JP2017073936A - Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor - Google Patents

Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor Download PDF

Info

Publication number
JP2017073936A
JP2017073936A JP2015201125A JP2015201125A JP2017073936A JP 2017073936 A JP2017073936 A JP 2017073936A JP 2015201125 A JP2015201125 A JP 2015201125A JP 2015201125 A JP2015201125 A JP 2015201125A JP 2017073936 A JP2017073936 A JP 2017073936A
Authority
JP
Japan
Prior art keywords
permanent magnet
gap
rotor
magnet
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015201125A
Other languages
Japanese (ja)
Inventor
聡 今盛
Satoshi Imamori
聡 今盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015201125A priority Critical patent/JP2017073936A/en
Publication of JP2017073936A publication Critical patent/JP2017073936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor that can be manufactured simply with small manhours, while achieving high torque and sufficient reduction of cogging torque, and to provide a permanent magnet dynamo-electric machine including the rotor, and a manufacturing method of the rotor.SOLUTION: A rotor 20 includes a rotor core 21 having multiple magnet slots 23, multiple solid permanent magnets 24 having dimensions smaller than those of the multiple magnet slots 23, respectively, and inserted into the multiple magnet slots 23, respectively, to form gaps 25 between respective magnet slots 23, and a filler 26 filling respective gaps 25 of the multiple magnet slots 23, and containing permanent magnet powder having a remanent magnetic flux density, in the filling state, lower than that of the solid permanent magnets 24.SELECTED DRAWING: Figure 2

Description

本発明は、回転子、この回転子を備えた永久磁石式回転電機及び回転子の製造方法に関し、特に簡易かつ少ない工数で製造できるとともに、高トルク化及びコギングトルクの十分な低減を実現できる、回転子、この回転子を備えた永久磁石式回転電機及び回転子の製造方法に関する。   The present invention relates to a rotor, a permanent magnet type rotating electrical machine including the rotor, and a method for manufacturing the rotor, and in particular, can be manufactured easily and with less man-hours, and can realize a high torque and a sufficient reduction in cogging torque. The present invention relates to a rotor, a permanent magnet type rotating electrical machine including the rotor, and a method for manufacturing the rotor.

一般に、永久磁石式回転電機ではコギングトルクと呼ばれる一種のトルク脈動が発生することがよく知られている。永久磁石式回転電機において、コギングトルクが大きい場合、その制御性能を悪化させたり、騒音を発生させたりするといった問題がある。
このコギングトルクは、回転子の回転に伴って磁気エネルギーが変化するために発生する。このため、回転子の回転による磁気エネルギーの変化が少なくなるようにすれば、コギングトルクを低減することができる。
In general, it is well known that a kind of torque pulsation called cogging torque occurs in a permanent magnet type rotating electrical machine. In a permanent magnet type rotating electrical machine, when the cogging torque is large, there is a problem that the control performance is deteriorated or noise is generated.
This cogging torque is generated because the magnetic energy changes as the rotor rotates. Therefore, the cogging torque can be reduced if the change in magnetic energy due to the rotation of the rotor is reduced.

従来、構造の工夫によりコギングトルクを低減する方法として、例えば、特許文献1に示す方法が知られている。
特許文献1に示す方法は、回転子にスキューを施すことにより、コギングトルクを減少させてトルクリップルの少ない永久磁石式回転電機を得るものである。つまり、永久磁石式回転電機において、軸方向に複数に分割した永久磁石を、同様に軸方向に複数に分割した回転子コアに埋設し、これら複数個の回転子コアを回転方向にずらして軸方向に一体にして回転子を構成している。これにより、磁気エネルギーを決定する要因の1つである永久磁石からの磁束が作る起磁力のうち高調波成分を打ち消すことができるため、コギングトルクを低減することができる。
Conventionally, for example, a method disclosed in Patent Document 1 is known as a method for reducing the cogging torque by devising the structure.
The method shown in Patent Document 1 is to obtain a permanent magnet type rotating electrical machine with a small torque ripple by reducing the cogging torque by skewing the rotor. In other words, in a permanent magnet type rotating electrical machine, a permanent magnet divided into a plurality of parts in the axial direction is embedded in a rotor core divided into a plurality of parts in the same axial direction, and the plurality of rotor cores are shifted in the rotational direction to rotate the shaft. The rotor is formed integrally with the direction. Thereby, since the harmonic component can be canceled out of the magnetomotive force generated by the magnetic flux from the permanent magnet, which is one of the factors that determine the magnetic energy, the cogging torque can be reduced.

特開平10−80079号公報Japanese Patent Laid-Open No. 10-80079

しかしながら、この従来の特許文献1に示すコギングトルクの低減方法にあっては、以下の問題点があった。
即ち、コギングトルクの低減のために回転子にスキューを施しても十分にコギングトルクが低減できない場合がある。
また、回転子にスキューを施す場合、スキュー角の管理を含めた複雑な工程が必要となる上、回転電機の定常トルクに寄与する起磁力の基本波成分も一部打ち消し合ってしまうため、定常トルクも減少してしまうという問題がある。
従って、本発明はこの従来の問題点を解決するためになされたものであり、その目的は、簡易かつ少ない工数で製造できるとともに、高トルク化及びコギングトルクの十分な低減を実現できる、回転子、この回転子を備えた永久磁石式回転電機及び回転子の製造方法を提供することにある。
However, the conventional cogging torque reduction method disclosed in Patent Document 1 has the following problems.
That is, there are cases where the cogging torque cannot be sufficiently reduced even if the rotor is skewed in order to reduce the cogging torque.
In addition, when the rotor is skewed, a complicated process including management of the skew angle is required, and the fundamental wave component of the magnetomotive force that contributes to the steady-state torque of the rotating electrical machine partially cancels out. There is a problem that torque also decreases.
Accordingly, the present invention has been made to solve this conventional problem, and the object of the present invention is to provide a rotor that can be manufactured easily and with less man-hours, and that can achieve high torque and sufficient reduction of cogging torque. An object of the present invention is to provide a permanent magnet type rotating electrical machine equipped with this rotor and a method of manufacturing the rotor.

上記目的を達成するために、本発明の一態様に係る回転子は、複数の磁石スロットを有する回転子コアと、前記複数の磁石スロットの各々の寸法よりも小さい寸法を有し、前記複数の磁石スロットの各々に挿入されて各磁石スロットとの間に隙間を形成する複数の固形永久磁石と、前記複数の磁石スロットの各々の前記隙間に充填された、充填状態での残留磁束密度が前記固形永久磁石よりも低い永久磁石粉末を含有する充填材とを備えたことを要旨とする。   To achieve the above object, a rotor according to an aspect of the present invention has a rotor core having a plurality of magnet slots, a size smaller than each of the plurality of magnet slots, and the plurality of the plurality of magnet slots. A plurality of solid permanent magnets that are inserted into each of the magnet slots to form a gap between each of the magnet slots, and a residual magnetic flux density in the filled state that is filled in each of the gaps of the plurality of magnet slots is The gist of the present invention is to provide a filler containing a permanent magnet powder lower than the solid permanent magnet.

また、本発明の別の態様に係る永久磁石式回転電機は、励磁コイルを巻装した固定子と、該固定子と所定の空隙を隔てて対向して回転自在に配置された、前述の回転子とを備えたことを要旨とする。
更に、本発明の別の態様に係る回転子の製造方法は、複数の磁石スロットを有する回転子コアを形成する工程と、前記複数の磁石スロットの各々に、各磁石スロットの寸法よりも小さい寸法を有する複数の固形永久磁石の各々を挿入して各磁石スロットとの間に隙間を形成する工程と、前記複数の磁石スロットの各々の前記隙間に、充填状態での残留磁束密度が前記固形永久磁石よりも低い永久磁石粉末を含有する充填材を充填する工程とを含むことを要旨とする。
A permanent magnet type rotating electrical machine according to another aspect of the present invention includes a stator having an exciting coil wound thereon, and the above-described rotation, which is rotatably arranged to face the stator with a predetermined gap therebetween. The gist is to have a child.
Furthermore, a method of manufacturing a rotor according to another aspect of the present invention includes a step of forming a rotor core having a plurality of magnet slots, and a size smaller than the size of each magnet slot in each of the plurality of magnet slots. Each of a plurality of solid permanent magnets having a plurality of solid permanent magnets is inserted and a gap is formed between each of the magnet slots, and a residual magnetic flux density in a filled state is provided in each of the gaps of the plurality of magnet slots. And a step of filling a filler containing permanent magnet powder lower than the magnet.

本発明に係る回転子、永久磁石式回転電機及び回転子の製造方法によれば、簡易かつ少ない工数で製造できるとともに、高トルク化及びコギングトルクの十分な低減を実現できる、回転子、この回転子を備えた永久磁石式回転電機及び回転子の製造方法を提供できる。   According to the rotor, the permanent magnet type rotating electrical machine and the method of manufacturing the rotor according to the present invention, the rotor that can be manufactured easily and with less man-hours, and that can realize high torque and sufficient reduction of the cogging torque, and this rotation A permanent magnet type rotating electrical machine having a child and a method for manufacturing the rotor can be provided.

本発明の第1実施形態に係る回転子を備えた永久磁石式回転電機の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the permanent magnet type rotary electric machine provided with the rotor which concerns on 1st Embodiment of this invention. 図1に示す永久磁石式回転電機における回転子の断面図である。It is sectional drawing of the rotor in the permanent magnet type rotary electric machine shown in FIG. 本発明の第2実施形態に係る回転子の要部である磁極を示す断面図である。It is sectional drawing which shows the magnetic pole which is the principal part of the rotor which concerns on 2nd Embodiment of this invention. 変形例に係る回転子の要部である磁極を示す断面図である。It is sectional drawing which shows the magnetic pole which is the principal part of the rotor which concerns on a modification. 従来例の永久磁石式回転電機における起磁力波形を示すグラフである。It is a graph which shows the magnetomotive force waveform in the permanent-magnet-type rotary electric machine of a prior art example. 図1に示す永久磁石式回転電機における起磁力波形を示すグラフである。It is a graph which shows the magnetomotive force waveform in the permanent magnet type rotary electric machine shown in FIG.

以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
本発明の第1実施形態に係る回転子を備えた永久磁石式回転電機は、図1に示されており、永久磁石式回転電機1は、4極24スロットの埋込磁石型同期電動機である。なお、本発明は、極数やスロット数、その他の各部分の寸法などによって何ら制約を受けるものではない。
永久磁石式回転電機1は、図1に示すように、固定子10と、この固定子10の内周側に所定の空隙Gを隔てて対向して回転自在に配置された回転子20とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
A permanent magnet type rotating electrical machine having a rotor according to a first embodiment of the present invention is shown in FIG. 1, and the permanent magnet type rotating electrical machine 1 is a 4 pole 24 slot embedded magnet type synchronous motor. . Note that the present invention is not limited by the number of poles, the number of slots, dimensions of other parts, and the like.
As shown in FIG. 1, the permanent magnet type rotating electrical machine 1 includes a stator 10 and a rotor 20 that is rotatably arranged opposite to the inner peripheral side of the stator 10 with a predetermined gap G therebetween. I have.

ここで、固定子10は、円筒状のフレーム2と、フレーム2の内周側に配置された円筒状の固定子コア11とを備えている。固定子コア11の内周面側には、円周方向に等間隔で形成された24個のスロット12及び24個の磁極ティース13が形成される。各磁極ティース13には、スロット12内に巻装された励磁コイル14が巻回されている。
また、回転子20は、積層鉄心で形成された円柱状の回転子コア21と、この回転子コア21に設けられた4つの磁極22とを備えている。回転子20は、回転子コア21の中心部に嵌挿固定された回転軸3によって回転する。
Here, the stator 10 includes a cylindrical frame 2 and a cylindrical stator core 11 disposed on the inner peripheral side of the frame 2. On the inner peripheral surface side of the stator core 11, 24 slots 12 and 24 magnetic pole teeth 13 formed at equal intervals in the circumferential direction are formed. An excitation coil 14 wound in the slot 12 is wound around each magnetic pole tooth 13.
The rotor 20 includes a columnar rotor core 21 formed of a laminated iron core and four magnetic poles 22 provided on the rotor core 21. The rotor 20 is rotated by a rotating shaft 3 that is fitted and fixed to the center portion of the rotor core 21.

4つの磁極22の各々は、回転子コア21の軸方向の両端にまで貫通する貫通孔で形成される磁石スロット23を備えている。各磁石スロット23は、図2に示すように、細長く直線状に延びる矩形状孔部と、この矩形状孔の長手方向両端から斜め外方に延びる一対の傾斜孔部とを備えている。そして、各磁石スロット23には、各磁石スロット23の寸法よりも小さい寸法を有する断面矩形状の固形永久磁石24が挿入されて各磁石スロット23との間に隙間25を形成する。即ち、固形永久磁石24は各磁石スロット23の矩形状孔部に挿入され、その矩形状孔部の両側にある一対の傾斜孔部が隙間25を構成する。この隙間25の一方の傾斜孔部は、固形永久磁石24の片側に形成された第1隙間25aを構成し、隙間25の他方の傾斜孔部は、固形永久磁石24の他側に形成された第2隙間25bを構成する。そして、固形永久磁石24は、各磁石スロット23の矩形状孔部に接着剤等によって固定される。固形永久磁石24は、回転子20の隣接する磁極22間において異なるように配置される。   Each of the four magnetic poles 22 includes a magnet slot 23 formed with a through hole penetrating to both ends of the rotor core 21 in the axial direction. As shown in FIG. 2, each magnet slot 23 includes a rectangular hole portion that is elongated and extends linearly, and a pair of inclined hole portions that extend obliquely outward from both longitudinal ends of the rectangular hole. In each magnet slot 23, a solid permanent magnet 24 having a rectangular cross section smaller than each magnet slot 23 is inserted, and a gap 25 is formed between each magnet slot 23. That is, the solid permanent magnet 24 is inserted into the rectangular hole portion of each magnet slot 23, and a pair of inclined hole portions on both sides of the rectangular hole portion forms the gap 25. One inclined hole portion of the gap 25 constitutes a first gap 25 a formed on one side of the solid permanent magnet 24, and the other inclined hole portion of the gap 25 is formed on the other side of the solid permanent magnet 24. A second gap 25b is formed. The solid permanent magnet 24 is fixed to the rectangular hole of each magnet slot 23 with an adhesive or the like. The solid permanent magnets 24 are arranged differently between the adjacent magnetic poles 22 of the rotor 20.

ここで、固形永久磁石24は、1個の永久磁石で構成されてもよいし、あるいは複数の永久磁石で構成されてもよい。固形永久磁石24として複数の永久磁石を用いると、磁石中を流れる渦電流経路を断ち切ることができるため、磁石損を低減させることも可能である。また、固形永久磁石24は、焼結磁石、ボンド磁石などを使用できるが、高トルク化のためには残留磁束密度の高い焼結磁石が好ましい。固形永久磁石24の材料としては、Nd−Fe−B系、Sm−Co系、フェライト系など様々なものを使用することができる。   Here, the solid permanent magnet 24 may be composed of a single permanent magnet or may be composed of a plurality of permanent magnets. When a plurality of permanent magnets are used as the solid permanent magnet 24, the eddy current path flowing in the magnet can be cut off, and thus the magnet loss can be reduced. The solid permanent magnet 24 can be a sintered magnet, a bonded magnet, or the like, but a sintered magnet having a high residual magnetic flux density is preferable for increasing the torque. As the material of the solid permanent magnet 24, various materials such as Nd—Fe—B, Sm—Co, and ferrite can be used.

また、各磁石スロット23の隙間25には、充填状態での残留磁束密度が固形永久磁石24よりも低い永久磁石粉末を含有する充填材26が充填される。つまり、隙間25の第1隙間25a及び第2隙間25bの各々に、充填材26が充填される。
このように、各磁石スロット23の隙間25に、充填状態での残留磁束密度が固形永久磁石24よりも低い永久磁石粉末を含有する充填材26を充填することの利点について図5及び図6を参照して説明する。図5は、従来例の永久磁石式回転電機における起磁力波形を示すグラフである。図6は、図1に示す永久磁石式回転電機における起磁力波形を示すグラフである。なお、図5及び図6において、角度θは、図2に示すように、回転子20の円周方向の所定位置を基準とした円周方向の回転角度である。
Further, the gaps 25 of the magnet slots 23 are filled with a filler 26 containing permanent magnet powder whose residual magnetic flux density in the filled state is lower than that of the solid permanent magnet 24. That is, the filler 26 is filled in each of the first gap 25 a and the second gap 25 b of the gap 25.
As described above, FIG. 5 and FIG. 6 show the advantages of filling the gaps 25 of the magnet slots 23 with the filler 26 containing permanent magnet powder whose residual magnetic flux density in the filled state is lower than that of the solid permanent magnet 24. The description will be given with reference. FIG. 5 is a graph showing a magnetomotive force waveform in a conventional permanent magnet type rotating electrical machine. FIG. 6 is a graph showing a magnetomotive force waveform in the permanent magnet type rotating electrical machine shown in FIG. 5 and 6, the angle θ is a rotation angle in the circumferential direction with reference to a predetermined position in the circumferential direction of the rotor 20, as shown in FIG.

先ず、図5に示す起磁力波形を示す従来例の永久磁石式回転電機は、図2を用いて説明すると、各磁石スロット23に固形永久磁石24のみを固定し、隙間25を空間として各磁極22を構成する。この場合、固形永久磁石24からの磁束が作る起磁力の波形は、図5に示すように、符号Aで示す矩形波形状となる。
これに対して、各磁石スロット23の隙間25(第1隙間25a及び第2隙間25b)に、充填状態での残留磁束密度が固形永久磁石24よりも低い永久磁石粉末を含有する充填材26を充填して各磁極22を構成した場合には、固形永久磁石24のみならず固形永久磁石24の両側に配置される一対の充填材26の永久磁石粉末からも磁束が発生し、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形は、図6に示すように、固形永久磁石24の磁束が作る符号Aで示す矩形波形状の両側に永久磁石粉末の磁束が作る符号Bで示す小さな矩形波形状を加えた形状となる。即ち、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形は、正弦波形状に近づくことになる。
First, the conventional permanent magnet type rotating electric machine showing the magnetomotive force waveform shown in FIG. 5 will be described with reference to FIG. 2. Only the solid permanent magnets 24 are fixed to the magnet slots 23, and the gaps 25 are used as spaces. 22 is configured. In this case, the magnetomotive force waveform generated by the magnetic flux from the solid permanent magnet 24 has a rectangular wave shape indicated by symbol A as shown in FIG.
On the other hand, the filler 26 containing permanent magnet powder whose residual magnetic flux density in the filled state is lower than that of the solid permanent magnet 24 in the gap 25 (the first gap 25a and the second gap 25b) of each magnet slot 23. When each magnetic pole 22 is configured by filling, magnetic flux is generated not only from the solid permanent magnet 24 but also from the permanent magnet powder of the pair of fillers 26 disposed on both sides of the solid permanent magnet 24, and the solid permanent magnet 24. As shown in FIG. 6, the waveform of the magnetomotive force generated by the magnetic flux from the permanent magnet powder is indicated by the symbol B created by the magnetic flux of the permanent magnet powder on both sides of the rectangular wave shape indicated by the symbol A created by the magnetic flux of the solid permanent magnet 24. It becomes the shape which added the small rectangular wave shape shown. That is, the waveform of the magnetomotive force generated by the magnetic flux from the solid permanent magnet 24 and the permanent magnet powder approaches a sine wave shape.

このように、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形が、正弦波形状に近づくと、起磁力の基本波成分が増加するとともに高調波成分が減少する。基本波成分の増加はトルクを増加させ、高調波成分の減少はコギングトルクやトルクリップルを減少させる。このため、当該隙間25に充填状態での残留磁束密度が固形永久磁石24よりも低い永久磁石粉末を含有する充填材26を充填することにより、高トルク化及びコギングトルクの十分な低減を実現することができる。
また、永久磁石粉末を含有する充填材26を隙間25に充填する方法は、充填材26を隙間25に充填するだけでよく、工数も少ないしその方法も簡易である。また、当該隙間25が複雑な形状をしていても充填材26を隙間25に充填することにより容易に製造することができる。なお、隙間25に、別途、固形永久磁石を挿入する方法を用いた場合、機種ごとの磁石スロット23の隙間25の形状に応じて複雑な形状の固形永久磁石を準備する必要性が生じてしまう。
Thus, when the waveform of the magnetomotive force generated by the magnetic flux from the solid permanent magnet 24 and the permanent magnet powder approaches a sine wave shape, the fundamental wave component of the magnetomotive force increases and the harmonic component decreases. Increasing the fundamental component increases torque, and decreasing the harmonic component decreases cogging torque and torque ripple. Therefore, by filling the gap 25 with the filler 26 containing permanent magnet powder whose residual magnetic flux density in the filled state is lower than that of the solid permanent magnet 24, high torque and sufficient reduction of the cogging torque are realized. be able to.
In addition, the method of filling the gap 25 with the filler 26 containing the permanent magnet powder is only required to fill the gap 25 with a small number of steps and the method is simple. Even if the gap 25 has a complicated shape, it can be easily manufactured by filling the gap 25 with the filler 26. In addition, when using the method of inserting a solid permanent magnet separately in the clearance gap 25, it will be necessary to prepare the solid permanent magnet of complicated shape according to the shape of the clearance gap 25 of the magnet slot 23 for every model. .

ここで、充填材26は、1種の永久磁石粉末のみ、もしくは複数種を混合した永久磁石粉末のみから構成されてもよいし、永久磁石粉末とバインダとを混合してもよい。永久磁石粉末の原料としては、Nd−Fe−B系、Sm−Co系、フェライト系など様々なものを使用することができる。この永久磁石粉末の選定指針としては、充填状態での残留磁束密度を固形永久磁石4の残留磁束密度よりも低くすることが挙げられる。永久磁石粉末の充填状態での残留磁束密度が固形永久磁石4の残留磁束密度以上の高さを有すると、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形は、図6において、符号Aで示す矩形波形状の両側に起磁力がAよりも大きい矩形波形状を加えた形状となる。即ち、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形は、Aの両側に起磁力の大きな矩形波形状を加えた波形となり、正弦波形状に近づかず、基本波成分が増加できず、また、高調波成分が減少しない。   Here, the filler 26 may be composed of only one kind of permanent magnet powder, or only a permanent magnet powder obtained by mixing a plurality of kinds, or may be mixed with a permanent magnet powder and a binder. As the raw material for the permanent magnet powder, various materials such as Nd—Fe—B, Sm—Co, and ferrite can be used. One guideline for selecting the permanent magnet powder is to make the residual magnetic flux density in the filled state lower than the residual magnetic flux density of the solid permanent magnet 4. When the residual magnetic flux density in the filled state of the permanent magnet powder is higher than the residual magnetic flux density of the solid permanent magnet 4, the magnetomotive force waveform generated by the magnetic flux from the solid permanent magnet 24 and the permanent magnet powder is shown in FIG. A rectangular wave shape having a magnetomotive force larger than A is added to both sides of the rectangular wave shape indicated by symbol A. That is, the waveform of the magnetomotive force generated by the magnetic flux from the solid permanent magnet 24 and the permanent magnet powder is a waveform obtained by adding a rectangular wave shape having a large magnetomotive force on both sides of A, and the fundamental wave component increases without approaching the sine wave shape. In addition, harmonic components are not reduced.

また、充填材26が、バインダを含有している場合には、充填材26を各磁石スロット23の隙間25に充填する際に、必要に応じてバインダを硬化させるだけで充填材26を隙間25内に固定することができるので、各磁石スロット23の隙間25への充填材26の充填を容易に行うことができる。また、充填材26に含有させるバインダの比率を調節することにより、起磁力を正弦波に近づけるための磁束量を調整することが可能となる。
更に、充填材26に含有される永久磁石粉末の保磁力は、固形永久磁石24の保磁力よりも高いことが好ましい。これにより、最も減磁しやすい磁石全体の端部、すなわち永久磁石粉末を含有する充填材26を充填させた部位のみに対して選択的に保磁力を高めるため、他の特性を可能な限り損なわずに減磁耐力を高めることができる。なお、一般に永久磁石の残留磁束密度と保磁力は、トレードオフの関係にあるため、仮に固形永久磁石24の保磁力を高めると、残留磁束密度の減少によりトルクも低下してしまう不都合がある。
Further, when the filler 26 contains a binder, when the filler 26 is filled into the gaps 25 of the magnet slots 23, the filler 26 can be removed from the gaps 25 only by curing the binder as necessary. Since the gaps 25 of the magnet slots 23 can be easily filled, the filler 26 can be easily filled. Further, by adjusting the ratio of the binder contained in the filler 26, it is possible to adjust the amount of magnetic flux for making the magnetomotive force close to a sine wave.
Furthermore, the coercive force of the permanent magnet powder contained in the filler 26 is preferably higher than the coercive force of the solid permanent magnet 24. As a result, the coercive force is selectively increased only for the end portion of the entire magnet that is most likely to be demagnetized, that is, only the portion filled with the filler 26 containing permanent magnet powder, and thus other characteristics are impaired as much as possible. Without increasing the demagnetization resistance. In general, since the residual magnetic flux density and the coercive force of the permanent magnet are in a trade-off relationship, if the coercive force of the solid permanent magnet 24 is increased, there is a disadvantage that the torque is reduced due to the decrease of the residual magnetic flux density.

次に、回転子20の製造方法について説明する。
回転子20の製造に際しては、先ず、複数の磁石スロット23を有する回転子コア21を形成する(回転子コア形成工程)。
回転子コア21は、所定の4つの箇所に磁石スロット23を形成するように所望の形状に打ち抜いた電磁鋼板やSPCCなどの構造材料を積層して溶接やカシメ等に積層間を固定して構成する。あるいは、S45Cなどの塊状の軟磁性構造材を所定の4つの箇所に磁石スロット23を形成するように所望の形状に削り出して回転子コア21を構成する。
Next, a method for manufacturing the rotor 20 will be described.
In manufacturing the rotor 20, first, the rotor core 21 having a plurality of magnet slots 23 is formed (rotor core forming step).
The rotor core 21 is constructed by laminating a structural material such as an electromagnetic steel plate or SPCC punched into a desired shape so as to form magnet slots 23 at four predetermined locations, and fixing the lamination between welding and caulking or the like. To do. Alternatively, the rotor core 21 is configured by cutting a lump-shaped soft magnetic structural material such as S45C into a desired shape so as to form magnet slots 23 at four predetermined locations.

次いで、複数の磁石スロット23の各々に、各磁石スロット23の寸法よりも小さい寸法を有する複数の固形永久磁石24の各々を挿入して各磁石スロット23との間に隙間25を形成する(固形磁石挿入工程)。
ここで、固形永久磁石24は各磁石スロット23の矩形状孔部に挿入され、その矩形状孔部の両側にある一対の傾斜孔部が隙間25を構成する。この隙間25の一方の傾斜孔部は、固形永久磁石24の片側に形成された第1隙間25aを構成し、隙間25の他方の傾斜孔部は、固形永久磁石24の他側に形成された第2隙間25bを構成する。そして、固形永久磁石24は、各磁石スロット23の矩形状孔部に接着剤等によって固定される。固形永久磁石24は、回転子20の隣接する磁極22間において異なるように配置される。
Next, each of the plurality of solid permanent magnets 24 having a size smaller than the size of each magnet slot 23 is inserted into each of the plurality of magnet slots 23 to form a gap 25 between each of the magnet slots 23 (solid). Magnet insertion process).
Here, the solid permanent magnet 24 is inserted into a rectangular hole portion of each magnet slot 23, and a pair of inclined hole portions on both sides of the rectangular hole portion forms a gap 25. One inclined hole portion of the gap 25 constitutes a first gap 25 a formed on one side of the solid permanent magnet 24, and the other inclined hole portion of the gap 25 is formed on the other side of the solid permanent magnet 24. A second gap 25b is formed. The solid permanent magnet 24 is fixed to the rectangular hole of each magnet slot 23 with an adhesive or the like. The solid permanent magnets 24 are arranged differently between the adjacent magnetic poles 22 of the rotor 20.

固形永久磁石24は、前述したように、1個の永久磁石で構成されてもよいし、あるいは複数の永久磁石で構成されてもよい。また、固形永久磁石24は、焼結磁石、ボンド磁石などを使用できるが、高トルク化のためには残留磁束密度の高い焼結磁石が好ましい。固形永久磁石24の材料としては、Nd−Fe−B系、Sm−Co系、フェライト系など様々なものを使用することができる。
次いで、複数の磁石スロット23の各々の隙間25、即ち、第1隙間25a及び第2隙間25bのそれぞれに、充填状態での残留磁束密度が固形永久磁石24よりも低い永久磁石粉末を含有する充填材26を充填する(充填材充填工程)。
As described above, the solid permanent magnet 24 may be composed of one permanent magnet, or may be composed of a plurality of permanent magnets. The solid permanent magnet 24 can be a sintered magnet, a bonded magnet, or the like, but a sintered magnet having a high residual magnetic flux density is preferable for increasing the torque. As the material of the solid permanent magnet 24, various materials such as Nd—Fe—B, Sm—Co, and ferrite can be used.
Next, each gap 25 of the plurality of magnet slots 23, that is, each of the first gap 25a and the second gap 25b is filled with permanent magnet powder having a residual magnetic flux density lower than that of the solid permanent magnet 24 in the filled state. The material 26 is filled (filler filling step).

ここで、充填材26は、前述したように、1種の永久磁石粉末のみ、もしくは複数種を混合した永久磁石粉末のみから構成されてもよいし、永久磁石粉末とバインダとを混合してもよい。永久磁石粉末の原料としては、Nd−Fe−B系、Sm−Co系、フェライト系など様々なものを使用することができる。また、前述したように、永久磁石粉末の選定指針としては、充填状態での残留磁束密度を固形永久磁石4の残留磁束密度よりも低くすることが挙げられる。また、前述したように、充填材26に含有される永久磁石粉末の保磁力が、固形永久磁石24の保磁力よりも高い永久磁石粉末を選定することが好ましい。また、バインダとしては接着剤などのほか、エポキシ樹脂、フェノール樹脂などを使用することが可能である。   Here, as described above, the filler 26 may be composed of only one type of permanent magnet powder or only a permanent magnet powder obtained by mixing a plurality of types, or a mixture of the permanent magnet powder and a binder. Good. As the raw material for the permanent magnet powder, various materials such as Nd—Fe—B, Sm—Co, and ferrite can be used. As described above, as a guide for selecting the permanent magnet powder, it is possible to make the residual magnetic flux density in the filled state lower than the residual magnetic flux density of the solid permanent magnet 4. Further, as described above, it is preferable to select a permanent magnet powder whose coercive force of the permanent magnet powder contained in the filler 26 is higher than that of the solid permanent magnet 24. In addition to an adhesive, an epoxy resin, a phenol resin, or the like can be used as the binder.

充填材26が1種の永久磁石粉末のみ、もしくは複数種を混合した永久磁石粉末のみから構成されている場合には、磁石粉が外部へ飛び出さないように、充填後に隙間25に蓋をする必要がある。蓋は、例えば、磁石スロット23の隙間25に合った形状の樹脂等を詰め込んでもよいし、接着剤等を塗布して固化させてもよい。また、回転子20を端版によって軸方向の両側から押えこんで固定する場合には、端版の一部を蓋の代用としてもよい。
また、充填材26がバインダを含有している場合には、必要に応じてバインダを硬化させるための熱処理を行う。
最後に、固形永久磁石24及び永久磁石粉末を含有する充填材26が配置された回転子20を外部磁化によって着磁する(着磁工程)。
なお、回転子コア21への回転軸3の取付けは、回転子コア21の形成直後に回転子コア21に回転軸3を圧入することによって行われるが、回転子コア21へ固形永久磁石24及び充填材26を配置した後に回転子コア21に回転軸3を圧入してもよい。
そして、以上のような方法で製造された回転子20に固定子10を組み合わせることで永久磁石式回転電機1を得ることができる。
When the filler 26 is composed of only one type of permanent magnet powder or a mixture of multiple types of permanent magnet powder, the gap 25 is covered after filling so that the magnet powder does not jump out. There is a need. The lid may be filled with, for example, a resin having a shape matching the gap 25 of the magnet slot 23, or may be solidified by applying an adhesive or the like. When the rotor 20 is pressed and fixed from both sides in the axial direction by the end plate, a part of the end plate may be used as a substitute for the lid.
In addition, when the filler 26 contains a binder, heat treatment for curing the binder is performed as necessary.
Finally, the rotor 20 on which the solid permanent magnet 24 and the filler 26 containing permanent magnet powder are arranged is magnetized by external magnetization (magnetization step).
The rotating shaft 3 is attached to the rotor core 21 by pressing the rotating shaft 3 into the rotor core 21 immediately after the rotor core 21 is formed. The rotating shaft 3 may be press-fitted into the rotor core 21 after the filler 26 is disposed.
And the permanent-magnet-type rotary electric machine 1 can be obtained by combining the stator 10 with the rotor 20 manufactured by the above methods.

(第2実施形態)
次に、本発明の第2実施形態に係る回転子について図3を参照して説明する。図3には、本発明の第2実施形態に係る回転子の要部である磁極22が示されている。
第2実施形態に係る回転子は、第1実施形態に係る回転子20と基本構成は同様であるが、第1隙間25a及び第2隙間25bの各々が回転子コア21の仕切壁21aによって複数(本実施形態にあっては2個)の隙間部25c又は25dに分割され、充填材26が、複数に分割された隙間部25c又は25dの各々に充填される点で第1実施形態に係る回転子20と相違している。
(Second Embodiment)
Next, a rotor according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 shows a magnetic pole 22 that is a main part of the rotor according to the second embodiment of the present invention.
The rotor according to the second embodiment has the same basic configuration as the rotor 20 according to the first embodiment, but a plurality of first gaps 25a and second gaps 25b are divided by the partition wall 21a of the rotor core 21. According to the first embodiment, the gap portion 25c or 25d is divided into two (in this embodiment), and the filler 26 is filled in each of the plurality of gap portions 25c or 25d. This is different from the rotor 20.

ここで、複数に分割された隙間部26c又は26dの各々に充填される充填材26は、永久磁石粉末の充填状態の残留磁束密度が固形永久磁石24の側から離れるに従って徐々に低くなるように構成されることが好ましい。つまり、第1隙間25aを考えた場合、固形永久磁石24と離れている側の隙間部26cに充填される充填材26の永久磁石粉末の充填状態の残留磁束密度が、固形永久磁石24側の隙間部26cに充填される充填材26の永久磁石粉末の充填状態の残留磁束密度よりも低くなるようにすることが好ましい。   Here, the filling material 26 filled in each of the gap portions 26c or 26d divided into a plurality is such that the residual magnetic flux density in the filled state of the permanent magnet powder gradually decreases as the distance from the solid permanent magnet 24 side increases. Preferably, it is configured. That is, when the first gap 25a is considered, the residual magnetic flux density in the filled state of the permanent magnet powder of the filler 26 filled in the gap portion 26c on the side away from the solid permanent magnet 24 is equal to the solid permanent magnet 24 side. It is preferable to make it lower than the residual magnetic flux density in the filling state of the permanent magnet powder of the filler 26 filled in the gap portion 26c.

これにより、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形は、固形永久磁石24の磁束が作る矩形波形状の両側に、固形永久磁石24側の隙間部26cに充填される充填材26の永久磁石粉末の磁束が作る小さな矩形波形状を加え、更に、当該小さな矩形波形状の両側に、固形永久磁石24と離れた側の隙間部26cに充填される充填材26の永久磁石粉末の磁束が作る更に小さな矩形波形状を加えたものとなる。このため、固形永久磁石24及び永久磁石粉末からの磁束が作る起磁力の波形は、第1実施形態の場合よりも更に正弦波形状に近づくことになる。
これにより、更に起磁力の基本波成分が増加するとともに高調波成分が減少し、更なる高トルク化及びコギングトルクの十分な低減を実現することができる。
以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
Thereby, the waveform of the magnetomotive force generated by the magnetic flux from the solid permanent magnet 24 and the permanent magnet powder is filled in the gap portion 26c on the solid permanent magnet 24 side on both sides of the rectangular wave shape generated by the magnetic flux of the solid permanent magnet 24. A small rectangular wave shape created by the magnetic flux of the permanent magnet powder of the filling material 26 is added, and the permanent material of the filling material 26 filled in the gap portion 26c on the side away from the solid permanent magnet 24 on both sides of the small rectangular wave shape. A smaller rectangular wave shape created by the magnetic flux of the magnet powder is added. For this reason, the waveform of the magnetomotive force generated by the magnetic flux from the solid permanent magnet 24 and the permanent magnet powder is closer to a sine wave shape than in the case of the first embodiment.
As a result, the fundamental wave component of the magnetomotive force further increases and the harmonic component decreases, so that further increase in torque and sufficient reduction in cogging torque can be realized.
As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change and improvement can be performed.

例えば、隙間25は、固形永久磁石24の両側に一対形成された第1隙間25aと第2隙間25bとからなる必要は必ずしもなく、例えば、図4に示すように、固形永久磁石24の片側のみに形成されていてもよい。この場合、充填材26は、固形永久磁石24の片側のみに形成された隙間25に充填される。
また、隙間25は、固形永久磁石24が挿入される矩形状孔部の端部から延びる傾斜孔部である必要は必ずしもなく、矩形状孔部の端部から延びる任意の形状をとることができ、例えば、図4に示すように、矩形状孔部の形をそのまま延長するものであってもよい。
更に、充填材26に含有される永久磁石粉末の保磁力は、固形永久磁石24の保磁力よりも高い必要は必ずしもない。
For example, the gap 25 is not necessarily formed by a pair of the first gap 25a and the second gap 25b formed on both sides of the solid permanent magnet 24. For example, as shown in FIG. 4, only one side of the solid permanent magnet 24 is provided. It may be formed. In this case, the filler 26 is filled in the gap 25 formed only on one side of the solid permanent magnet 24.
The gap 25 does not necessarily need to be an inclined hole extending from the end of the rectangular hole into which the solid permanent magnet 24 is inserted, and can take any shape extending from the end of the rectangular hole. For example, as shown in FIG. 4, the shape of the rectangular hole may be extended as it is.
Furthermore, the coercive force of the permanent magnet powder contained in the filler 26 is not necessarily higher than the coercive force of the solid permanent magnet 24.

1 永久磁石式回転電機
2 フレーム
3 回転軸
10 固定子
11 固定子コア
12 スロット
13 磁極ティース
14 励磁コイル
20 回転子
21 回転子コア
21a 仕切壁
22 磁極
23 磁石スロット
24 固形永久磁石
25 隙間
25a 第1隙間
25b 第2隙間
25c 隙間部
25d 隙間部
26 充填材
DESCRIPTION OF SYMBOLS 1 Permanent-magnet-type rotary electric machine 2 Frame 3 Rotating shaft 10 Stator 11 Stator core 12 Slot 13 Magnetic pole teeth 14 Excitation coil 20 Rotor 21 Rotor core 21a Partition wall 22 Magnetic pole 23 Magnet slot 24 Solid permanent magnet 25 Gap 25a 1st Gap 25b Second gap 25c Gap part 25d Gap part 26 Filler

Claims (8)

複数の磁石スロットを有する回転子コアと、
前記複数の磁石スロットの各々の寸法よりも小さい寸法を有し、前記複数の磁石スロットの各々に挿入されて各磁石スロットとの間に隙間を形成する複数の固形永久磁石と、
前記複数の磁石スロットの各々の前記隙間に充填された、充填状態での残留磁束密度が前記固形永久磁石よりも低い永久磁石粉末を含有する充填材とを備えたことを特徴とする回転子。
A rotor core having a plurality of magnet slots;
A plurality of solid permanent magnets having a size smaller than the size of each of the plurality of magnet slots, and being inserted into each of the plurality of magnet slots to form a gap between the magnet slots;
A rotor comprising: a filling material filled in the gaps of each of the plurality of magnet slots and containing permanent magnet powder having a residual magnetic flux density in a filled state lower than that of the solid permanent magnet.
前記充填材が、バインダを含んでいることを特徴とする請求項1に記載の回転子。   The rotor according to claim 1, wherein the filler includes a binder. 前記充填材に含有される前記永久磁石粉末の保磁力が、前記固形永久磁石の保磁力よりも高いことを特徴とする請求項1又は2に記載の回転子。   The rotor according to claim 1 or 2, wherein the coercive force of the permanent magnet powder contained in the filler is higher than the coercive force of the solid permanent magnet. 前記隙間が前記固形永久磁石の両側に一対形成された第1隙間と第2隙間とからなり、前記充填材が、前記第1隙間及び第2隙間の各々に充填されることを特徴とする請求項1乃至3のうちいずれか一項に記載の回転子。   The gap includes a first gap and a second gap formed on both sides of the solid permanent magnet, and the filler is filled in each of the first gap and the second gap. Item 4. The rotor according to any one of Items 1 to 3. 前記第1隙間及び第2隙間の各々が前記回転子コアの仕切壁によって複数の隙間部に分割され、前記充填材が、複数に分割された前記隙間部の各々に充填されることを特徴とする請求項4に記載の回転子。   Each of the first gap and the second gap is divided into a plurality of gap portions by a partition wall of the rotor core, and the filler is filled in each of the divided gap portions. The rotor according to claim 4. 複数に分割された前記隙間部の各々に充填される充填材は、永久磁石粉末の充填状態の残留磁束密度が固形永久磁石の側から離れるに従って徐々に低くなるように構成されることを特徴とする請求項5に記載の回転子。   The filler filled in each of the gap portions divided into a plurality is configured such that the residual magnetic flux density in the filled state of the permanent magnet powder gradually decreases as the distance from the solid permanent magnet side increases. The rotor according to claim 5. 励磁コイルを巻装した固定子と、該固定子と所定の空隙を隔てて対向して回転自在に配置された、請求項1乃至6のうちいずれか一項に記載の回転子とを備えたことを特徴とする永久磁石式回転電機。   A stator having an exciting coil wound thereon, and the rotor according to any one of claims 1 to 6, which is rotatably arranged opposite to the stator with a predetermined gap therebetween. A permanent magnet type rotating electrical machine. 複数の磁石スロットを有する回転子コアを形成する工程と、
前記複数の磁石スロットの各々に、各磁石スロットの寸法よりも小さい寸法を有する複数の固形永久磁石の各々を挿入して各磁石スロットとの間に隙間を形成する工程と、
前記複数の磁石スロットの各々の前記隙間に、充填状態での残留磁束密度が前記固形永久磁石よりも低い永久磁石粉末を含有する充填材を充填する工程とを含むことを特徴とする回転子の製造方法。
Forming a rotor core having a plurality of magnet slots;
Inserting a plurality of solid permanent magnets each having a size smaller than the size of each magnet slot into each of the plurality of magnet slots to form a gap between each magnet slot; and
Filling the gap in each of the plurality of magnet slots with a filler containing a permanent magnet powder whose residual magnetic flux density in a filled state is lower than that of the solid permanent magnet. Production method.
JP2015201125A 2015-10-09 2015-10-09 Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor Pending JP2017073936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201125A JP2017073936A (en) 2015-10-09 2015-10-09 Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201125A JP2017073936A (en) 2015-10-09 2015-10-09 Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor

Publications (1)

Publication Number Publication Date
JP2017073936A true JP2017073936A (en) 2017-04-13

Family

ID=58537739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201125A Pending JP2017073936A (en) 2015-10-09 2015-10-09 Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor

Country Status (1)

Country Link
JP (1) JP2017073936A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304610A (en) * 1997-04-22 1998-11-13 Toshiba Corp Manufacture of permanent magnet rotor and drawing plate therefor
JPH1118338A (en) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd Permanent magnet embedded rotor
JP2000092763A (en) * 1998-09-18 2000-03-31 Toshiba Corp Permanent magnet type motor
JP2002335643A (en) * 2001-05-10 2002-11-22 Mitsubishi Electric Corp Electric motor
JP2007129106A (en) * 2005-11-04 2007-05-24 Neomax Co Ltd Rare-earth alloy system binderless magnet and its manufacturing method
US20070284960A1 (en) * 2006-06-12 2007-12-13 Remy International, Inc. Magnet for a dynamoelectric machine, dynamoelectric machine and method
JP2012511815A (en) * 2008-12-12 2012-05-24 グルンドフォス マネージメント アー/エス Permanent magnet and method for manufacturing permanent magnet
WO2012105656A1 (en) * 2011-02-04 2012-08-09 三菱電機株式会社 Embedded permanent magnet type rotating electrical machine for vehicle
JP2015023721A (en) * 2013-07-22 2015-02-02 ダイキン工業株式会社 Rotor, motor and compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304610A (en) * 1997-04-22 1998-11-13 Toshiba Corp Manufacture of permanent magnet rotor and drawing plate therefor
JPH1118338A (en) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd Permanent magnet embedded rotor
JP2000092763A (en) * 1998-09-18 2000-03-31 Toshiba Corp Permanent magnet type motor
JP2002335643A (en) * 2001-05-10 2002-11-22 Mitsubishi Electric Corp Electric motor
JP2007129106A (en) * 2005-11-04 2007-05-24 Neomax Co Ltd Rare-earth alloy system binderless magnet and its manufacturing method
US20070284960A1 (en) * 2006-06-12 2007-12-13 Remy International, Inc. Magnet for a dynamoelectric machine, dynamoelectric machine and method
JP2012511815A (en) * 2008-12-12 2012-05-24 グルンドフォス マネージメント アー/エス Permanent magnet and method for manufacturing permanent magnet
WO2012105656A1 (en) * 2011-02-04 2012-08-09 三菱電機株式会社 Embedded permanent magnet type rotating electrical machine for vehicle
JP2015023721A (en) * 2013-07-22 2015-02-02 ダイキン工業株式会社 Rotor, motor and compressor

Similar Documents

Publication Publication Date Title
US9923423B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP5663936B2 (en) Permanent magnet rotating electric machine
US9099905B2 (en) Radially embedded permanent magnet rotor and methods thereof
CN103907267B (en) Rotor, motor, compressor and the air conditioner of permanent magnet embedded type motor
US20140103771A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP5891089B2 (en) Permanent magnet synchronous machine
US20140103769A1 (en) Radially embedded permanent magnet rotor and methods thereof
US20140103770A1 (en) Permanent magnet rotor and methods thereof
JP3602392B2 (en) Permanent magnet embedded motor
CN108028565B (en) Rotor
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
CN108462268B (en) Rotor of rotating electric machine
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP2014212589A (en) Dynamo-electric machine
KR100680201B1 (en) Permanent magnet type motor
JP2013123327A (en) Rotary electric machine
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP6440349B2 (en) Rotating electric machine
JP6950361B2 (en) motor
JP2017073936A (en) Rotor, permanent magnet dynamo-electric machine and manufacturing method for rotor
JP5793948B2 (en) Synchronous motor
JP5750995B2 (en) Synchronous motor
JP6291798B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191015