density of the magnet body.

次に、こうして得られた希土類系急冷合金磁石粉末を冷間、超高圧で圧縮して成形する。本発明の好ましい実施形態では、500℃以下、典型的には100℃以下の温度環境で冷間圧縮成形を実行するため、圧縮成形中に粉末粒子の結晶化は進行しない。本発明では、圧縮成形前における粉末粒子は、全体がほぼ結晶化された状態にあってもよいし、また、非晶質部分を多く有していても良い。粉末粒子が非晶質相を多く含む場合は、超高圧成形の後に、結晶化のための熱処理を行うことが好ましいが、超高圧成形の後に行う焼結工程で、結晶化のための熱処理を兼ねてもよい。   Next, the rare earth-based rapidly quenched alloy magnet powder thus obtained is molded by being compressed at an ultrahigh pressure in the cold. In a preferred embodiment of the present invention, since the cold compression molding is performed in a temperature environment of 500 ° C. or lower, typically 100 ° C. or lower, crystallization of the powder particles does not proceed during the compression molding. In the present invention, the powder particles before compression molding may be in a substantially crystallized state as a whole, or may have many amorphous parts. When the powder particles contain a lot of amorphous phase, it is preferable to perform heat treatment for crystallization after ultra-high pressure molding, but in the sintering process performed after ultra-high pressure molding, heat treatment for crystallization is performed. You may also serve.

超高圧下での冷間圧縮成形時における金型の損傷を低減するためには、希土類系急冷合金磁石粉末に対して成形前にステアリン酸カルシウムなどの滑材などを添加・混合しておくことが好ましい。   In order to reduce die damage during cold compression molding under ultra-high pressure, it is necessary to add and mix a lubricant such as calcium stearate to the rare-earth quenched alloy magnet powder before molding. preferable.

図1は、本発明の実施に好適に使用することができる超高圧粉末プレス装置の概略構成を示す断面図である。図1の装置は、キャビティ内に充填された粉末材料2を高い圧力で一軸プレスすることのできる装置であって、キャビティの側面を規定する内面が形成されたダイ4と、キャビティの底面を規定する下側加圧面を有する下パンチ6と、下側加圧面と対向する上側加圧面を有する上パンチ8とを備えている。ダイ4、下パンチ6および/または上パンチ8は、不図示の駆動装置によって上下移動する。   FIG. 1 is a cross-sectional view showing a schematic configuration of an ultra-high pressure powder press apparatus that can be suitably used in the practice of the present invention. The apparatus of FIG. 1 is an apparatus capable of uniaxially pressing the powder material 2 filled in the cavity at high pressure, and defines a die 4 having an inner surface that defines the side surface of the cavity, and a bottom surface of the cavity. And a lower punch 6 having a lower pressure surface and an upper punch 8 having an upper pressure surface facing the lower pressure surface. The die 4, the lower punch 6 and / or the upper punch 8 are moved up and down by a driving device (not shown).

図1(a)に示す状態では、キャビティの上方は開放されており、キャビティの内部に磁石粉末2が充填される。この後、図1(b)に示すように、上パンチ8が下降するか、あるいは、ダイ4および下パンチ6が相対的に上昇することにより、キャビティ内の磁石粉末2が圧縮成形される。   In the state shown in FIG. 1A, the upper part of the cavity is opened, and the magnet powder 2 is filled in the cavity. Thereafter, as shown in FIG. 1B, the upper punch 8 is lowered or the die 4 and the lower punch 6 are relatively raised, whereby the magnet powder 2 in the cavity is compression-molded.

ダイ4および上下パンチ6、8は、例えば超硬合金や粉末ハイスから形成されている。ダイ4および上下パンチ6、8は、上記のものに限定されず、SKS、SKD、SKHなどの高強度材料を使用することもできる。   The die 4 and the upper and lower punches 6 and 8 are made of, for example, cemented carbide or powder high speed. The die 4 and the upper and lower punches 6 and 8 are not limited to those described above, and high strength materials such as SKS, SKD, and SKH can also be used.

これらの高強度材料は、硬い反面、脆い性質を有しているため、加圧方向が僅かでもずれると、容易に破損する。したがって、本発明で実施するような超高圧成形を可能にするには、ダイ4および上下パンチ6、8の中心軸のずれおよび傾きの精度を0.01mm以下にする必要がある。この軸ずれや軸傾きが大きいと、超高圧印加時に上下パンチ6、8が座屈し、破損してしまう。この問題は、成形体のサイズが小さくなるほど、上下パンチ6、8の軸径を小さくなるため、顕著に発生する。   These high-strength materials are hard, but have brittle properties, and therefore easily break when the pressing direction is slightly shifted. Therefore, in order to enable the ultra-high pressure forming as in the present invention, it is necessary to set the accuracy of the deviation and inclination of the central axis of the die 4 and the upper and lower punches 6 and 8 to 0.01 mm or less. If this axial deviation or axial inclination is large, the upper and lower punches 6 and 8 are buckled and damaged when an ultrahigh pressure is applied. This problem occurs remarkably because the shaft diameters of the upper and lower punches 6 and 8 become smaller as the size of the compact becomes smaller.

本実施形態で使用する超高圧粉末プレス装置は、上下パンチ6、8の破損を防止、従来は困難であったような超高圧プレスを安定して実施するため、図2に示す構成を備えることが望ましい。以下、図2に示す高圧粉末プレス装置の構成を説明する。   The ultra-high pressure powder press apparatus used in the present embodiment is provided with the configuration shown in FIG. 2 in order to prevent damage to the upper and lower punches 6 and 8 and to stably carry out an ultra-high pressure press that has been difficult in the past. Is desirable. Hereinafter, the configuration of the high-pressure powder press apparatus shown in FIG. 2 will be described.

図2の装置では、固定ダイプレート14がダイ4を固定し、このダイ4の貫通孔に下パンチ6が挿入される。下パンチ6は下部ラム16によって上下するが、上パンチ8は、上パンチ外径補強ガイド28によって補強されており、上部ラム18によって上下動する。上部ラム18が降下し、外径補強ガイド28の下端がダイ4の上面に接触した後は、上パンチ補強ガイド28の降下は停止するが、上パンチ8は更に降下し、ダイ4の貫通孔の内部に侵入する。上パンチ外径補強ガイド28を設けることにより、超高圧下における上パンチ8の耐久性を向上させることができる。   In the apparatus of FIG. 2, the fixed die plate 14 fixes the die 4, and the lower punch 6 is inserted into the through hole of the die 4. The lower punch 6 moves up and down by the lower ram 16, while the upper punch 8 is reinforced by the upper punch outer diameter reinforcing guide 28 and moves up and down by the upper ram 18. After the upper ram 18 is lowered and the lower end of the outer diameter reinforcing guide 28 comes into contact with the upper surface of the die 4, the lowering of the upper punch reinforcing guide 28 is stopped, but the upper punch 8 is further lowered and the through hole of the die 4 is lowered. Intrude inside. By providing the upper punch outer diameter reinforcing guide 28, the durability of the upper punch 8 under an ultrahigh pressure can be improved.

このプレス装置は、固定ダイプレート14の中心を基準軸として対称に配置された一対のリニアガイドレール30a、30bを備えている。上部ラム18および下部ラム16は、リニアガイドレール30a、30bによって連通し、上下に摺動する。また、図2に示すプレス装置では、直進(強振)式フィーダを採用しているので、フィーダカップ32の厚さHを薄くすることができる。このことにより、上パンチ8が上方に退避しているときの上パンチ8とダイ4との間隙を狭くすることができる。この間隙が狭いほど、上パンチ8の上下移動量が低減するため、上下動に伴って生じやすい軸ずれや軸傾きを低減できる。   This press apparatus includes a pair of linear guide rails 30a and 30b arranged symmetrically with the center of the fixed die plate 14 as a reference axis. The upper ram 18 and the lower ram 16 communicate with each other by linear guide rails 30a and 30b and slide up and down. Further, in the press apparatus shown in FIG. 2, the thickness (H) of the feeder cup 32 can be reduced because the linear (strong vibration) type feeder is employed. As a result, the gap between the upper punch 8 and the die 4 when the upper punch 8 is retracted upward can be reduced. The narrower the gap is, the lower the amount of vertical movement of the upper punch 8 is, so that it is possible to reduce the axis deviation and the axis inclination that tend to occur with the vertical movement.

従来の粉末プレス装置では、上部ラムの上下摺動軸と下部ラムの上下摺動軸とが分離していたため、軸ずれや軸の傾きが生じやすく、その精度は0.04程度であった。これに対して、図2の構成を備える超高圧粉末プレス装置では、上部ラム18および下部ラム16の上下動がリニアガイドレール30a、30bによって規制されるため、軸ずれおよび軸傾きの精度を0.01mm以下に抑えることができる。   In the conventional powder press apparatus, the vertical sliding shaft of the upper ram and the vertical sliding shaft of the lower ram are separated from each other, so that an axis deviation or an inclination of the shaft is likely to occur, and the accuracy is about 0.04. On the other hand, in the ultra-high pressure powder press apparatus having the configuration shown in FIG. 2, the vertical movement of the upper ram 18 and the lower ram 16 is restricted by the linear guide rails 30a and 30b. .01 mm or less.

本発明者の実験によると、磁石粉末2に対する圧縮成形は、500MPa以上2500MPa以下の圧力を印加して行うことが好ましい。バインダレス磁石における磁石粉末の体積比率を大きくし、磁気特性を向上させるという観点からは圧力を1300MPa以上、さらには1500MPa以上、さらには1700MPa以上とすることが好ましく、また、金型の耐久性および量産性を考慮した場合は、圧力を2000MPa以下に設定することが望ましい。圧力が上記の下限値よりも低い場合は、粉末粒子同士の結合力が低下するため、成形後の機械的強度が不充分なものとなり、ハンドリング時に磁石の割れや欠けなどが発生し得る。一方、圧縮成形時の圧力が上記の上限値を超えて大きくなると、金型への負荷が大きくなりすぎるため、量産技術として採用することが難しくなる。   According to the experiments of the present inventors, it is preferable that the compression molding for the magnet powder 2 is performed by applying a pressure of 500 MPa to 2500 MPa. From the viewpoint of increasing the volume ratio of the magnet powder in the binderless magnet and improving the magnetic properties, the pressure is preferably 1300 MPa or more, more preferably 1500 MPa or more, and further preferably 1700 MPa or more. In consideration of mass productivity, it is desirable to set the pressure to 2000 MPa or less. When the pressure is lower than the above lower limit value, the bonding strength between the powder particles is reduced, so that the mechanical strength after molding becomes insufficient, and a magnet may be cracked or chipped during handling. On the other hand, if the pressure at the time of compression molding exceeds the above upper limit value, the load on the mold becomes too large, making it difficult to adopt as a mass production technique.

こうして得られた圧縮成形体10に対しては、成形後に熱処理を施す。この熱処理により、磁石粉末粒子の表面および内部のクラック部分に、急冷合金磁石粉末を由来とする成分が析出し、この析出物により各々の粒子が結合する。熱処理温度が350℃よりも低くなると、急冷合金磁石粉末を由来とする成分が析出し、この析出物により各々の粒子が結合する効果が得られず、逆に800℃を超える高温になると、圧縮成形体を形成する磁石粉末内の結晶粒が粗大化して磁気特性の低下を招く可能性がある。このため、熱処理温度は350℃以上800℃以下の範囲内に設定することが好ましく、400℃以上600℃以下の範囲に設定することが更に好ましい。熱処理時間は、熱処理温度にも依存するが、5分以上6時間以下の範囲内に設定され得る。   The compression molded body 10 thus obtained is subjected to heat treatment after molding. By this heat treatment, a component derived from the quenched alloy magnet powder is deposited on the surface of the magnet powder particles and on the internal cracks, and the particles are bonded by the precipitate. When the heat treatment temperature is lower than 350 ° C., a component derived from the quenched alloy magnet powder is precipitated, and the effect of bonding the particles by this precipitate cannot be obtained. There is a possibility that crystal grains in the magnet powder forming the compact are coarsened and the magnetic properties are deteriorated. For this reason, the heat treatment temperature is preferably set in a range of 350 ° C. or higher and 800 ° C. or lower, and more preferably set in a range of 400 ° C. or higher and 600 ° C. or lower. The heat treatment time depends on the heat treatment temperature, but can be set within a range of 5 minutes to 6 hours.

なお、圧縮成形時点で磁石粉末の粒子が非晶質相を有している場合、上記の熱処理により結晶化を進行させることができる。結晶化による発熱を利用して、低温でも焼結を進行させることも可能である。   In addition, when the particles of the magnet powder have an amorphous phase at the time of compression molding, crystallization can be advanced by the above heat treatment. It is also possible to advance the sintering even at a low temperature by utilizing the heat generated by crystallization.

熱処理中に成形体10が酸化することを抑制するためには、上記熱処理を不活性ガス雰囲気中で行うことが好ましい。ただし、不活性ガス中に微量でも酸素や水蒸気が含まれていると、成形体の酸化が避けられないため、酸素や水蒸気の分圧を可能な限り低減することが好ましい。このため、熱処理雰囲気ガスの圧力は、1×10-2Pa以下に低下させることが望ましく、露点が−40℃以下のドライガスを用いることが更に望ましい。 In order to prevent the molded body 10 from being oxidized during the heat treatment, the heat treatment is preferably performed in an inert gas atmosphere. However, if the inert gas contains a small amount of oxygen or water vapor, it is inevitable to oxidize the molded body. Therefore, it is preferable to reduce the partial pressure of oxygen or water vapor as much as possible. For this reason, it is desirable to reduce the pressure of the heat treatment atmosphere gas to 1 × 10 −2 Pa or less, and it is more desirable to use a dry gas having a dew point of −40 ° C. or less.

上述の熱処理により、粉末粒子間で焼結プロセスと同様のプロセスが進行するが、希土類焼結磁石のように液相化は生じず、粒子間には隙間が継続して存在する。また、このように圧縮成形後に行う熱処理によると、粉末粒子間の結合程度が高まり、圧縮成形体の機械的強度が向上する。熱処理温度が800℃に近い高温である場合、粉末粒子間で焼結プロセスと同様のプロセスが進行するが、希土類焼結磁石のように液相化は生じず、粒子間には隙間が継続して存在する。磁石特性を高めるという観点から、上記の熱処理は不可欠ではないが、バインダレス磁石の機械的強度を実用レベルに高めるためには、圧縮成形後に熱処理を行うことが好ましい。このように圧縮成形後に行う熱処理は、ホットプレス工程において圧縮成形とともに行う熱処理と異なり、多数の圧縮成形体に対してまとめて施すことができる。従来のホットプレスでは、圧縮成形工程毎に昇温・降温サイクルを実行することが必要になるため、個々の圧縮成形体を得るための長時間(例えば10〜60分)を要していたが、本発明では、圧縮成形工程に要する時間が例えば0.01〜0.1分という短い時間に短縮することが可能になる。このことは、1分あたりの生産数量が10〜100個に達することを意味する。このため、熱処理工程を付加しても、単位量あたりのバインダレス磁石を製造するために要する時間はほとんど増加せず、高い量産性を実現することが可能になる。   By the above heat treatment, a process similar to the sintering process proceeds between the powder particles. However, unlike the rare-earth sintered magnet, liquid phase does not occur, and there are continuous gaps between the particles. In addition, according to the heat treatment performed after compression molding as described above, the degree of bonding between the powder particles is increased, and the mechanical strength of the compression molded body is improved. When the heat treatment temperature is a high temperature close to 800 ° C., the same process as the sintering process proceeds between the powder particles, but liquid phase does not occur like rare earth sintered magnets, and gaps continue between the particles. Exist. From the viewpoint of enhancing the magnet characteristics, the above heat treatment is not indispensable, but in order to increase the mechanical strength of the binderless magnet to a practical level, it is preferable to perform the heat treatment after compression molding. Thus, unlike the heat treatment performed with compression molding in the hot press process, the heat treatment performed after compression molding can be performed on a large number of compression molded bodies. In the conventional hot press, since it is necessary to execute a temperature rising / falling cycle for each compression molding process, it takes a long time (for example, 10 to 60 minutes) to obtain individual compression molded bodies. In the present invention, the time required for the compression molding process can be shortened to a short time of 0.01 to 0.1 minutes, for example. This means that the production quantity per minute reaches 10 to 100 pieces. For this reason, even if a heat treatment step is added, the time required for manufacturing the binderless magnet per unit amount hardly increases, and high mass productivity can be realized.

圧縮成形前の希土類急冷合金磁石の粉末に対し、低融点金属の粉末を添加し混合してもよい。この場合、添加する低融点金属の粉末粒径は10μm以上50μm程度以下の範囲内にあることが好ましい。低融点金属粉末は、低温焼結時に磁石粉末粒子間で溶け、磁石粉末合金から析出した物質にて磁石粉末相互に結合する固相焼結時において粉末同士の結合をより強固にする。または、希土類急冷合金磁石の粉末粒子間における空隙に入り込んで封孔する効果をもたらす。また、圧縮成形体に含まれる低融点金属粉末が熱処理によって溶解すると、磁石粉末粒子間を接着する役割を果たすため、バインダレス磁石の機械的強度が向上する効果も得られる。低融点金属粉末の混合割合は10wt%以上26wt%以下の範囲に調節することが好ましい。低融点金属粉末の割合が、この範囲の下限よりも少ないと、低融点金属粉末を添加した効果が充分に現れず、上記範囲の上限よりも大きくなると、磁石粒子間の結合力を低下させる可能性がある。   A low melting point metal powder may be added to and mixed with the rare earth quenched alloy magnet powder before compression molding. In this case, it is preferable that the powder particle diameter of the low melting point metal to be added is in the range of about 10 μm to about 50 μm. The low melting point metal powder melts between the magnet powder particles during low-temperature sintering, and further strengthens the bonding between the powders during solid-phase sintering in which the substances precipitated from the magnet powder alloy are bonded to each other. Or it brings about the effect which enters into the space | gap between the powder particles of a rare earth quenching alloy magnet, and seals. Further, when the low melting point metal powder contained in the compression molded body is melted by the heat treatment, it plays a role of bonding between the magnet powder particles, so that the effect of improving the mechanical strength of the binderless magnet is also obtained. The mixing ratio of the low melting point metal powder is preferably adjusted to a range of 10 wt% or more and 26 wt% or less. If the ratio of the low melting point metal powder is less than the lower limit of this range, the effect of adding the low melting point metal powder does not appear sufficiently, and if it exceeds the upper limit of the above range, the binding force between the magnet particles can be reduced. There is sex.

本発明のバインダレス磁石は、厚さ0.5〜3mmの薄物磁石もしくは薄肉リング磁石、または直径φ2〜φ5mmの小径磁石(リング磁石も含む)に成形されたものであることが好ましい。このような形状およびサイズを有する磁石であれば、圧縮成形体の内部において密度を均一化することができるため、バインダレス磁石の部位によって磁気特性が変動することを抑制しやすい。   The binderless magnet of the present invention is preferably formed into a thin magnet or thin ring magnet having a thickness of 0.5 to 3 mm, or a small magnet (including a ring magnet) having a diameter of φ2 to φ5 mm. If the magnet has such a shape and size, the density can be made uniform inside the compression-molded body, so that it is easy to suppress the fluctuation of the magnetic characteristics depending on the portion of the binderless magnet.

本発明の製造方法によれば、超高圧下での圧縮成形によって磁石粉末粒子表面及び内部に新生破面が発生する。圧縮成形後に熱処理を行うと、その温度が800℃以下でも、急冷合金磁石粉末を由来とする成分が新生破面から析出し、この析出物により各々の粒子が結合する。このような低温の固相焼結が可能であるため、高温焼結にともなう収縮や熱間塑性変形を避けることができ、ボンド磁石と同様に優れた形状自由度と寸法精度を有するネットシェイプ成形が可能になる。また、ヨーク、シャフト等との一体成形も可能になる。   According to the production method of the present invention, a new fracture surface is generated on the surface and inside of the magnet powder particles by compression molding under ultra-high pressure. When heat treatment is performed after compression molding, even when the temperature is 800 ° C. or lower, components derived from the quenched alloy magnet powder are precipitated from the newly fractured surface, and each particle is bonded by this precipitate. Since such low-temperature solid-phase sintering is possible, it is possible to avoid shrinkage and hot plastic deformation due to high-temperature sintering, and net shape molding with excellent shape freedom and dimensional accuracy similar to bond magnets Is possible. Moreover, integral molding with a yoke, a shaft, etc. is also possible.

本発明のバインダレス磁石では、磁石体の表面に気相めっき被膜が形成されている。この気相めっき皮膜としては、Al、Zn、Sn、Ni、Ti、Cuおよびそれらの合金からなる金属膜を用いることができる。また、これらの金属元素を含む酸化物や窒化物の膜も好適に用いられる。   In the binderless magnet of the present invention, a vapor phase plating film is formed on the surface of the magnet body. As this vapor phase plating film, a metal film made of Al, Zn, Sn, Ni, Ti, Cu and alloys thereof can be used. An oxide or nitride film containing these metal elements is also preferably used.

上記被膜のうち、Al被膜は、磁石体の機械強度および耐食性を高める効果が強く、また、磁石の接着耐久性を向上させることができる。一方、Ni被膜は、耐食性以外に磁石体表面の清浄性を向上させる効果もある。被膜は単層でもよいし、多層でもよい。小型でも優れた特性を有し、寸法精度に優れているバインダレス磁石の特徴を活かすためには、被膜の合計厚さを1〜10μmの範囲、好ましくは、3〜7μmの範囲に設定することが望ましい。   Of the above coatings, the Al coating has a strong effect of increasing the mechanical strength and corrosion resistance of the magnet body, and can improve the adhesion durability of the magnet. On the other hand, the Ni coating has the effect of improving the cleanliness of the surface of the magnet body in addition to the corrosion resistance. The coating may be a single layer or a multilayer. In order to take advantage of the characteristics of a binderless magnet that has excellent characteristics even with a small size and excellent dimensional accuracy, the total thickness of the coating should be set in the range of 1 to 10 μm, preferably in the range of 3 to 7 μm. Is desirable.

成膜方法としては、公知の真空蒸着法、イオンプレーティング法、スパッタ法などが採用できる。成膜前の磁石体は、従来の高温焼結磁石に比べると、本質的に機械強度が弱く、割れや欠けを生じやすい。このため、成膜工程中は、できる限り磁石同士または磁石と処理容器の衝突が起こらないようにすることが好ましい。例えば、複数の磁石体を、皿形状を有する保持部材に載せ、この保持部材を回転または揺動させることにより、磁石体を攪拌する。この状態で、磁石体上方に配置されたターゲットから成膜材料の原子やイオンを堆積させることが好ましい。このような堆積方法は、アッパーターゲット(ダウンデポジット)タイプの成膜方法と称されている。この方法によれば、磁石体には、荷重や衝撃力がほとんど印加されないため、成膜時に磁石体の割れ・欠けが発生しにくい。   As a film forming method, a known vacuum deposition method, ion plating method, sputtering method or the like can be employed. Compared to conventional high-temperature sintered magnets, the magnet body before film formation is inherently weak in mechanical strength and tends to crack or chip. For this reason, it is preferable to prevent collision between magnets or between a magnet and a processing vessel as much as possible during the film forming process. For example, the magnet body is agitated by placing a plurality of magnet bodies on a holding member having a dish shape and rotating or swinging the holding member. In this state, it is preferable to deposit the atoms and ions of the film forming material from the target arranged above the magnet body. Such a deposition method is referred to as an upper target (down deposit) type film forming method. According to this method, since almost no load or impact force is applied to the magnet body, it is difficult for the magnet body to crack or chip during film formation.

アッパーターゲットタイプの成膜方法としては、アーク式イオンプレーティング法、スパッタリング法、特開2000−336473号公報に記載されているイオンプレーティング法などが挙げられる。   Examples of the upper target type film forming method include an arc ion plating method, a sputtering method, and an ion plating method described in JP-A-2000-336473.

Al、Sn、Znやそれらの合金を成膜する場合、成膜時に磁石体を200〜300℃に加熱することが好ましい。これにより、被膜の緻密度が向上するとともに、磁石体表面における磁石粉末と被膜との間の密着性が向上するため、機械的強度および磁石の耐食性がより向上する。   When forming a film of Al, Sn, Zn, or an alloy thereof, it is preferable to heat the magnet body to 200 to 300 ° C. during film formation. Thereby, the density of the coating is improved and the adhesion between the magnet powder and the coating on the surface of the magnet body is improved, so that the mechanical strength and the corrosion resistance of the magnet are further improved.

HDDドライブ用のスピンドルモータなどのように、磁石表面に高い清浄度が求められる用途では、Ni被膜を形成することが好ましい。Ni被膜は、イオンプレーティング法によって好適に形成され得る。金属の被膜を形成する代わりに、酸化物や窒化物の被膜を形成してもよい。酸化物や窒化物の被膜は、反応性蒸着法や反応性イオンプレーティング法などによって好適に形成され得る。   In applications where high cleanliness is required on the magnet surface, such as a spindle motor for an HDD drive, it is preferable to form a Ni coating. The Ni coating can be suitably formed by an ion plating method. Instead of forming a metal film, an oxide or nitride film may be formed. The oxide or nitride film can be suitably formed by a reactive vapor deposition method, a reactive ion plating method, or the like.

まず、磁石粉末として、株式会社NEOMAX製の希土類鉄硼素系等方性ナノコンポジット磁石粉末(SPRAX−XB、−XC、−XD)およびNd2Fe14B相の単相からなる希土類鉄硼素系磁石粉末(N1)と硬磁性のNd2Fe14Bに加え軟磁性相にα−Feを配した希土類鉄硼素系等方性ナノコンポジット磁石粉末(N2、N3)を用意した。表1は、これら6種類の磁石粉末の合金組成を示しており、表2は、磁石粉末自体の磁石特性および平均粉末粒径を示している。 First, a rare earth iron boron based isotropic nanocomposite magnetic powder (SPRAX-XB, -XC, -XD) manufactured by NEOMAX Co., Ltd. and a single phase of Nd 2 Fe 14 B phase are used as magnet powder. In addition to powder (N1) and hard magnetic Nd 2 Fe 14 B, rare earth iron boron-based isotropic nanocomposite magnet powder (N2, N3) in which α-Fe is arranged in the soft magnetic phase was prepared. Table 1 shows the alloy compositions of these six types of magnet powders, and Table 2 shows the magnet properties and average powder particle sizes of the magnet powders themselves.

次に、これらの磁石粉末に対し、0.5outwt%のステアリン酸カルシウムを添加し、混合した。その後、上記磁石粉末に対する成形を行い、各磁石粉末から成形体を作製した。なお、成形体の寸法は内径7.7mm、外径12.8mm、高さ4.8mmである。以下の表3は、実施例1〜7および比較例1〜4の成形条件を示している。   Next, 0.5 out wt% calcium stearate was added to these magnet powders and mixed. Then, the said magnet powder was shape | molded and the molded object was produced from each magnet powder. The dimensions of the molded body are an inner diameter of 7.7 mm, an outer diameter of 12.8 mm, and a height of 4.8 mm. Table 3 below shows the molding conditions of Examples 1 to 7 and Comparative Examples 1 to 4.

実施例1〜7の成形は、圧縮成形時の圧力が異なる点を除いて、同一の装置および方法で、成形装置を加熱することなく冷間にて行った。各実施例の成形体に対しては、成形工程の後、露点が−40℃の窒素雰囲気中で、実施例1〜3および5、6、7は500℃の温度で、実施例4は800℃の温度で10分間の熱処理を施した。   The moldings of Examples 1 to 7 were performed in the same apparatus and method in the cold without heating the molding apparatus except that the pressure during compression molding was different. For the molded body of each example, after the molding step, in a nitrogen atmosphere with a dew point of −40 ° C., Examples 1-3, 5, 6, and 7 were at a temperature of 500 ° C., and Example 4 was 800 A heat treatment was performed at a temperature of 10 ° C. for 10 minutes.

(比較例1)
SPRAX−XDの磁石粉末を用意した後、98wt%の磁石粉末と2wt%のエポキシ樹脂とに対してニーダー処理(攪拌処理)を施すことにより、磁石粉末とエポキシ樹脂との混合物を得た。この混合物に対し、0.5outwt%のステアリン酸カルシウムを添加した後、900MPaの圧力で圧縮成形を行うことにより、成形体を作製した。
(Comparative Example 1)
After preparing SPRAX-XD magnet powder, a kneader process (stirring process) was performed on 98 wt% magnet powder and 2 wt% epoxy resin to obtain a mixture of magnet powder and epoxy resin. A 0.5 mwt% calcium stearate was added to this mixture, followed by compression molding at a pressure of 900 MPa to produce a molded body.

次に、こうして得た成形体に対し、露点が−40℃の窒素雰囲気炉にて180℃の温度で30分間の熱処理を施した。   Next, the molded body thus obtained was subjected to a heat treatment for 30 minutes at a temperature of 180 ° C. in a nitrogen atmosphere furnace having a dew point of −40 ° C.

(比較例2)
比較例1では、98wt%の磁石粉末と2wt%のエポキシ樹脂とを混合したが、比較例2では、97wt%の磁石粉末と3wt%のエポキシ樹脂とを混合した。これ以外の点では、比較例1と比較例2との間に作製方法の差異はない。
(Comparative Example 2)
In Comparative Example 1, 98 wt% magnet powder and 2 wt% epoxy resin were mixed. In Comparative Example 2, 97 wt% magnet powder and 3 wt% epoxy resin were mixed. In other respects, there is no difference in manufacturing method between Comparative Example 1 and Comparative Example 2.

(比較例3)
SPRAX−XDの磁石粉末を用意した後、90wt%の磁石粉末と10wt%のPPS(ポリフェニレンスルフィド:Polyphenylene Sulfide)とを二軸押し出し機にて押し出した。この後、適切な長さにカットすることにより、φ3mm×4mmのペレット原料を作製した。このペレットを用いて、樹脂温度340℃、金型温度180℃、射出圧220MPaの条件で射出成形を行い、比較例3の成形体を作製した。
(Comparative Example 3)
After preparing SPRAX-XD magnet powder, 90 wt% magnet powder and 10 wt% PPS (polyphenylene sulfide) were extruded using a biaxial extruder. Then, the pellet raw material of (phi) 3 mm x 4 mm was produced by cutting to suitable length. Using this pellet, injection molding was performed under the conditions of a resin temperature of 340 ° C., a mold temperature of 180 ° C., and an injection pressure of 220 MPa, and a molded body of Comparative Example 3 was produced.

(比較例4)
SPRAX−XBの磁石粉末を用意した後、95wt%の磁石粉末と5wt%のポリアミド(PA12)とを二軸押し出し機にて押し出した。この後、適切な長さにカットすることにより、φ3mm×4mmのペレット原料を作製した。このペレットを用いて、樹脂温度290℃、金型温度120℃、射出圧210MPaの条件で射出成形を行い、比較例4の成形体を作製した。
(Comparative Example 4)
After preparing SPRAX-XB magnet powder, 95 wt% magnet powder and 5 wt% polyamide (PA12) were extruded using a biaxial extruder. Then, the pellet raw material of (phi) 3 mm x 4 mm was produced by cutting to suitable length. Using this pellet, injection molding was performed under the conditions of a resin temperature of 290 ° C., a mold temperature of 120 ° C., and an injection pressure of 210 MPa, and a molded body of Comparative Example 4 was produced.

必要に応じて熱処理を行った実施例および比較例について、磁石粉末の体積比率および成形体密度を測定した。測定結果を以下の表4に示す。   About the Example and comparative example which heat-processed as needed, the volume ratio and compact density of the magnet powder were measured. The measurement results are shown in Table 4 below.

次に、各成形体について、磁石特性および耐熱性を評価した。評価結果を以下の表5に示す。耐熱性の評価は各成形体を大気中150℃にて24時間放置したときの形状の変化の有無により行った。   Next, the magnet characteristics and heat resistance of each molded body were evaluated. The evaluation results are shown in Table 5 below. Evaluation of heat resistance was performed based on the presence or absence of a shape change when each molded body was left in the atmosphere at 150 ° C. for 24 hours.

上記の結果からわかるように、最も高い圧力で圧縮成形を行った実施例1および実施例4、5、6、7における磁石粉末の体積比率は最も高く、実施例1および実施例4、5、6、7が最も優れた磁気特性を発揮した。また、いずれの実施例も、バインダか介在しないにもかかわらず、充分に高い機械的強度を有し、優れた磁石特性を発揮した。   As can be seen from the above results, the volume ratio of the magnet powder in Example 1 and Examples 4, 5, 6, and 7 subjected to compression molding at the highest pressure is the highest, and Example 1 and Examples 4, 5, 6 and 7 exhibited the most excellent magnetic properties. In addition, all of the examples had sufficiently high mechanical strength and exhibited excellent magnet characteristics despite the absence of a binder.

実施例4の磁石について、焼結状態の観察を行った。図3および図4に磁粉内部のクラック部および磁石粉末粒子間SEM写真を示す。図3に示されるように、粉末粒子の内部にクラックが形成され、クラックに多数の析出部(図中、明度の高い部分)が形成されている。また粉末粒子間にも、図4に示すように析出物が観察される。EDS(Energy dispersive X−ray spectroscopy)による成分分析によれば、この析出物はFeを主成分としていた。   With respect to the magnet of Example 4, the sintered state was observed. 3 and 4 show SEM photographs of cracks inside the magnetic powder and between magnet powder particles. As shown in FIG. 3, cracks are formed inside the powder particles, and a large number of precipitation parts (parts having high brightness in the figure) are formed in the cracks. Also, precipitates are observed between the powder particles as shown in FIG. According to the component analysis by EDS (Energy dispersive X-ray spectroscopy), this precipitate was mainly composed of Fe.

次に、上記実施例1〜4の磁石体の表面に気相皮膜を形成した。具体的には、実施例1〜4に相当する磁石体を用意し、マルチアークPVD装置(日新電機製M350A)の真空槽内の斜め回転円板内に装填した。真空槽内を1Paに減圧したアルゴン(Ar)雰囲気で満たした後、蒸発源としてAlを用いるアーク式イオンプレーティング法により、電流100Aのアーク放電を60分間行い、厚さ約5μmのAl膜を形成した。Al膜の形成時、磁石体には−50Vのバイアス電圧を印加した。   Next, a vapor phase film was formed on the surface of the magnet bodies of Examples 1 to 4 described above. Specifically, magnet bodies corresponding to Examples 1 to 4 were prepared and loaded into an oblique rotating disk in a vacuum chamber of a multi-arc PVD apparatus (M350A manufactured by Nissin Electric). After filling the vacuum chamber with an argon (Ar) atmosphere whose pressure is reduced to 1 Pa, arc discharge at a current of 100 A is performed for 60 minutes by an arc type ion plating method using Al as an evaporation source, and an Al film having a thickness of about 5 μm is formed. Formed. When forming the Al film, a bias voltage of −50 V was applied to the magnet body.

こうして、Al膜を形成した磁石について、耐食性および機械的強度の測定を行った。その結果を表6に示す。機械的強度は引張圧縮試験機(今田製作所製SL−2001)にて磁石の圧壊強度を測定した。   Thus, the corrosion resistance and mechanical strength of the magnet on which the Al film was formed were measured. The results are shown in Table 6. For the mechanical strength, the crushing strength of the magnet was measured with a tensile and compression tester (SL-2001 manufactured by Imada Seisakusho).

表6では、Al膜の形成時に磁石体を加熱しなかった試料を実施例8〜11とし、300℃加熱した試料を実施例12〜15とする。Al皮膜を表面に形成しなかった実施例1〜4の磁石体についてもテストを行ったので、参考のため、その結果を表6に示す。なお、磁石粉末を樹脂で結合した磁石(比較例1〜4)については、真空槽内の減圧雰囲気下に置くと、磁石に含まれる樹脂成分からガスが放出したため、緻密なAl膜を形成できなかった。   In Table 6, the samples which did not heat the magnet body during the formation of the Al film are designated as Examples 8 to 11, and the samples heated at 300 ° C. are designated as Examples 12 to 15. Since tests were also conducted on the magnet bodies of Examples 1 to 4 in which no Al film was formed on the surface, the results are shown in Table 6 for reference. In addition, about magnets (Comparative Examples 1 to 4) in which magnet powder is bonded with resin, when placed in a vacuum atmosphere in a vacuum chamber, gas is released from the resin component contained in the magnet, so a dense Al film can be formed. There wasn't.

表6から明らかなように、本発明のバインダレス磁石では、磁石体の表面に緻密な気相めっき皮膜を有しているため、耐食性のみならず、機械的強度も向上する。   As is apparent from Table 6, the binderless magnet of the present invention has a dense vapor-phase plating film on the surface of the magnet body, so that not only corrosion resistance but also mechanical strength is improved.

本発明のバインダレス磁石は、樹脂バインダを含有せず、耐熱性に優れ、また、ボンド磁石に比べて高い磁粉体積率を実現し得るため、従来のボンド磁石の代替物として各種分野に広く用いられる。   The binderless magnet of the present invention does not contain a resin binder, is excellent in heat resistance, and can achieve a high magnetic powder volume ratio compared to a bonded magnet. Therefore, it is widely used in various fields as an alternative to conventional bonded magnets. It is done.

また、本発明のバインダレス磁石は、樹脂を含有しないため、めっきなどの表面処理を施しやすく、耐腐食性に優れた磁石を得ることができる。更に、内部に樹脂などの非磁性体材料をほとんど含まないため、廃品や不良品などから磁粉だけを抽出しやすく、リサイクル性にも富んでいる。   Further, since the binderless magnet of the present invention does not contain a resin, it is easy to perform surface treatment such as plating, and a magnet having excellent corrosion resistance can be obtained. Furthermore, since it contains almost no non-magnetic material such as resin, it is easy to extract only magnetic powder from waste or defective products, and it is also highly recyclable.

本発明によるバインダレス磁石の製造に好適に用いられる圧縮成形装置の構成例を示す図である。It is a figure which shows the structural example of the compression molding apparatus used suitably for manufacture of the binderless magnet by this invention. 本発明の実施形態で好適に使用される超高圧粉末プレス装置の構成例を示す図である。It is a figure which shows the structural example of the ultra-high pressure powder press apparatus used suitably by embodiment of this invention. 本発明の実施例4における粉末粒子内部を示す断面SEM写真である。It is a cross-sectional SEM photograph which shows the inside of the powder particle in Example 4 of this invention. 本発明の実施例4における粉末粒子間を示す断面SEM写真である。It is a cross-sectional SEM photograph which shows between the powder particles in Example 4 of this invention.

符号の説明Explanation of symbols

2 磁石粉末(希土類系急冷合金磁石粉末)
4 ダイ
6 下パンチ
8 上パンチ
10 成形体(圧縮成形体)
14 固定ダイプレート
16 下部ラム
18 上部ラム
28 上パンチ外径補強ガイド
30a リニアガイドレール
30b リニアガイドレール
32 フィーダカップ
2 Magnet powder (rare earth quenching alloy magnet powder)
4 Die 6 Lower punch 8 Upper punch 10 Molded body (compression molded body)
14 Fixed die plate 16 Lower ram 18 Upper ram 28 Upper punch outer diameter reinforcement guide 30a Linear guide rail 30b Linear guide rail 32 Feeder cup

Claims (15)

希土類系急冷合金磁石粉末の粒子が樹脂バインダを介さずに結合した磁石体と、前記磁石体の表面に設けられた気相めっき被膜とを有する磁石であって、
前記磁石体の全体に占める前記希土類系急冷合金磁石粉末の体積比率が70%以上95%以下である、希土類合金系バインダレス磁石。
A magnet having particles of rare-earth quenched alloy magnet powder bonded without a resin binder, and a vapor-phase plating film provided on the surface of the magnet,
A rare earth alloy binderless magnet, wherein a volume ratio of the rare earth quenching alloy magnet powder in the entire magnet body is 70% or more and 95% or less.
前記急冷合金磁石粉末の粒子は、前記急冷合金磁石粉末粒子からの析出物によって結合している、請求項1に記載の希土類合金系バインダレス磁石。   2. The rare earth alloy binderless magnet according to claim 1, wherein the particles of the quenched alloy magnet powder are bonded together by precipitates from the quenched alloy magnet powder particles. 前記急冷合金磁石粉末の粒子は、ホウ素を含有する鉄基希土類合金から形成されており、前記析出物は、鉄、希土類、およびホウ素からなる群から選択された少なくとも1種類の元素から構成されている、請求項2に記載の希土類合金系バインダレス磁石。   The particles of the quenched alloy magnet powder are formed from an iron-based rare earth alloy containing boron, and the precipitate is composed of at least one element selected from the group consisting of iron, rare earth, and boron. The rare earth alloy binderless magnet according to claim 2. 前記急冷合金磁石粉末の粒子にはクラックが形成されており、前記析出部の少なくとも一部は前記クラック内に存在している、請求項2または3に記載の希土類合金系バインダレス磁石。   The rare earth alloy binderless magnet according to claim 2 or 3, wherein cracks are formed in the particles of the rapidly cooled alloy magnet powder, and at least a part of the precipitation portion exists in the crack. 前記気相金属めっき被膜は、Al、Zn、Sn、Ni、Ti、Cuからなる群から選択された少なくとも1種の元素からなる金属、または前記金属の合金、酸化物、若しくは窒化物からなる少なくとも1層を含む、請求項1に記載の希土類合金系バインダレス磁石。   The vapor phase metal plating film is at least a metal composed of at least one element selected from the group consisting of Al, Zn, Sn, Ni, Ti, Cu, or an alloy, oxide, or nitride of the metal. The rare earth alloy binderless magnet according to claim 1, comprising one layer. 前記希土類系急冷合金磁石粉末の粒子は、1種以上の強磁性結晶相を含有し、その平均結晶粒径が10nm以上300nm以下の範囲にある、請求項1から5のいずれかに記載の希土類合金系バインダレス磁石。   6. The rare earth according to claim 1, wherein the particles of the rare earth-based quenched alloy magnet powder contain one or more types of ferromagnetic crystal phases and have an average crystal grain size in the range of 10 nm to 300 nm. Alloy binderless magnet. 前記希土類系急冷合金磁石粉末の粒子は、硬磁性相および軟磁性相を含有するナノコンポジット磁石組織を有している、請求項1から6のいずれかに記載の希土類合金系バインダレス磁石。   The rare earth alloy binderless magnet according to any one of claims 1 to 6, wherein the particles of the rare earth rapidly quenched alloy magnet powder have a nanocomposite magnet structure containing a hard magnetic phase and a soft magnetic phase. 密度が5.5g/cm3〜7.0g/cm3である請求項1から7のいずれかに記載の希土類合金系バインダレス磁石。 Rare earth alloy based binderless magnet according to any one of claims 1 to 7, a density of 5.5g / cm 3 ~7.0g / cm 3 . 組成式T100-x-y-zxyz(TはFe、または、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、QはBおよびCからなる群から選択された少なくとも1種の元素、RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素、Mは、Ti、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された少なくとも1種の金属元素)で表現され、組成比率x、y、およびzが、それぞれ、
10<x≦35原子%、
2≦y≦10原子%、および
0≦z≦10原子%
を満足する組成を有している、請求項1から8のいずれかに記載の希土類合金系バインダレス磁石。
Composition formula T 100-xyz Q x R y M z (T is a transition metal element including Fe or one or more elements selected from the group consisting of Co and Ni and Fe, Q is composed of B and C At least one element selected from the group, R is at least one rare earth element substantially free of La and Ce, M is Ti, Al, Si, V, Cr, Mn, Cu, Zn, Ga, At least one metal element selected from the group consisting of Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, and Pb), and the composition ratios x, y, and z are respectively
10 <x ≦ 35 atomic%,
2 ≦ y ≦ 10 atomic%, and 0 ≦ z ≦ 10 atomic%
The rare earth alloy binderless magnet according to any one of claims 1 to 8, having a composition satisfying
組成式T100-x-y-zxyz(TはFe、または、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、QはBおよびCからなる群から選択された少なくとも1種の元素、RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素、Mは、Ti、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された少なくとも1種の金属元素)で表現され、組成比率x、y、およびzが、それぞれ、
4<x≦10原子%、
6≦y<12原子%、および
0≦z≦10原子%
を満足する組成を有している、請求項1から8のいずれかに記載の希土類合金系バインダレス磁石。
Composition formula T 100-xyz Q x R y M z (T is a transition metal element including Fe or one or more elements selected from the group consisting of Co and Ni and Fe, Q is composed of B and C At least one element selected from the group, R is at least one rare earth element substantially free of La and Ce, M is Ti, Al, Si, V, Cr, Mn, Cu, Zn, Ga, At least one metal element selected from the group consisting of Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, and Pb), and the composition ratios x, y, and z are respectively
4 <x ≦ 10 atomic%,
6 ≦ y <12 atomic%, and 0 ≦ z ≦ 10 atomic%
The rare earth alloy binderless magnet according to any one of claims 1 to 8, having a composition satisfying
希土類系急冷合金磁石粉末を用意する工程(A)と、
樹脂バインダを用いずに前記希土類系急冷合金磁石粉末を冷間にて圧縮して成形することにより、全体に占める前記希土類系急冷合金磁石粉末の体積比率が70%以上95%以下の圧縮成形体を形成する工程(B)と、
前記工程(B)の後に350℃以上800℃以下の温度で前記圧縮成形体に対して熱処理を施し、磁石体を形成する工程(C)と、
前記磁石体の表面に気相金属めっき被膜を形成する工程(D)と、
を含む希土類合金系バインダレス磁石の製造方法。
Preparing a rare earth quenched alloy magnet powder (A);
A compression-molded body in which the rare earth-based rapidly quenched alloy magnet powder is compacted by cold compression without using a resin binder, and the volume ratio of the rare-earth-based quenched alloy magnet powder in the whole is 70% to 95%. Forming a step (B),
A step (C) of performing a heat treatment on the compression molded body at a temperature of 350 ° C. or higher and 800 ° C. or lower after the step (B) to form a magnet body;
Forming a vapor phase metal plating film on the surface of the magnet body (D);
For producing rare earth alloy binderless magnets.
前記工程(D)は、成膜装置に前記磁石体を挿入し、減圧下で前記磁石体を運動させながら成膜を行う工程を含む、請求項11に記載の希土類合金系バインダレス磁石の製造方法。   The rare earth alloy binderless magnet manufacturing method according to claim 11, wherein the step (D) includes a step of performing film formation while inserting the magnet body into a film formation apparatus and moving the magnet body under reduced pressure. Method. 前記工程(B)では、500MPa以上2500MPa以下の圧力で前記希土類系急冷磁石用急冷合金磁石粉末を圧縮する、請求項11または12に記載の希土類合金系バインダレス磁石の製造方法。   The method for producing a rare earth alloy binderless magnet according to claim 11 or 12, wherein in the step (B), the quenched alloy magnet powder for a rare earth quenched magnet is compressed at a pressure of 500 MPa to 2500 MPa. 前記工程(C)の熱処理は、圧力が1×10-2Pa以下の不活性ガス雰囲気中で実行する請求項11から13のいずれかに記載の希土類合金系バインダレス磁石の製造方法。 The method for producing a rare earth alloy binderless magnet according to any one of claims 11 to 13, wherein the heat treatment in the step (C) is performed in an inert gas atmosphere having a pressure of 1 × 10 -2 Pa or less. 前記工程(C)の熱処理は、露点が−40℃以下の不活性ガス雰囲気中で実行する請求項11から14のいずれかに記載の希土類合金系バインダレス磁石の製造方法。   The method for producing a rare earth alloy binderless magnet according to any one of claims 11 to 14, wherein the heat treatment in the step (C) is performed in an inert gas atmosphere having a dew point of -40 ° C or lower.
JP2005321451A 2005-11-04 2005-11-04 Rare-earth alloy system binderless magnet and its manufacturing method Pending JP2007129106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321451A JP2007129106A (en) 2005-11-04 2005-11-04 Rare-earth alloy system binderless magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321451A JP2007129106A (en) 2005-11-04 2005-11-04 Rare-earth alloy system binderless magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007129106A true JP2007129106A (en) 2007-05-24

Family

ID=38151494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321451A Pending JP2007129106A (en) 2005-11-04 2005-11-04 Rare-earth alloy system binderless magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007129106A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511815A (en) * 2008-12-12 2012-05-24 グルンドフォス マネージメント アー/エス Permanent magnet and method for manufacturing permanent magnet
JP2013145832A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Method for manufacturing rare earth magnet
JP2016122862A (en) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Rare earth permanent magnet material and manufacturing method therefor
JP2017073936A (en) * 2015-10-09 2017-04-13 富士電機株式会社 Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor
CN107610858A (en) * 2017-08-18 2018-01-19 浙江中元磁业股份有限公司 A kind of amount containing cerium high inexpensive N35 neodymium iron boron magnetic bodies and its sintering method
CN111403166A (en) * 2020-04-17 2020-07-10 成都银河磁体股份有限公司 Preparation method of hot-pressed magnet and product thereof
CN115036122B (en) * 2022-04-27 2024-02-06 杭州永磁集团有限公司 System and sample method for preparing samarium cobalt magnet with ultralow remanence temperature coefficient

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511815A (en) * 2008-12-12 2012-05-24 グルンドフォス マネージメント アー/エス Permanent magnet and method for manufacturing permanent magnet
JP2013145832A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Method for manufacturing rare earth magnet
JP2016122862A (en) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Rare earth permanent magnet material and manufacturing method therefor
JP2017073936A (en) * 2015-10-09 2017-04-13 富士電機株式会社 Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor
CN107610858A (en) * 2017-08-18 2018-01-19 浙江中元磁业股份有限公司 A kind of amount containing cerium high inexpensive N35 neodymium iron boron magnetic bodies and its sintering method
CN111403166A (en) * 2020-04-17 2020-07-10 成都银河磁体股份有限公司 Preparation method of hot-pressed magnet and product thereof
CN115036122B (en) * 2022-04-27 2024-02-06 杭州永磁集团有限公司 System and sample method for preparing samarium cobalt magnet with ultralow remanence temperature coefficient

Similar Documents

Publication Publication Date Title
JP4732459B2 (en) Rare earth alloy binderless magnet and manufacturing method thereof
EP1970924B1 (en) Rare earth permanent magnets and their preparation
KR100771676B1 (en) Rare earth sintered magnet and method for manufacturing the same
KR101378089B1 (en) R-t-b sintered magnet
JP5328161B2 (en) Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
US7175718B2 (en) Rare earth element permanent magnet material
CN108417334B (en) R-T-B sintered magnet
WO2012032961A1 (en) Magnetic material and method for producing same
EP0249973B1 (en) Permanent magnetic material and method for producing the same
CN110942881B (en) Rare earth magnet and method for producing same
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JPWO2010113482A1 (en) Nanocomposite bulk magnet and method for producing the same
JP2007129106A (en) Rare-earth alloy system binderless magnet and its manufacturing method
JP2007129105A (en) Rare-earth alloy system binderless magnet and its manufacturing method
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
JP6645306B2 (en) RTB based sintered magnet
WO2023038135A1 (en) Magnet material for bond magnets, and magnet
JP2014216461A (en) R-t-b-based permanent magnet
WO2021251071A1 (en) Magnet alloy, bonded magnet, and methods respectively for manufacturing those products
EP1632299A1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
Ormerod Powder metallurgy of rare earth permanent magnets
JP2005116991A (en) Composite rare earth anisotropic bond magnet, compound for composite rare earth anisotropic bond magnet, and method for manufacturing them
JP2002015909A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JPH0644526B2 (en) Rare earth magnet manufacturing method
JP2012092385A (en) Method of manufacturing metal green compact

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605