JP2013145832A - Method for manufacturing rare earth magnet - Google Patents

Method for manufacturing rare earth magnet Download PDF

Info

Publication number
JP2013145832A
JP2013145832A JP2012006165A JP2012006165A JP2013145832A JP 2013145832 A JP2013145832 A JP 2013145832A JP 2012006165 A JP2012006165 A JP 2012006165A JP 2012006165 A JP2012006165 A JP 2012006165A JP 2013145832 A JP2013145832 A JP 2013145832A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
earth magnet
powder
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012006165A
Other languages
Japanese (ja)
Other versions
JP5742733B2 (en
Inventor
Noritaka Miyamoto
典孝 宮本
Kazuaki Haga
一昭 芳賀
Tetsuya Shoji
哲也 庄司
Shinya Omura
真也 大村
Daisuke Ichikizaki
大輔 一期崎
Akira Manabe
明 真鍋
Shinya Nagashima
真也 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012006165A priority Critical patent/JP5742733B2/en
Publication of JP2013145832A publication Critical patent/JP2013145832A/en
Application granted granted Critical
Publication of JP5742733B2 publication Critical patent/JP5742733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare earth magnet, capable of manufacturing a rare earth magnet excellent in squareness and high in maximum energy product.SOLUTION: A method for manufacturing a rare earth magnet includes: a first step of obtaining selected magnetic powder Q by removing magnetic powder having a particle size of less than 50 μm among magnetic powder comprising a main phase of an RE-T-B system (RE represents at least one of Nd, Pr and Y, and T represents Fe or one obtained by substituting a part of Fe with Co) and a grain boundary phase around the main phase, mixing modified alloy powder T comprising an RE-M alloy (M represents a transition metal element or a typical metal element, and RE may comprise RE1-RE2 where RE1 and RE2 represent at least one of Nd, Pr and Y) having a melting point of 700°C or below with the selected magnetic powder Q, and performing hot press working to manufacture a compact S; and a second step of subjecting the compact S to a hot plasticity processing to manufacture a rare earth magnet C.

Description

本発明は、希土類磁石の製造方法に関するものである。   The present invention relates to a method for producing a rare earth magnet.

ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の保磁力を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。車両駆動用モータに多用される希土類磁石の一つであるNd-Fe-B系磁石を取り挙げると、結晶粒の微細化を図ることやNd量の多い組成合金を用いること、保磁力性能の高いDy、Tbといった重希土類元素を添加することなどによってその保磁力を増大させる試みがおこなわれている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the coercive force of a magnet under high temperature use is one of the important research subjects in the technical field. Taking Nd-Fe-B magnets, one of the rare-earth magnets frequently used in vehicle drive motors, to refine crystal grains, use a composition alloy with a large amount of Nd, Attempts have been made to increase the coercivity by adding heavy rare earth elements such as high Dy and Tb.

希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石があるが、中でも、上記する結晶粒の微細化を図りながら高価な重希土類元素の添加量を低減すること(フリー化)のできるナノ結晶磁石が現在注目されている。   As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. Among them, nanocrystal magnets that can reduce the amount of expensive heavy rare earth elements added (free) while miniaturizing the crystal grains described above are currently attracting attention.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた急冷薄帯(急冷リボン)を所望サイズに粉砕して原料磁粉を製作し、この磁粉を加圧成形しながら成形体とし、この成形体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。   An example of a method for producing rare earth magnets is outlined as follows. For example, a rapidly cooled ribbon (quenched ribbon) obtained by rapidly solidifying Nd-Fe-B metal melt is pulverized to a desired size to produce raw magnetic powder. In general, a method of producing a rare earth magnet (orientated magnet) by forming a compact while pressing magnetic powder into a compact and subjecting the compact to hot plastic processing to impart magnetic anisotropy is generally applied.

また、特許文献1には、Nd-Fe-B系合金からなる磁粉に重希土類改質合金粉末を混合もしくは被覆させた原料を、まず冷間成形して冷間成形体を製造し、この冷間成形体を熱間成形して熱間成形体を製造する、もしくは熱間成形体にさらに熱間塑性加工を施して熱間塑性加工体を製造する希土類磁石の製造方法が開示されている。この製造方法によれば、粒界相に濃化したDy等の重希土類元素を均一に分布させることができ、残留磁束密度の低下を抑制しながら保磁力を向上させることができるとしている。   In Patent Document 1, a raw material obtained by mixing or covering a magnetic powder made of an Nd—Fe—B alloy with heavy rare earth modified alloy powder is first cold-formed to produce a cold-formed body. A method for producing a rare earth magnet is disclosed in which a hot formed body is produced by hot forming the hot formed body, or a hot plastic formed body is produced by subjecting the hot formed body to further hot plastic working. According to this manufacturing method, heavy rare earth elements such as Dy concentrated in the grain boundary phase can be uniformly distributed, and the coercive force can be improved while suppressing a decrease in residual magnetic flux density.

ところで、上記熱間塑性加工にて希土類磁石を製造する過程においては、相互に隣接する結晶粒同士が一部磁気的に結合し、結合して相対的に大きくなった結晶粒と、結合していない相対的に小さな結晶粒が混在している。これは、原料となる磁粉が大小様々な粒径を有しており、その中で相対的に微細な磁粉は改質合金を酸化させ易く、そのために改質合金による粒界改質効果が不十分なものとなる結果、熱間塑性加工の際に隣接する結晶粒が改質が不十分な粒界相を突き破って磁気的に結合し易くなるためである。   By the way, in the process of manufacturing a rare earth magnet by the hot plastic working, a part of crystal grains adjacent to each other is magnetically coupled to a relatively large crystal grain. There are no relatively small grains. This is because the raw magnetic powder has various particle sizes, and among them, the relatively fine magnetic powder easily oxidizes the modified alloy, so that the grain boundary reforming effect by the modified alloy is not good. This is because, as a result, the crystal grains adjacent to each other in the hot plastic working easily break through the grain boundary phase that is insufficiently modified and are magnetically coupled.

一般に結晶粒が小さいと保磁力が高く、結晶粒が大きいと保磁力が小さくなるが、その代わりに磁化が高くなる。したがって、このように大小の粒径の結晶粒が混在してしまうと、M-Hループ(磁気ヒステリシスループ)の角部が丸みを帯びる傾向となり、このことはすなわち、磁石の角型性(角型比と言うこともできる)が悪くなることを意味している。なお、優れた角型性を有する磁石は、M-Hループが可及的に四角形に近く、したがって角部が90度に近い磁石である。   In general, when the crystal grains are small, the coercive force is high, and when the crystal grains are large, the coercive force is low, but instead the magnetization is high. Therefore, when such large and small crystal grains are mixed, the corners of the MH loop (magnetic hysteresis loop) tend to be rounded, which means that the squareness of the magnet (squareness ratio) Can be said to be worse). A magnet having excellent squareness is a magnet in which the M-H loop is as close to a quadrangle as possible, and thus the corners are close to 90 degrees.

角型性が悪くなることは磁石の最大エネルギ積が小さくなることを意味しており、したがって、仮に保磁力の高い磁石であったとしても、角型性が悪い磁石はモータに適用された際に性能が不十分なものとなってしまう。   Poor squareness means that the maximum energy product of the magnet becomes small. Therefore, even if a magnet with high coercive force is used, a magnet with poor squareness is applied to a motor. However, the performance will be insufficient.

特開2010−263172号公報JP 2010-263172 A

本発明は上記する問題に鑑みてなされたものであり、角型性に優れ、最大エネルギ積の高い希土類磁石を製造することのできる希土類磁石の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a rare earth magnet that can produce a rare earth magnet having excellent squareness and a high maximum energy product.

前記目的を達成すべく、本発明による希土類磁石の製造方法は、RE-T-B系の主相(RE:Nd、Pr、Yの少なくとも一種、T:Fe、Feの一部をCoで置換したもの)と、該主相の周りにある粒界相からなる磁粉のうち、粒径が50μm未満の磁粉を取り除いて選別された磁粉とし、融点が700℃以下のRE-M合金(M:遷移金属元素または典型金属元素であり、REはRE1-RE2であってもよく、RE1,RE2:Nd、Pr、Yの少なくとも一種)からなる改質合金粉をこの選別された磁粉と混合し、熱間プレス加工をおこなって成形体を製造する第1のステップ、前記成形体を熱間塑性加工して希土類磁石を製造する第2のステップからなるものである。   In order to achieve the above object, the method for producing a rare earth magnet according to the present invention is based on a RE-TB-based main phase (at least one of RE: Nd, Pr, Y, T: Fe, Fe partially substituted with Co). ) And RE-M alloy (M: transition metal) having a melting point of 700 ° C. or less, with the magnetic powder having a grain size of less than 50 μm removed from the magnetic powder composed of the grain boundary phase around the main phase. RE or RE2 may be RE1-RE2, RE1 or RE2: at least one of Nd, Pr, and Y) is mixed with this selected magnetic powder, It comprises a first step of producing a molded body by pressing and a second step of producing a rare earth magnet by hot plastic working the molded body.

本発明の製造方法は、熱間プレス加工にて成形体(バルク体)を製造するに当たり、原料となる磁粉を分級し、具体的には平均粒径が50μm未満の磁粉を取り除いて原料磁粉を選別した後に、さらにこの選別された磁粉に対し、融点が700℃以下の改質合金粉を混合したものを熱間プレス加工するものである。   In the production method of the present invention, when producing a compact (bulk body) by hot pressing, magnetic powder as a raw material is classified, and specifically, magnetic powder having an average particle size of less than 50 μm is removed to obtain the raw magnetic powder. After the selection, the selected magnetic powder is mixed with a modified alloy powder having a melting point of 700 ° C. or lower and hot pressed.

本発明者等によれば、粒径50μm未満の磁粉を取り除くこと、および、融点が700℃以下という低融点の改質合金を使用することにより、優れた角型性を有し、したがって最大エネルギ積の高い希土類磁石が得られることが実証されている。   According to the present inventors, by removing magnetic particles having a particle size of less than 50 μm and using a low melting point modified alloy having a melting point of 700 ° C. or less, it has excellent squareness, and therefore maximum energy. It has been demonstrated that high volume rare earth magnets can be obtained.

結晶粒(主相)を構成する希土類元素は、Nd、Pr、Yの少なくとも一種からなるが、これに加えて、Nd、Prの中間生成物として知られるDi(ジジム)を適用することもできる。   The rare earth element constituting the crystal grains (main phase) is composed of at least one of Nd, Pr, and Y. In addition to this, Di (zidym) known as an intermediate product of Nd and Pr can also be applied. .

また改質合金粉を構成する「遷移金属元素」または「典型金属元素」としては、Cu、Mn、Co、Ni、Zn、Al、Ga、Snなどのうちのいずれか一種を適用することができる。なお、改質合金粉の成分として重希土類元素を完全に排除しているわけではなく、融点700℃以下を満足する条件下で、Dy、Tb、Hoなどの重希土類元素が合金組成をなす改質合金粉を使用することもできる。   As the “transition metal element” or “typical metal element” constituting the modified alloy powder, any one of Cu, Mn, Co, Ni, Zn, Al, Ga, Sn, etc. can be applied. . It should be noted that heavy rare earth elements are not completely excluded as a component of the reformed alloy powder, and that the rare earth elements such as Dy, Tb, and Ho make alloy compositions under conditions that satisfy the melting point of 700 ° C or lower. Quality alloy powder can also be used.

改質合金粉を形成するRE-M合金としては、Nd-Cu合金(共晶点520℃)、Pr-Cu合金(共晶点480℃)、Nd-Pr-Cu合金、Nd-Al合金(共晶点640℃)、Pr-Al合金(650℃)、Nd-Pr-Al合金、Nd-Co合金(共晶点566℃)、Pr-Co合金(共晶点540℃)、Nd-Pr-Co合金のいずれか一種を適用することができる。また、重希土類元素を含む合金として、60Nd-30Cu-10Dy合金(共晶点503℃)、50Nd-30Cu-20Dy(共晶点576℃)などを挙げることができる。   The RE-M alloys that form the modified alloy powder include Nd-Cu alloys (eutectic point 520 ° C), Pr-Cu alloys (eutectic point 480 ° C), Nd-Pr-Cu alloys, Nd-Al alloys ( Eutectic point 640 ℃), Pr-Al alloy (650 ℃), Nd-Pr-Al alloy, Nd-Co alloy (eutectic point 566 ℃), Pr-Co alloy (eutectic point 540 ℃), Nd-Pr Any one of -Co alloys can be applied. Examples of alloys containing heavy rare earth elements include 60Nd-30Cu-10Dy alloy (eutectic point 503 ° C.), 50Nd-30Cu-20Dy (eutectic point 576 ° C.), and the like.

このように低融点の改質合金粉を使用して低温で溶融させることができるため、たとえば800℃程度以上の高温雰囲気下に置かれると結晶粒の粗大化が問題となるナノ結晶磁石(結晶粒径が50nm〜300nm程度)に対して、本発明の製造方法は好適である。
また、前記磁粉のうち、REの含有率が28〜32質量%の範囲にあるのが好ましい。
Since it can be melted at a low temperature by using the low melting point modified alloy powder in this way, for example, a nanocrystalline magnet (crystal The production method of the present invention is suitable for a particle size of about 50 nm to 300 nm.
Moreover, it is preferable that content rate of RE exists in the range of 28-32 mass% among the said magnetic powder.

REの含有率が28質量%未満の場合には、熱間塑性加工の際に割れの生じる可能性が高くなり、結晶粒の配向性も低下し易くなること、REの含有率が32質量%を超える場合には、熱間塑性加工の際の加工歪が相対的に軟らかい粒界相で吸収され易く、したがって結晶粒の配向性が低下し易くなるという本発明者等の知見に基づくものである。   When the RE content is less than 28% by mass, there is a high possibility of cracking during hot plastic working, and the orientation of crystal grains is likely to decrease, and the RE content is 32% by mass. Is greater than the above, it is based on the knowledge of the present inventors that the processing strain during hot plastic working is easily absorbed by the relatively soft grain boundary phase, and hence the orientation of the crystal grains is likely to be lowered. is there.

また、改質合金粉と選別された磁粉が混合された原料のうち、改質合金粉が1.5質量%以下の割合で混合されているのが好ましい。   Further, it is preferable that the reformed alloy powder is mixed at a ratio of 1.5% by mass or less in the raw material in which the modified alloy powder and the selected magnetic powder are mixed.

改質合金粉の混合割合が1.5質量%を超えてしまうと、熱間塑性加工の際の加工歪が粒界相に吸収され易く、したがって結晶粒の配向性が低下し易くなるという本発明者等の知見に基づくものである。   When the mixing ratio of the modified alloy powder exceeds 1.5% by mass, the present inventor says that the processing strain at the time of hot plastic working is easily absorbed by the grain boundary phase, and therefore the orientation of the crystal grains tends to be lowered. Based on such findings.

さらに、第2のステップにおける熱間塑性加工を700〜800℃の範囲の温度雰囲気下でおこなうのが好ましい。   Furthermore, it is preferable to perform the hot plastic working in the second step in a temperature atmosphere in the range of 700 to 800 ° C.

熱間塑性加工によって成形体を構成する結晶粒が回転したり、あるいは任意の結晶面ですべりが生じることで各結晶粒が容易磁化方向に配向する(いわゆるC軸配向)。熱間塑性加工が700℃未満の温度条件下でおこなわれると成形体に亀裂が生じ易く、800℃を超える温度条件下でおこなわれると結晶粒の粒成長速度が急激に速くなり過ぎ、保磁力が大きく低下し易くなるという本発明者等の知見に基づくものである。   Each crystal grain is oriented in the direction of easy magnetization (so-called C-axis orientation) when the crystal grains constituting the compact are rotated by hot plastic working or slip occurs on an arbitrary crystal plane. When hot plastic working is performed under a temperature condition of less than 700 ° C, the molded body is liable to crack, and when it is performed under a temperature condition of more than 800 ° C, the grain growth rate becomes too rapid and the coercive force This is based on the knowledge of the present inventors that it is likely to greatly decrease.

以上の説明から理解できるように、本発明の希土類磁石の製造方法によれば、熱間プレス加工にて成形体を製造するに当たり、粒径が50μm未満の磁粉を取り除いて原料磁粉を選別し、さらにこの選別された磁粉に対して融点が700℃以下の改質合金を混合したものを熱間プレス加工して希土類磁石前駆体である成形体を製造し、この成形体に熱間塑性加工をおこなって希土類磁石(配向磁石)を製造することにより、改質合金粉が微細な磁粉で酸化されることが無くなり、したがって改質合金粉による高い粒界改質効果が得られ、結晶粒同士の磁気的な結合を抑制することができる。そのため、粒径に大きな差異がなく、粒径の揃った結晶粒からなる希土類磁石であって、角型性に優れ、最大エネルギ積の高い希土類磁石を製造することができる。   As can be understood from the above description, according to the method for producing a rare earth magnet of the present invention, when producing a molded body by hot pressing, magnetic powder having a particle size of less than 50 μm is removed, and the raw magnetic powder is selected. Furthermore, a hot-press process is performed on the selected magnetic powder mixed with a modified alloy having a melting point of 700 ° C. or lower to produce a rare earth magnet precursor, which is then subjected to hot plastic working. By producing rare earth magnets (orientated magnets), the reformed alloy powder is not oxidized with fine magnetic powder, and thus a high grain boundary reforming effect by the reformed alloy powder can be obtained. Magnetic coupling can be suppressed. Therefore, it is possible to produce a rare earth magnet having a large maximum energy product, which is a rare earth magnet made of crystal grains having a uniform grain size, having no large difference in grain size, and having excellent squareness.

本発明の希土類磁石の製造方法の第1のステップを説明した模式図である。It is the schematic diagram explaining the 1st step of the manufacturing method of the rare earth magnet of this invention. 図1に続いて第1のステップを説明した図である。FIG. 2 is a diagram illustrating a first step following FIG. 1. 図2に続いて第1のステップを説明した図である。FIG. 3 is a diagram illustrating a first step following FIG. 2. 第1のステップで製造された成形体の組織を拡大した図である。It is the figure which expanded the structure | tissue of the molded object manufactured at the 1st step. 図4のV部の拡大図であって、結晶組織のミクロ構造を示した図である。FIG. 5 is an enlarged view of a portion V in FIG. 4 and shows a microstructure of a crystal structure. 本発明の希土類磁石の製造方法の第2のステップを説明した模式図である。It is the schematic diagram explaining the 2nd step of the manufacturing method of the rare earth magnet of this invention. 第2のステップで製造された希土類磁石の結晶組織のミクロ構造を示した図である。It is the figure which showed the microstructure of the crystal structure of the rare earth magnet manufactured at the 2nd step. 磁粉の分級の有無、および分級の際の粒径に応じた角型比を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the squareness ratio according to the presence or absence of classification of a magnetic powder, and the particle size in the case of classification. 磁粉の分級の有無、および改質合金粉の混合割合を変化させた際の角型比を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the squareness ratio at the time of changing the mixing ratio of the presence or absence of classification of magnetic powder, and a modified alloy powder. 磁粉の分級の有無、および改質合金粉の混合割合を変化させた際の磁気特性を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the magnetic characteristic at the time of changing the presence or absence of classification of a magnetic powder, and the mixing ratio of a modified alloy powder. 磁粉の分級の有無、および改質合金粉の混合割合を変化させた際のM-Hループを示す図であり、(a)は改質合金粉がない場合の結果であり、(b)は改質合金粉を1質量%有する場合の結果である。It is a figure which shows the MH loop at the time of changing the presence or absence of classification of magnetic powder, and the mixing ratio of reforming alloy powder, (a) is a result when there is no reforming alloy powder, (b) is modification This is the result when the alloy powder is 1% by mass. 改質合金粉の素材を変化させた際の角型比と磁気特性を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the squareness ratio and magnetic characteristic at the time of changing the raw material of a modified alloy powder.

以下、図面を参照して本発明の希土類磁石の製造方法の実施の形態を説明する。なお、図示例はナノ結晶磁石である希土類磁石の製造方法を説明したものであるが、本発明の希土類磁石の製造方法はナノ結晶磁石の製造に限定されるものではなく、結晶粒の相対的に大きな焼結磁石(たとえば1μm程度の粒径のもの)等の製造に適用できることは勿論のことである。   Embodiments of a method for producing a rare earth magnet according to the present invention will be described below with reference to the drawings. The illustrated example describes a method for producing a rare-earth magnet, which is a nanocrystalline magnet. However, the method for producing a rare-earth magnet of the present invention is not limited to the production of a nanocrystalline magnet, and relative crystal grains Of course, it can be applied to the production of large sintered magnets (for example, having a particle size of about 1 μm).

(希土類磁石の製造方法)
図1,2,3はその順で本発明の希土類磁石の製造方法の第1のステップを説明した模式図であり、図4は第1のステップで製造された成形体の組織を拡大した図であり、図5は図4のV部の拡大図であって、結晶組織のミクロ構造を示した図である。
(Rare earth magnet manufacturing method)
1, 2 and 3 are schematic views illustrating the first step of the method of manufacturing a rare earth magnet of the present invention in that order, and FIG. 4 is an enlarged view of the structure of the molded body manufactured in the first step. FIG. 5 is an enlarged view of a portion V in FIG. 4 and shows a microstructure of the crystal structure.

図1で示すように、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールWに噴射して急冷薄帯B(急冷リボン)を製作し、これを粗粉砕する。   As shown in FIG. 1, for example, in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll, and a molten metal having a composition that gives a rare earth magnet is a copper roll W To produce a quenched ribbon B (quenched ribbon), which is coarsely pulverized.

次に、急冷薄帯Bが粗粉砕されてできた磁粉を分級し、粒径(平均粒径)が50μm未満の磁粉を取り除いて磁粉の選別をおこない、選別された磁粉Qを得る。   Next, the magnetic powder formed by coarsely pulverizing the quenched ribbon B is classified, and the magnetic powder having a particle size (average particle diameter) of less than 50 μm is removed and the magnetic powder is selected to obtain the selected magnetic powder Q.

次に、図2で示すように、選別された磁粉Qと改質合金粉Tをそれぞれ容器に所定量ずつ投入して混合し、成形体原料Rを生成する。   Next, as shown in FIG. 2, the selected magnetic powder Q and the modified alloy powder T are respectively put into a container in a predetermined amount and mixed to produce a molded body raw material R.

生成された成形体原料Rを図3で示すように超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に充填し、超硬パンチPで加圧しながら(X方向)加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のRE-Fe-B系の主相(RE:Nd、Pr、Yの少なくとも一種)(20nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相からなる成形体Sを熱間プレス加工にて製作する(第1のステップ)。   As shown in FIG. 3, the produced molded body raw material R is filled in a cavity defined by a carbide die D and a carbide punch P that slides inside the hollow, and is pressed with the carbide punch P ( X direction) The main phase of RE-Fe-B system (RE: Nd, Pr, Y) of nanocrystal structure (currently 20nm to 200nm crystal grains) by applying current in the pressurizing direction and conducting heating. And a compact S comprising a grain boundary phase of an Nd—X alloy (X: metal element) around the main phase is manufactured by hot pressing (first step).

ここで、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも1種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, One of Nd-Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

一方、改質合金粉は、RE-M合金(M:遷移金属元素または典型金属元素であり、REはRE1-RE2であってもよく、RE1,RE2:Nd、Pr、Yの少なくとも一種)を素材とするものである。ここで、遷移金属元素または典型金属元素としては、Cu、Mn、Co、Ni、Zn、Al、Ga、Snなどのうちのいずれか一種を適用することができる。   On the other hand, the modified alloy powder is an RE-M alloy (M: transition metal element or typical metal element, RE may be RE1-RE2, and RE1, RE2: at least one of Nd, Pr, and Y). It is a material. Here, as the transition metal element or the typical metal element, any one of Cu, Mn, Co, Ni, Zn, Al, Ga, Sn and the like can be applied.

中でも、合金の融点が700℃以下の低融点のRE-M合金を使用するものとし、たとえば、Nd-Cu合金(共晶点520℃)、Pr-Cu合金(共晶点480℃)、Nd-Pr-Cu合金、Nd-Al合金(共晶点640℃)、Pr-Al合金(650℃)、Nd-Pr-Al合金、Nd-Co合金(共晶点566℃)、Pr-Co合金(共晶点540℃)、Nd-Pr-Co合金のいずれか一種を適用する。   Among them, it is assumed that a low melting point RE-M alloy having a melting point of 700 ° C. or less is used, for example, Nd—Cu alloy (eutectic point 520 ° C.), Pr—Cu alloy (eutectic point 480 ° C.), Nd -Pr-Cu alloy, Nd-Al alloy (eutectic point 640 ° C), Pr-Al alloy (650 ° C), Nd-Pr-Al alloy, Nd-Co alloy (eutectic point 566 ° C), Pr-Co alloy (Eutectic point 540 ° C), any one of Nd-Pr-Co alloy is applied.

また、選別された磁粉Qにおいては、REの含有率が28〜32質量%の範囲にあるのがよい。REの含有率が28質量%未満の場合には、以後の第2のステップである熱間塑性加工の際に割れの生じる可能性が高くなり、結晶粒の配向性も低下し易くなること、REの含有率が32質量%を超える場合には、熱間塑性加工の際の加工歪が相対的に軟らかい粒界相で吸収され易く、したがって結晶粒の配向性が低下し易くなるためである。   In the selected magnetic powder Q, the RE content is preferably in the range of 28 to 32% by mass. When the RE content is less than 28% by mass, there is a high possibility that cracking will occur during the subsequent second step of hot plastic working, and the orientation of the crystal grains tends to decrease. This is because when the RE content exceeds 32% by mass, the processing strain during hot plastic processing is easily absorbed by the relatively soft grain boundary phase, and hence the orientation of the crystal grains is likely to decrease. .

さらに、改質合金粉Tと選別された磁粉Qが混合された成形体原料Rのうち、改質合金粉Tは1.5質量%以下の割合で混合されているのがよい。改質合金粉の混合割合が1.5質量%を超えてしまうと、熱間塑性加工の際の加工歪が粒界相に吸収され易く、したがって結晶粒の配向性が低下し易くなるためである。   Further, in the molded body raw material R in which the modified alloy powder T and the selected magnetic powder Q are mixed, the modified alloy powder T is preferably mixed at a ratio of 1.5% by mass or less. This is because if the mixing ratio of the modified alloy powder exceeds 1.5% by mass, the working strain at the time of hot plastic working is easily absorbed by the grain boundary phase, and therefore the orientation of the crystal grains tends to be lowered.

図4で示す熱間プレス加工では、上記する低融点の改質合金粉Tを使用することから、700℃以下の比較的低い温度(300℃程度に共晶点のあるNd合金を使用する場合は共晶点に応じた温度でプレス加工)で熱間プレス(たとえば50〜500MPaで15秒以上保持して高密度化)をおこなうことで、改質合金粉Tを溶融させることができ、したがって、ナノ結晶磁石を構成する結晶粒の粗大化を効果的に抑制することができる。   In the hot press work shown in FIG. 4, the above-described modified alloy powder T having a low melting point is used, so a relatively low temperature of 700 ° C. or lower (when an Nd alloy having a eutectic point at about 300 ° C. is used) Can be melted in the modified alloy powder T by performing hot pressing (for example, holding at 50 to 500 MPa for 15 seconds or more to increase the density) at a temperature corresponding to the eutectic point. The coarsening of the crystal grains constituting the nanocrystal magnet can be effectively suppressed.

そして、成形体Sを構成する磁粉間の磁粉界面には、改質合金粉Tが溶融してなる改質合金粉の融液T’が行き渡る。なお、この成形体Sの磁粉Qの組織のミクロ構造は、図5で示すようにナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。   Then, a melt T ′ of the modified alloy powder obtained by melting the modified alloy powder T spreads over the magnetic powder interface between the magnetic powders constituting the compact S. Note that the microstructure of the magnetic powder Q structure of the compact S exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystal grains MP (main phase) as shown in FIG.

第1のステップで成形体Sが得られたら、次に、第1のステップと同様に、超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に成形体Sを収容し、熱間塑性加工をおこなうことで、改質合金粉の融液T’が粒界相に粒界拡散し、保磁力の高められた希土類磁石Cが製造される(第2のステップ)。   Once the molded body S is obtained in the first step, the molded body is then placed in the cavity defined by the cemented carbide die D and the cemented carbide punch P that slides in the hollow, as in the first step. By accommodating S and performing hot plastic working, the melt T ′ of the modified alloy powder diffuses into the grain boundary phase, and a rare earth magnet C having an increased coercive force is produced (second second). Step).

この希土類磁石Cは、図7で示すように、熱間塑性加工によって磁気的異方性が付与され、磁化の高められた磁石となっている。   As shown in FIG. 7, the rare earth magnet C is a magnet whose magnetic anisotropy is imparted by hot plastic working and whose magnetization is increased.

図示する希土類磁石の製造方法によれば、熱間プレス加工にて成形体を製造するに当たり、原料となる磁粉を分級して粒径が50μm未満の磁粉を取り除いて原料磁粉を選別し、この選別された磁粉に対して融点が700℃以下の改質合金粉Tを混合してなる成形体原料Rを熱間プレス加工して希土類磁石前駆体である成形体Sを製造し、この成形体Sに熱間塑性加工をおこなって希土類磁石Cを製造することにより、改質合金粉Tが微細な磁粉で酸化されることが無くなり、したがって改質合金粉による高い粒界改質効果が得られ、結晶粒同士の磁気的な結合を抑制することができる。そのため、粒径に大きな差異がなく、粒径の揃った結晶粒からなり、したがって角型性に優れ、最大エネルギ積の高い希土類磁石Cを製造することができる。   According to the method for producing a rare earth magnet shown in the drawing, when producing a compact by hot pressing, magnetic powder as a raw material is classified, and magnetic powder having a particle size of less than 50 μm is removed to select the raw magnetic powder. A molded body raw material R obtained by mixing a reformed alloy powder T having a melting point of 700 ° C. or lower with the magnetic powder produced is hot pressed to produce a molded body S that is a rare earth magnet precursor. By producing the rare earth magnet C by performing hot plastic working, the modified alloy powder T is not oxidized by the fine magnetic powder, and thus a high grain boundary reforming effect by the modified alloy powder is obtained, Magnetic coupling between crystal grains can be suppressed. Therefore, the rare earth magnet C having no significant difference in particle diameter and made of crystal grains with uniform particle diameters, and thus excellent in squareness and high maximum energy product can be manufactured.

[磁粉の分級の有無、および分級の際の粒径に応じた角型比を検証した実験とその結果]
本発明者等は、磁粉の分級の有無、および分級の際の粒径に応じた角型比を検証した実験をおこなった。以下、実施例1、2の製造方法を説明するとともに比較例1〜6の製造方法を説明する。
[Experiment and results of verifying the squareness ratio according to the presence / absence of magnetic powder classification and the particle size during classification]
The present inventors conducted an experiment to verify the squareness ratio according to the presence / absence of classification of magnetic powder and the particle size at the time of classification. Hereinafter, the manufacturing methods of Examples 1 and 2 will be described, and the manufacturing methods of Comparative Examples 1 to 6 will be described.

希土類合金原料(合金組成は、質量%で、29Nd-0.2Pr-4Co-0.9B-0.6Ga-bal.Fe)を所定量配合し、Arガス雰囲気下で溶解した後、その溶湯をオリフィスからCrめっきを施したCu製の回転ロールに射出して急冷し、合金薄帯を製作した。この合金薄帯をカッターミルで粉砕した後、篩にかけないものを比較例1、3とし(比較例1は改質合金粉を有するものであり、比較例3は改質合金粉を有していないもの)、篩にかけたものはその上限を2mmとして微細側を38μmで分級したもの(比較例2は改質合金粉を有するものであり、比較例4は改質合金粉を有していないもの)、微細側を53μmで分級したもの(実施例1は改質合金粉を有するものであり、比較例5は改質合金粉を有していないもの)、微細側を74μmで分級したもの(実施例2は改質合金粉を有するものであり、比較例6は改質合金粉を有していないもの)とした。   Rare earth alloy material (alloy composition is 29% by mass, 29Nd-0.2Pr-4Co-0.9B-0.6Ga-bal.Fe) is blended in a predetermined amount and dissolved in an Ar gas atmosphere. The alloy ribbon was produced by injecting it onto a Cu rotating roll with plating and quenching it. After pulverizing this alloy ribbon with a cutter mill, those that are not sieved are referred to as Comparative Examples 1 and 3 (Comparative Example 1 has modified alloy powder, and Comparative Example 3 has modified alloy powder. Nothing), the one that has been sieved, the upper limit is 2 mm and the fine side is classified by 38 μm (Comparative Example 2 has a modified alloy powder, Comparative Example 4 has no modified alloy powder) 1), fine side classified by 53 μm (Example 1 has modified alloy powder, Comparative Example 5 does not have modified alloy powder), fine side classified by 74 μm (Example 2 has a modified alloy powder, and Comparative Example 6 has no modified alloy powder).

上記各種の希土類合金粉末9gに対し、粒径が74〜250μm以下のNd-Cu合金粉末を1質量%混合し、粉末混合機にて10分間混ぜ合わせた。   1% by mass of Nd—Cu alloy powder having a particle size of 74 to 250 μm or less was mixed with 9 g of the above various rare earth alloy powders, and mixed for 10 minutes with a powder mixer.

次に、混合粉末をφ10mm、高さ40mmの容積の超硬型に収容し、上下の超硬パンチにて封止してこれをチャンバーにセットし、10−2Paに減圧しながら、高周波コイルで650℃まで加熱し、650℃の段階で300MPaで熱間プレス加工をおこない、その後、30秒保持して高さ15mmの成形体を製作した。 Next, the mixed powder is accommodated in a carbide die having a volume of φ10 mm and a height of 40 mm, sealed with upper and lower carbide punches, set in a chamber, and reduced in pressure to 10 −2 Pa while being high-frequency coil. Was heated to 650 ° C and hot pressed at 300MPa at the stage of 650 ° C, and then held for 30 seconds to produce a molded body with a height of 15mm.

この成形体をφ20mmの超硬型に収容し、上下の超硬パンチで封止し、高周波加熱で750℃まで加熱して熱間塑性加工をおこなって実施例1,2と比較例1〜6の希土類磁石の各試験片を製作した。   Examples 1 and 2 and Comparative Examples 1 to 6 were stored in a φ20 mm carbide die, sealed with upper and lower carbide punches, and heated to 750 ° C. by high-frequency heating to perform hot plastic working. Each rare earth magnet test piece was manufactured.

実施例1,2と比較例1〜6の各試験片に対し、その中心の2×2×2.2mmを切り出し、それぞれの磁気特性を測定するとともに、M-Hループを作成してその角型比を求めた。なお、磁気特性評価は、試料振動型磁力計(Vibrating Sample Magnetometer)を用いてRTでの保磁力、磁化を測定したものである。この実験結果を以下の表1と図8に示す。   For each test piece of Examples 1 and 2 and Comparative Examples 1 to 6, cut out the center 2 × 2 × 2.2 mm, measure the magnetic properties of each, and create an MH loop to determine the squareness ratio. Asked. The magnetic property evaluation is a measurement of coercive force and magnetization at RT using a vibrating sample magnetometer. The experimental results are shown in Table 1 below and FIG.

Figure 2013145832
Figure 2013145832

ここで、Hcは磁束密度がゼロの際の保磁力(平均保磁力)であり、Hkは磁束密度が残留磁束密度の90%の際の保磁力であり、Hk/Hcの値が角型比となる。なお、表中の保磁力の値に79.6を乗じることで、SI単位(kA/m)の保磁力値となる。   Here, Hc is the coercive force (average coercive force) when the magnetic flux density is zero, Hk is the coercive force when the magnetic flux density is 90% of the residual magnetic flux density, and the value of Hk / Hc is the squareness ratio. It becomes. Note that the coercivity value in SI units (kA / m) is obtained by multiplying the coercivity value in the table by 79.6.

表1および図8より、比較例1〜6に比して実施例1,2は、角型比が大きく向上し、最大エネルギ積の高い希土類磁石となっていることが実証されている。これは、53μm未満の磁粉を分級して取り除いたこと、および、Nd-Cu合金からなる改質合金粉を成形体原料として混合したためであると考えられる。この結果と分級のし易さ(μm単位ではなくて十μm単位)を考慮して、50μm未満の磁粉を分級の際の臨界値に設定するのがよいと考えられる。   From Table 1 and FIG. 8, it is demonstrated that Examples 1 and 2 are rare earth magnets having a large maximum energy product and a large square energy ratio as compared with Comparative Examples 1 to 6. This is considered to be because the magnetic powder of less than 53 μm was classified and removed, and the modified alloy powder made of Nd—Cu alloy was mixed as a raw material of the compact. Considering this result and ease of classification (in units of 10 μm, not in units of μm), it is considered better to set the magnetic powder of less than 50 μm to the critical value for classification.

[磁粉の分級の有無、および改質合金粉の混合割合を変化させた際の角型比を検証した実験とその結果]
本発明者等はさらに、磁粉の分級の有無、および改質合金粉の混合割合を変化させた際の角型比を検証した実験をおこなった。
[Experiment and results of verifying the squareness ratio when changing the mixing ratio of the modified alloy powder and the presence or absence of magnetic powder classification]
The present inventors further conducted an experiment for verifying the squareness ratio when the presence / absence of classification of magnetic powder and the mixing ratio of the modified alloy powder were changed.

この実験では、実質的に既述する実験と同様の方法で試験片を製作している。ただし、分級ありのものは篩の粒径を74μmとし、Nd-Cu合金の混合割合を、0質量%、0.5質量%、1質量%、1.5質量%、2質量%、3質量%、5質量%で変化させている。この実験結果を以下の表2と図9,10に示す。   In this experiment, a test piece is manufactured by a method substantially similar to the experiment described above. However, with classification, the sieve particle size is 74 μm, and the mixing ratio of the Nd-Cu alloy is 0 mass%, 0.5 mass%, 1 mass%, 1.5 mass%, 2 mass%, 3 mass%, 5 mass It is changed by%. The experimental results are shown in Table 2 below and FIGS.

Figure 2013145832
Figure 2013145832

表2および図9,10より、実施例2〜4はいずれも、比較例に比して角型比と磁化の双方ともに向上することが実証されている。   From Table 2 and FIGS. 9 and 10, it is proved that each of Examples 2 to 4 improves both the squareness ratio and the magnetization as compared with the comparative example.

たとえば、比較例9〜11では、角型比が他の比較例に比して向上するものの、実施例に比して磁化が大きく低下しており、角型比と磁化の双方をともに向上させることができていない。   For example, in Comparative Examples 9 to 11, although the squareness ratio is improved as compared with other comparative examples, the magnetization is greatly reduced as compared with the Example, and both the squareness ratio and the magnetization are improved. I can't.

具体的には、分級の有無とNd-Cu合金からなる改質合金粉の有無のみならず、改質合金粉の混合量が大きく影響し、この混合割合が1.5質量%を超えると磁化が大きく低下することが実証されている。   Specifically, not only the presence / absence of classification and the presence / absence of modified alloy powder made of Nd-Cu alloy, but also the mixing amount of the modified alloy powder has a large effect, and if this mixing ratio exceeds 1.5% by mass, the magnetization will increase. It has been demonstrated to decline.

これは、低融点のNd-Cu合金を添加することで熱間塑性加工の際にこの合金が溶融し、加工歪を吸収するため、この合金混合量が多すぎると配向性が低下し、磁化の低下に繋がるものと考えられる。ただし、混合量が1.5質量%まではその低下の割合もわずかであり、角型比向上による効果の方が大きいことから、改質合金粉混合割合を1.5質量%以下に規定するのがよい。   This is because, by adding a low melting point Nd-Cu alloy, this alloy melts during hot plastic working and absorbs processing strain. This is thought to lead to a decline in However, when the mixing amount is up to 1.5% by mass, the rate of decrease is small, and the effect of improving the squareness ratio is greater. Therefore, the mixing rate of the modified alloy powder is preferably set to 1.5% by mass or less.

また、図11aには、比較例3、6のM-Hループを、図11bには、実施例2、比較例1のM-Hループを示している。   FIG. 11a shows the M-H loops of Comparative Examples 3 and 6, and FIG. 11b shows the M-H loops of Example 2 and Comparative Example 1.

改質合金粉を有していない図11aにおける比較例3、6では、分級の有無によって大きな角型比の変化は確認できないが、図11bより、改質合金粉を有している場合、さらに分級の有無によって比較例1に比して実施例2の角型比が大きく向上していることが確認できる。   In Comparative Examples 3 and 6 in FIG. 11a that does not have the modified alloy powder, a large change in the squareness ratio cannot be confirmed depending on the presence or absence of classification, but from FIG. It can be confirmed that the squareness ratio of Example 2 is greatly improved as compared with Comparative Example 1 depending on the presence or absence of classification.

[改質合金粉の素材を変化させた際の角型比と磁気特性を検証した実験とその結果]
本発明者等はさらに、改質合金粉の素材を変化させた際の角型比と磁気特性を検証した実験をおこなった。
[Experiment and results of verifying squareness ratio and magnetic properties when changing the material of the modified alloy powder]
The inventors further conducted an experiment to verify the squareness ratio and magnetic characteristics when the material of the modified alloy powder was changed.

本実験では、53μmの大きさの篩で分級しており、熱間塑性加工は既述の実験同様750℃でおこなっている。改質合金粉の有無や改質合金粉種の相違による実験結果を以下の表3および図12に示す。   In this experiment, classification is performed with a 53 μm sieve, and hot plastic working is performed at 750 ° C. as in the experiment described above. The following Table 3 and FIG. 12 show the experimental results based on the presence or absence of the modified alloy powder and the difference in the modified alloy powder type.

Figure 2013145832
Figure 2013145832

表3および図12より、比較例12〜14で使用する改質合金粉はそれらの融点が700℃を超えており、実施例5〜8に比して保磁力と角型比がともに格段に低くなっている。これは、熱間塑性加工時の加熱温度で改質合金粉が溶融していないために保磁力向上が図られなかったものと考えられる。   From Table 3 and FIG. 12, the modified alloy powders used in Comparative Examples 12 to 14 have melting points exceeding 700 ° C., and both the coercive force and the squareness ratio are markedly higher than those of Examples 5 to 8. It is low. This is considered that the coercive force was not improved because the reformed alloy powder was not melted at the heating temperature during hot plastic working.

これに対し、実施例5〜8は融点700℃以下の改質合金粉を有していることから、熱間塑性加工の際に改質合金粉が十分に溶融し、粒界相が良好に改質された結果、保磁力と角型比がともに向上したものと考えられる。なお、比較例で使用した各改質合金粉の融点温度で熱間塑性加工をおこなうと、今度は結晶粒の粗大化が問題となり、この粗大化によって保磁力の大きな向上を見込むことはできない。   On the other hand, since Examples 5 to 8 have a modified alloy powder having a melting point of 700 ° C. or lower, the modified alloy powder is sufficiently melted during hot plastic working, and the grain boundary phase is good. As a result of the modification, both the coercive force and the squareness ratio are considered to have improved. If hot plastic working is performed at the melting point temperature of each modified alloy powder used in the comparative example, the coarsening of crystal grains becomes a problem, and the coarsening cannot be expected to greatly improve the coercive force.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

W…銅ロール、B…急冷薄帯(急冷リボン)、Q…選別された磁粉、T…改質合金粉、T’…改質合金粉の融液、R…成形体原料、D…超硬ダイス、P…超硬パンチ、S…成形体、C…希土類磁石(配向磁石)、MP…主相(ナノ結晶粒、結晶粒)、BP…粒界相   W: Copper roll, B: Quenched ribbon (quenched ribbon), Q: Selected magnetic powder, T: Modified alloy powder, T ′: Melted liquid of modified alloy powder, R: Molded raw material, D: Carbide Dies, P ... Carbide punch, S ... Molded body, C ... Rare earth magnet (orientation magnet), MP ... Main phase (nanocrystal grains, crystal grains), BP ... Grain boundary phase

Claims (6)

RE-T-B系の主相(RE:Nd、Pr、Yの少なくとも一種、T:Fe、Feの一部をCoで置換したもの)と、該主相の周りにある粒界相からなる磁粉のうち、粒径が50μm未満の磁粉を取り除いて選別された磁粉とし、融点が700℃以下のRE-M合金(M:遷移金属元素または典型金属元素であり、REはRE1-RE2であってもよく、RE1,RE2:Nd、Pr、Yの少なくとも一種)からなる改質合金粉をこの選別された磁粉と混合し、熱間プレス加工をおこなって成形体を製造する第1のステップ、
前記成形体を熱間塑性加工して希土類磁石を製造する第2のステップからなる希土類磁石の製造方法。
RE-TB main phase (at least one of RE: Nd, Pr, Y, T: Fe, a part of Fe is replaced by Co) and a magnetic particle consisting of a grain boundary phase around the main phase Of these, RE-M alloy (M: transition metal element or typical metal element, where RE is RE1-RE2) First, a modified alloy powder made of RE1, RE2: at least one of Nd, Pr, and Y) is mixed with the selected magnetic powder and subjected to hot pressing to produce a molded body,
A method for producing a rare earth magnet comprising a second step of producing a rare earth magnet by hot plastic working the molded body.
前記磁粉のうち、REの含有率が28〜32質量%の範囲にある請求項1に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 1, wherein the RE content in the magnetic powder is in the range of 28 to 32 mass%. 改質合金粉と選別された磁粉が混合された原料のうち、改質合金粉が1.5質量%以下の割合で混合されている請求項1または2に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 1 or 2, wherein the reformed alloy powder is mixed at a ratio of 1.5% by mass or less of the raw material in which the modified alloy powder and the selected magnetic powder are mixed. 熱間塑性加工を700〜800℃の範囲の温度雰囲気下でおこなう請求項1〜3のいずれかに記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 3, wherein the hot plastic working is performed in a temperature atmosphere in a range of 700 to 800 ° C. RE-M合金のMが、Cu、Mn、Co、Ni、Zn、Al、Ga、Snのいずれか一種である請求項1〜4のいずれかに記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 4, wherein M of the RE-M alloy is any one of Cu, Mn, Co, Ni, Zn, Al, Ga, and Sn. RE-M合金としてNd-Cu合金、Pr-Cu合金、Nd-Pr-Cu合金、Nd-Al合金、Pr-Al合金、Nd-Pr-Al合金、Nd-Co合金、Pr-Co合金、Nd-Pr-Co合金のいずれか一種を使用する請求項1〜5のいずれかに記載の希土類磁石の製造方法。   Nd-Cu alloy, Pr-Cu alloy, Nd-Pr-Cu alloy, Nd-Al alloy, Pr-Al alloy, Nd-Pr-Al alloy, Nd-Co alloy, Pr-Co alloy, Nd as RE-M alloy The method for producing a rare earth magnet according to any one of claims 1 to 5, wherein any one of -Pr-Co alloys is used.
JP2012006165A 2012-01-16 2012-01-16 Rare earth magnet manufacturing method Expired - Fee Related JP5742733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006165A JP5742733B2 (en) 2012-01-16 2012-01-16 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006165A JP5742733B2 (en) 2012-01-16 2012-01-16 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2013145832A true JP2013145832A (en) 2013-07-25
JP5742733B2 JP5742733B2 (en) 2015-07-01

Family

ID=49041475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006165A Expired - Fee Related JP5742733B2 (en) 2012-01-16 2012-01-16 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP5742733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971875A (en) * 2014-05-15 2014-08-06 聊城大学 Mg-Cu grain boundary modified high-magnetism sintered Nd-Fe-B magnet and preparation process thereof
CN108281272A (en) * 2018-01-16 2018-07-13 宁波招宝磁业有限公司 A kind of preparation method of low-cost and high-performance Sintered NdFeB magnet
CN109411226A (en) * 2018-10-23 2019-03-01 宁波同创强磁材料有限公司 A kind of preparation process improving neodymium iron boron magnetic body high temperature resistance and ultralow weightlessness

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816253B (en) * 2017-01-06 2018-07-13 北京工业大学 A kind of method of Mn-Ga alloys magnetic hardening

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283016A (en) * 1994-04-05 1995-10-27 Tdk Corp Magnet and production thereof
JPH09275004A (en) * 1995-07-07 1997-10-21 Daido Steel Co Ltd Permanent magnet and its manufacture
JP2007129106A (en) * 2005-11-04 2007-05-24 Neomax Co Ltd Rare-earth alloy system binderless magnet and its manufacturing method
JP2010180426A (en) * 2009-02-03 2010-08-19 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
JP2011042837A (en) * 2009-08-21 2011-03-03 Daido Steel Co Ltd Magnetically anisotropic magnet material and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283016A (en) * 1994-04-05 1995-10-27 Tdk Corp Magnet and production thereof
JPH09275004A (en) * 1995-07-07 1997-10-21 Daido Steel Co Ltd Permanent magnet and its manufacture
JP2007129106A (en) * 2005-11-04 2007-05-24 Neomax Co Ltd Rare-earth alloy system binderless magnet and its manufacturing method
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
JP2010180426A (en) * 2009-02-03 2010-08-19 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2011042837A (en) * 2009-08-21 2011-03-03 Daido Steel Co Ltd Magnetically anisotropic magnet material and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971875A (en) * 2014-05-15 2014-08-06 聊城大学 Mg-Cu grain boundary modified high-magnetism sintered Nd-Fe-B magnet and preparation process thereof
CN103971875B (en) * 2014-05-15 2017-02-22 聊城大学 Mg-Cu grain boundary modified high-magnetism sintered Nd-Fe-B magnet and preparation process thereof
CN108281272A (en) * 2018-01-16 2018-07-13 宁波招宝磁业有限公司 A kind of preparation method of low-cost and high-performance Sintered NdFeB magnet
CN109411226A (en) * 2018-10-23 2019-03-01 宁波同创强磁材料有限公司 A kind of preparation process improving neodymium iron boron magnetic body high temperature resistance and ultralow weightlessness

Also Published As

Publication number Publication date
JP5742733B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6003920B2 (en) Rare earth magnet manufacturing method
JP5640954B2 (en) Rare earth magnet manufacturing method
JP5692231B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP5725200B2 (en) Rare earth magnets
JP2013149862A (en) Method of manufacturing rare earth magnet
JP5751237B2 (en) Rare earth magnet and manufacturing method thereof
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
JP5708242B2 (en) Rare earth magnet manufacturing method
JP5691989B2 (en) Method for producing magnetic powder for forming sintered body of rare earth magnet precursor
JP2016111136A (en) Rare-earth magnet
CN105849828A (en) Method of manufacturing rare earth magnet
JP2013197414A (en) Sintered compact and production method therefor
JP2013084802A (en) Sintered compact of rare earth magnet precursor and manufacturing method of magnetic powder for forming the same
JP2015119074A (en) Method for producing rare earth magnet
JP2015220335A (en) Rare earth magnet, and method for manufacturing rare earth magnet
JP5742733B2 (en) Rare earth magnet manufacturing method
JP6274068B2 (en) Rare earth magnet manufacturing method
JP2011190482A (en) Method for producing powder of rare earth alloy, and permanent magnet
JP2019179796A (en) Rare earth magnet and manufacturing method thereof
JP6313202B2 (en) Rare earth magnet manufacturing method
EP3007192A1 (en) Method for manufacturing rare-earth magnets
JP6642419B2 (en) Rare earth magnet
JP2013157345A (en) Method of producing rare-earth magnet
JP6447804B2 (en) Method for manufacturing magnet compact
JP2013138111A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees