JPH07283016A - Magnet and production thereof - Google Patents

Magnet and production thereof

Info

Publication number
JPH07283016A
JPH07283016A JP6090482A JP9048294A JPH07283016A JP H07283016 A JPH07283016 A JP H07283016A JP 6090482 A JP6090482 A JP 6090482A JP 9048294 A JP9048294 A JP 9048294A JP H07283016 A JPH07283016 A JP H07283016A
Authority
JP
Japan
Prior art keywords
magnet
alloy
phase
infiltration
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6090482A
Other languages
Japanese (ja)
Other versions
JP3405806B2 (en
Inventor
Koichi Yajima
弘一 矢島
Katashi Takebuchi
確 竹渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP09048294A priority Critical patent/JP3405806B2/en
Publication of JPH07283016A publication Critical patent/JPH07283016A/en
Application granted granted Critical
Publication of JP3405806B2 publication Critical patent/JP3405806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE:To provide an R-T-B based anisotropic magnet having high coercive force, remanent magnetic flux density and dimensional accuracy along with an R-T-B based anisotropic magnet excellent significantly in corrosion resistance. CONSTITUTION:A molding alloy comprising R (rare earth element), T (Fe, or at least one kind of Co, Ni or Cu and Fe) and B and containing a phase composed substantially of R2T14 is fused into an alloy rich in R and a molten allay is poured into a molted item of molding alloy powder thus producing a magnet. Corrosion resistance is enhanced significantly by a magnet containing a granular main phase composed substantially of R2T14B phase and a subphase surrounding the main phase wherein the subphase contains an R3Co phase and/or an RCu phase with the ratio of the subphase being set in the range of 20-40vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、寸法精度の良好な希土
類磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet having good dimensional accuracy and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積32M
GOeのものが量産されている。また、近年Nd2 Fe
14B磁石等のR−T−B系磁石(TはFe、またはFe
およびCo)が開発され、特開昭59−46008号公
報には焼結磁石が開示されている。R−T−B系磁石
は、Sm−Co系磁石に比べ原料が安価である。R−T
−B系焼結磁石の製造には、従来のSm−Co系の粉末
冶金プロセス(溶解→母合金鋳造→インゴット粗粉砕→
微粉砕→成形→焼結→磁石)を適用することができる。
2. Description of the Related Art As a rare earth magnet having high performance, an Sm-Co type magnet manufactured by powder metallurgy has an energy product of 32M.
GOe's are in mass production. In recent years, Nd 2 Fe
14 RTB magnets such as B magnets (T is Fe or Fe
And Co) were developed, and a sintered magnet is disclosed in JP-A-59-46008. R-T-B magnets are cheaper in raw material than Sm-Co magnets. RT
-For the production of B-based sintered magnets, the conventional Sm-Co-based powder metallurgy process (melting → master alloy casting → ingot coarse crushing →
Fine crushing → molding → sintering → magnet) can be applied.

【0003】R−T−B系磁石では、焼結磁石の他に、
磁石粉末を樹脂バインダや金属バインダで結合したボン
ディッド磁石も実用化されている。ボンディッド磁石
は、成形の際の寸法がほぼ維持されるため、寸法精度が
高く、製造後に形状加工を必要としない。しかし、工業
化されているR−T−B系のボンディッド磁石は、特公
平1−54457号公報に示されるように、単ロール法
等を用いて急冷凝固した多結晶粒子を用いるので、等方
性磁石(最大エネルギー積5〜10MGOe程度)となる。
異方性ボンディッド磁石用の磁石粉末としては、特公平
4−20242号公報に示されるように、急冷凝固した
粉末をホットプレスにより一軸性圧縮して高密度化した
後、高温で一軸性塑性加工(ダイアップセット)を施し
て異方性化し、得られた異方性圧粉体を粉砕したものが
提案されている。しかし、この異方性化プロセスは手間
がかかり、生産コストが大幅に上昇してしまう。また、
ホットプレスおよびダイアップセットの際に高温減磁が
生じてしまう。なお、ボンディッド磁石に異方性焼結磁
石の粉砕粉を用いることも考えられるが、焼結体を粉砕
すると保磁力や角形比が極端に劣化するため、磁石とし
ての特性が得られない。この他、鋳造・熱間圧延プロセ
スで製造した磁石体の粉砕粉も異方性ボンディッド磁石
の原料として提案されているが、焼結体を粉砕した場合
と同様に、粉砕による保磁力の劣化が大きいため、実用
材料とはなっていない。
In the R-T-B system magnet, in addition to the sintered magnet,
Bonded magnets in which magnet powder is bonded with a resin binder or a metal binder are also in practical use. Since the dimensions of the bonded magnet are almost maintained during molding, the dimensional accuracy is high and no shape processing is required after manufacturing. However, since the industrialized RTB-based bonded magnet uses polycrystalline particles that have been rapidly solidified by a single roll method or the like as disclosed in Japanese Patent Publication No. 1-54457, it isotropic. It becomes a magnet (maximum energy product 5-10 MGOe).
As magnetic powders for anisotropic bonded magnets, as shown in Japanese Patent Publication No. 4-20242, a rapidly solidified powder is uniaxially compressed by hot pressing to densify it, and then uniaxially plastically worked at high temperature. It has been proposed that the resulting anisotropic green compact is pulverized by applying (die up set) to make it anisotropic. However, this anisotropy process is time-consuming and significantly increases the production cost. Also,
High temperature demagnetization occurs during hot pressing and die up setting. It is possible to use pulverized powder of anisotropic sintered magnet for the bonded magnet, but when the sintered body is pulverized, the coercive force and the squareness ratio are extremely deteriorated, so that the characteristics as a magnet cannot be obtained. In addition to this, crushed powder of a magnet body produced by a casting / hot rolling process has been proposed as a raw material for anisotropic bonded magnets, but as with the case of crushing a sintered body, deterioration of coercive force due to crushing occurs. Because it is large, it is not a practical material.

【0004】このように、ボンディッド磁石では高保磁
力を維持したままで異方性化することが極めて困難であ
る。しかも、磁石全体に占める磁石粉末の割合に制限が
あるため、高い残留磁束密度を得ることが困難である。
As described above, it is extremely difficult for a bonded magnet to anisotropy while maintaining a high coercive force. Moreover, it is difficult to obtain a high residual magnetic flux density because the ratio of the magnet powder to the entire magnet is limited.

【0005】これに対し、R−T−B系焼結磁石では、
実質的に単結晶粒子からなる粉末を磁界中で成形するた
め、容易に異方性磁石が得られ、しかもバインダを用い
ないため、高特性が得られる。しかし、焼結法では、成
形体が焼結反応時に著しく収縮し、その収縮が不均一で
あるため、成形体の寸法精度の維持が難しい。この収縮
は、成形体中の粒子の配向度や密度のばらつきなどによ
り異なる。異方性焼結磁石では、磁化容易軸方向とそれ
に直交する方向とで収縮率が異なる。例えば、成形体の
密度が4.3g/cm3 のとき、焼結後の密度は7.55g/
cm3 に達し、収縮率は磁化容易軸方向で22%程度、そ
れに垂直な方向で15%程度となり、全体として30〜
40体積%程度も収縮してしまう。
On the other hand, in the RTB sintered magnet,
Since powder consisting of substantially single crystal particles is molded in a magnetic field, an anisotropic magnet can be easily obtained, and since no binder is used, high characteristics can be obtained. However, in the sintering method, the molded body significantly shrinks during the sintering reaction, and the shrinkage is non-uniform, so that it is difficult to maintain the dimensional accuracy of the molded body. This shrinkage varies depending on the degree of orientation of particles in the molded body, variations in density, and the like. In an anisotropic sintered magnet, the contraction rate differs between the direction of the easy axis of magnetization and the direction orthogonal thereto. For example, when the density of the molded body is 4.3 g / cm 3 , the density after sintering is 7.55 g / cm 3.
The contraction rate reaches about 22% in the direction of the easy axis of magnetization and about 15% in the direction perpendicular to it, reaching 30 cm3 as a whole.
It shrinks about 40% by volume.

【0006】一般的に、磁石粉末を成形する際の圧力を
高くすれば成形体の密度が高くなり、それに伴なって焼
結時の収縮率は低くなるが、一般的に要求される寸法精
度を満足するほど収縮率および変形量は減少しない。こ
の傾向は特にラジアル異方性リング状磁石や極異方性リ
ング状磁石で顕著であり、従来のこれらの異方性リング
状磁石では、成形圧力に関係なく、内周面、外周面およ
び上下面の研削が必要となるので、生産性の低下および
研削による磁石材料の損失などが生じ、コストアップを
招いている。
Generally, if the pressure at the time of molding the magnet powder is increased, the density of the molded body is increased, and the shrinkage rate at the time of sintering is reduced accordingly, but the dimensional accuracy generally required. The shrinkage rate and the amount of deformation do not decrease so as to satisfy the above condition. This tendency is particularly remarkable in radial anisotropic ring magnets and polar anisotropic ring magnets.In these conventional anisotropic ring magnets, the inner peripheral surface, the outer peripheral surface and the upper surface are irrespective of the molding pressure. Since it is necessary to grind the lower surface, the productivity is reduced and the magnet material is lost due to the grinding, resulting in an increase in cost.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、保磁
力および残留磁束密度が高く、しかも寸法精度の良好な
R−T−B系異方性磁石を提供することであり、他の目
的は、耐食性が極めて良好なR−T−B系異方性磁石を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an R-T-B type anisotropic magnet having a high coercive force and a residual magnetic flux density and good dimensional accuracy, and another object. Is to provide an R-T-B type anisotropic magnet having extremely good corrosion resistance.

【0008】[0008]

【課題を解決するための手段】このような目的は、下記
(1)〜(21)の本発明により達成される。 (1)R(Rは、Yを含む希土類元素の少なくとも1種
である)、T(Tは、Feであるか、Co、Niおよび
Cuの少なくとも1種ならびにFeである)およびBを
含有し、実質的にR214Bからなる相を含む成形体用
合金と、Rを含み、R214BよりもRリッチな溶浸用
合金とを用い、溶融した溶浸用合金を、成形体用合金の
粉末の成形体に溶浸させて磁石を得ることを特徴とする
磁石の製造方法。 (2)溶浸用合金の融点が1000℃以下である上記
(1)の磁石の製造方法。 (3)溶浸用合金の融点が、前記成形体の熱収縮開始温
度よりも低い上記(1)または(2)の磁石の製造方
法。 (4)前記成形体と溶浸用合金とを接触させた状態で昇
温して溶浸用合金を溶融する上記(1)〜(3)のいず
れかの磁石の製造方法。 (5)前記成形体の密度が4.0g/cm3 以上である上記
(1)〜(4)のいずれかの磁石の製造方法。 (6)相対密度が95%以上である磁石を製造する上記
(1)〜(5)のいずれかの磁石の製造方法。 (7)成形体用合金が、Rを26〜38重量%、Bを
0.9〜3重量%含み、残部が実質的にTである上記
(1)〜(6)のいずれかの磁石の製造方法。 (8)Nd+Prが成形体用合金のRの50重量%以上
を占める上記(1)〜(7)のいずれかの磁石の製造方
法。 (9)Fe+CoがTの50重量%以上を占める上記
(1)〜(8)のいずれかの磁石の製造方法。 (10)成形体用合金の粉末の平均粒子径が0.1〜5
0μm である上記(1)〜(9)のいずれかの磁石の製
造方法。 (11)溶浸用合金がRを40〜99重量%含む上記
(1)〜(10)のいずれかの磁石の製造方法。 (12)溶浸用合金の残部が実質的にM(Mは、Fe、
Co、Ni、Cu、Al、Sn、GaおよびAgの少な
くとも1種である)である上記(11)の磁石の製造方
法。 (13)Mの一部に替えて、B、SiおよびCの少なく
とも1種を含み、これらの合計含有量が溶浸用合金の3
重量%以下である上記(12)の磁石の製造方法。 (14)前記成形体が磁界中で成形されたものである上
記(1)〜(13)のいずれかの磁石の製造方法。 (15)溶浸後の成形体に、溶浸用合金の融点よりも高
い温度で熱処理を施す上記(1)〜(14)のいずれかの
磁石の製造方法。 (16)前記熱処理の際の保持温度が800℃以上であ
る上記(15)の磁石の製造方法。 (17)実質的にR214B相(Rは、Yを含む希土類
元素の少なくとも1種であり、Tは、Feであるか、C
o、NiおよびCuの少なくとも1種ならびにFeであ
る)からなる粒状の主相と、R214BよりもRリッチ
であり、前記主相を包囲する副相とを含み、副相中にR
3 Co相および/またはRCu相を含み、磁石中の副相
の割合が20〜40体積%であることを特徴とする磁
石。 (18)R3 Co相のCoの少なくとも一部およびRC
u相のCuの少なくとも一部がFeで置換されている上
記(17)の磁石。 (19)R3 Co相のCoの少なくとも一部がCuで置
換されており、RCu相のCuの少なくとも一部がCo
で置換されている上記(17)または(18)の磁石。 (20)副相が、R3 (Co1-w-x Few Cux )相
(0.01≦w≦0.3、0.01≦x≦0.3)およ
びR(Cu1-y-z Coy Fez )相(0.01≦y≦
0.3、0.01≦z≦0.3)を含み、磁石中におけ
るこれらの相の含有率がそれぞれ1〜30体積%であ
り、磁石中におけるこれらの相の合計含有率が20〜4
0体積%である上記(17)の磁石。 (21)Rを30〜60重量%、Bを0.3〜6重量%
含む上記(17)〜(20)の磁石。
These objects are achieved by the present invention described in (1) to (21) below. (1) contains R (R is at least one rare earth element including Y), T (T is Fe, or at least one of Co, Ni and Cu and Fe) and B a molded body alloy containing substantially phase consisting R 2 T 14 B, wherein the R, than R 2 T 14 B using the R-rich infiltration alloy, the molten infiltrant alloy, A method for producing a magnet, comprising infiltrating a powder of an alloy for a molded body into a molded body to obtain a magnet. (2) The method for producing a magnet according to the above (1), wherein the melting point of the alloy for infiltration is 1000 ° C. or less. (3) The method for producing a magnet according to the above (1) or (2), wherein the melting point of the alloy for infiltration is lower than the heat shrinkage start temperature of the compact. (4) The method for producing a magnet according to any one of the above (1) to (3), wherein the infiltrating alloy is heated by raising the temperature of the compact and the infiltrating alloy in contact with each other. (5) The method for producing a magnet according to any one of (1) to (4) above, wherein the density of the molded body is 4.0 g / cm 3 or more. (6) The method for producing a magnet according to any one of the above (1) to (5), which produces a magnet having a relative density of 95% or more. (7) The alloy for a molded body according to any one of the above (1) to (6), wherein the alloy contains 26 to 38% by weight of R, 0.9 to 3% by weight of B, and the balance is substantially T. Production method. (8) The method for producing a magnet according to any one of the above (1) to (7), wherein Nd + Pr accounts for 50% by weight or more of R of the alloy for molded body. (9) The method for producing a magnet according to any one of (1) to (8) above, wherein Fe + Co accounts for 50% by weight or more of T. (10) The powder of the alloy for compacts has an average particle size of 0.1 to 5
The method for producing a magnet according to any one of (1) to (9), wherein the magnet has a diameter of 0 μm. (11) The method for producing a magnet according to any one of (1) to (10) above, wherein the infiltration alloy contains 40 to 99% by weight of R. (12) The balance of the alloy for infiltration is substantially M (M is Fe,
The method for producing a magnet according to (11) above, which is at least one of Co, Ni, Cu, Al, Sn, Ga, and Ag). (13) At least one of B, Si and C is contained in place of a part of M, and the total content of these is 3 of the infiltration alloy.
The method for producing a magnet according to the above (12), which is not more than wt%. (14) The method for producing a magnet according to any one of (1) to (13) above, wherein the molded body is molded in a magnetic field. (15) The method for producing a magnet according to any one of (1) to (14), wherein the formed body after infiltration is heat-treated at a temperature higher than the melting point of the alloy for infiltration. (16) The method for producing a magnet according to (15), wherein the holding temperature during the heat treatment is 800 ° C. or higher. (17) Substantially R 2 T 14 B phase (R is at least one rare earth element including Y, and T is Fe or C
o, at least one of Ni and Cu, and Fe), and a sub-phase that is R richer than R 2 T 14 B and surrounds the main phase. R
< 3 > A magnet containing a Co phase and / or an RCu phase, wherein the proportion of the subphase in the magnet is 20 to 40% by volume. (18) At least a part of Co in the R 3 Co phase and RC
The magnet according to (17) above, wherein at least part of Cu in the u phase is replaced with Fe. (19) At least a part of Co in the R 3 Co phase is replaced by Cu, and at least a part of Cu in the RCu phase is Co.
The magnet of (17) or (18) above, which is replaced by. (20) The sub-phase is an R 3 (Co 1-wx Fe w Cu x ) phase (0.01 ≦ w ≦ 0.3, 0.01 ≦ x ≦ 0.3) and R (Cu 1-yz Co y Fe z ) phase (0.01 ≦ y ≦
0.3, 0.01 ≦ z ≦ 0.3), the content of these phases in the magnet is 1 to 30% by volume, respectively, and the total content of these phases in the magnet is 20 to 4
The magnet according to (17) above, which is 0% by volume. (21) 30 to 60% by weight of R and 0.3 to 6% by weight of B
Including the magnets of (17) to (20) above.

【0009】[0009]

【作用および効果】Nd2 Fe14B系焼結磁石の保磁力
が結晶粒界のNdリッチ相の存在に依存していること
は、様々な論文などにおいて詳しく報告されている。し
たがって、Nd2 Fe14B相から構成される結晶粒をN
dリッチ相が均一に被覆するように焼結すること、すな
わち、焼結磁石中においてNdリッチ相を均一に分散さ
せることが重要となる。
Actions and Effects It has been reported in various papers that the coercive force of the Nd 2 Fe 14 B system sintered magnet depends on the existence of the Nd-rich phase in the grain boundaries. Therefore, the crystal grains composed of the Nd 2 Fe 14 B phase are
It is important to sinter so that the d-rich phase is uniformly covered, that is, to uniformly disperse the Nd-rich phase in the sintered magnet.

【0010】本発明では、実質的にR214Bからなる
相を有する粉末の成形体に、Rリッチな溶浸用合金を溶
浸させる。この場合の溶浸とは、溶融した合金を成形体
に染み込ませることである。液相の溶浸用合金は、成形
体用合金の粉末に対して極めて濡れ性が良好であるた
め、短時間で成形体中の粒子間の空隙に充填される。こ
のため、保磁力発生に重要なRリッチ相が磁石中におい
て偏在せず、高保磁力が得られる。しかも、溶浸により
製造された磁石の密度はほぼ完全に焼結された磁石の密
度と同等となる。換言すれば、磁石外部へ通じる開空孔
のほとんどない磁石が得られる。このため、焼結磁石と
同様に、Niめっきや樹脂塗装などにより、十分な防錆
効果が得られる。
In the present invention, the R-rich infiltrating alloy is infiltrated into the powder compact having a phase substantially consisting of R 2 T 14 B. The infiltration in this case means that the molten alloy is impregnated into the compact. Since the liquid phase infiltration alloy has extremely good wettability with respect to the powder of the alloy for compacts, it fills the voids between the particles in the compact in a short time. Therefore, the R-rich phase, which is important for generating the coercive force, is not unevenly distributed in the magnet, and a high coercive force can be obtained. Moreover, the density of magnets produced by infiltration is almost equal to the density of magnets that are completely sintered. In other words, it is possible to obtain a magnet having almost no open holes leading to the outside of the magnet. Therefore, similar to the sintered magnet, a sufficient rust preventive effect can be obtained by Ni plating or resin coating.

【0011】溶浸の前後で成形体の寸法はほとんど変化
しないため、溶浸後に寸法調整のための研削加工を行な
う必要がない。また、磁界中成形された成形体を用いた
場合でも、異方性付与に起因する収縮率差がほとんど生
じないので、磁石のクラックや割れを防ぐことができ
る。
Since the dimension of the molded body hardly changes before and after the infiltration, it is not necessary to perform grinding for adjusting the dimension after the infiltration. Further, even when a molded product molded in a magnetic field is used, a difference in shrinkage ratio due to anisotropy is hardly generated, so that cracks and breaks of the magnet can be prevented.

【0012】本発明により製造される磁石は、Rリッチ
な粒界相(副相)の比率が比較的高いので、従来のR−
T−B系高密度焼結磁石よりは磁気特性が低くなるが、
Sm−Co系のボンディッド磁石{(BH)max =約15MG
Oe}よりは高くなる。しかも、R−T−B系磁石は、S
m−Co系磁石に比べ原料が安価である。したがって、
本発明により製造される磁石は、従来、寸法精度の高さ
が要求される用途に用いられているSm−Co系ボンデ
ィッド磁石の代替品として好適である。
The magnet produced according to the present invention has a relatively high ratio of the R-rich grain boundary phase (sub-phase), so that the conventional R-
Although the magnetic properties are lower than those of the TB high-density sintered magnet,
Sm-Co based bonded magnet {(BH) max = approx. 15MG
It is higher than Oe}. Moreover, the R-T-B system magnet is S
The raw material is less expensive than the m-Co magnet. Therefore,
The magnet manufactured according to the present invention is suitable as a substitute for the Sm-Co based bonded magnet that has been used in applications that conventionally require high dimensional accuracy.

【0013】本発明の磁石は、R214B相からなる粒
状の主相と、R214BよりもRリッチであり、前記主
相を包囲する副相とを含む。この副相中には、R3 Co
相および/またはRCu相が含まれる。これらの相は磁
石の耐食性を向上させる。本発明の磁石は副相の占める
割合が高く、しかも、副相の大部分をこれらの相が占め
る構成とできるため、耐食性が極めて良好となる。この
ような磁石は、上述した本発明の製造方法において溶浸
用合金の組成を適宜選択することにより、容易に製造す
ることができる。
[0013] magnet of the present invention includes a main phase of particulate consisting R 2 T 14 B phase, an R-rich than R 2 T 14 B, and a sub-phase surrounding the main phase. During this subphase, R 3 Co
Phases and / or RCu phases are included. These phases improve the corrosion resistance of the magnet. The magnet of the present invention has a high proportion of the sub-phase, and since most of the sub-phase can be constituted by these phases, the corrosion resistance becomes extremely good. Such a magnet can be easily manufactured by appropriately selecting the composition of the infiltration alloy in the manufacturing method of the present invention described above.

【0014】ところで、特開平3−80508号公報に
は、RFeB系磁石を粉末冶金法により製造する方法に
おいて、磁石粉をプレス成形した後、400〜900℃
の温度範囲でポーラスな焼結体とし、それを溶融合金N
x Fe1-x (x=0.65〜0.85)に一定時間浸
漬する方法が開示されている。この方法は、磁界配向に
よる熱収縮の異方性に起因する焼結後の変形を抑えるこ
とを目的とするものである。しかし、同公報記載の方法
のように成形体に400〜900℃で熱処理を施すと磁
気特性が劣化してしまい、本発明による磁石と同等の磁
気特性は得られない。しかも、同公報の実施例のように
800℃以上で熱処理を施した場合、焼結が進んでしま
い、本発明のように収縮率を小さくすることができなく
なる。
By the way, in Japanese Patent Laid-Open No. 3-80508, in a method of manufacturing an RFeB magnet by powder metallurgy, 400-900 ° C. after press molding of magnet powder.
It is made into a porous sintered body in the temperature range of
d x Fe 1-x (x = 0.65~0.85) a method of immersing a predetermined time is disclosed. This method aims at suppressing the deformation after sintering due to the anisotropy of thermal contraction due to the magnetic field orientation. However, when the molded body is heat-treated at 400 to 900 ° C. as in the method described in the publication, the magnetic characteristics deteriorate, and the magnetic characteristics equivalent to those of the magnet according to the present invention cannot be obtained. Moreover, when the heat treatment is performed at 800 ° C. or higher as in the example of the publication, the sintering proceeds and the shrinkage ratio cannot be reduced as in the present invention.

【0015】また、低融点の金属(Al、In、Bi、
Sn、Zn、Pb等の単体またはこれらを含む合金)を
バインダに用いたメタルボンディッド磁石では、磁石と
して使用可能な保磁力を有している粒子を低融点金属で
結合しているだけである。Nd2 Fe14B系鋳造合金の
粉砕粉は1 kOe程度以下の保磁力しか示さないため、従
来のメタルボンディッド磁石と同様な方法では磁石化で
きない。
In addition, low melting point metals (Al, In, Bi,
In a metal-bonded magnet using a binder such as Sn, Zn, Pb or the like or an alloy containing them, the particles having a coercive force usable as a magnet are simply bonded with a low melting point metal. . Since the pulverized powder of Nd 2 Fe 14 B-based casting alloy exhibits a coercive force of about 1 kOe or less, it cannot be magnetized by the same method as the conventional metal bonded magnet.

【0016】[0016]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0017】本発明では、成形体用合金と溶浸用合金と
を用い、溶融した溶浸用合金を成形体用合金の粉末の成
形体に溶浸することにより磁石を製造する。
In the present invention, a magnet is manufactured by using a molded body alloy and an infiltration alloy, and infiltrating the molten infiltration alloy into a molded body of powder of the molded body alloy.

【0018】<成形体用合金>成形体用合金は、R(R
は、Yを含む希土類元素の少なくとも1種である)、T
(Tは、Feであるか、Co、NiおよびCuの少なく
とも1種ならびにFeである)およびBを含有し、実質
的にR214Bからなる相を含む。成形体用合金の具体
的組成は、目的とする磁石特性に応じ、溶浸用合金の組
成などを考慮して適宜決定すればよいが、好ましくは、
Rを26〜38重量%、Bを0.9〜3重量%含み、残
部が実質的にTであるものとし、より好ましくは、Rを
27〜33重量%、Bを1.0〜1.5重量%含み、残
部が実質的にTであるものとする。
<Alloy for molded body> Alloy for molded body is R (R
Is at least one rare earth element including Y), T
(T is Fe or at least one of Co, Ni and Cu and Fe) and B, and comprises a phase consisting essentially of R 2 T 14 B. The specific composition of the alloy for molded body may be appropriately determined in consideration of the composition of the alloy for infiltration according to the target magnet characteristics, but preferably,
It is assumed that R is 26 to 38% by weight, B is 0.9 to 3% by weight, and the balance is substantially T. More preferably, R is 27 to 33% by weight and B is 1.0 to 1. 5% by weight is included, and the balance is substantially T.

【0019】Rは、Y、ランタニドおよびアクチニドで
あるが、高残留磁束密度を得るためには好ましくはNd
および/またはPrを用いる。これらの他に、Tb、D
y、La、Ce、Gd、Er、Ho、Eu、Pm、T
m、Yb、Y等の1種以上を用いてもよい。Nd+Pr
は、成形体用合金のRの50重量%以上、特に80重量
%以上を占めることが好ましい。希土類元素の原料とし
ては、ミッシュメタル等の混合物を用いることもでき
る。成形体用合金中のR含有量が少なすぎると鉄に富む
相が析出して高保磁力が得られなくなり、R含有量が多
すぎると高残留磁束密度が得られなくなる。
R is Y, lanthanide and actinide, but is preferably Nd to obtain a high residual magnetic flux density.
And / or Pr is used. In addition to these, Tb, D
y, La, Ce, Gd, Er, Ho, Eu, Pm, T
You may use 1 or more types, such as m, Yb, and Y. Nd + Pr
Preferably accounts for 50% by weight or more, and particularly 80% by weight or more of R of the alloy for molded bodies. A mixture of misch metal or the like can be used as the raw material of the rare earth element. If the R content in the molded alloy is too low, a phase rich in iron precipitates and high coercive force cannot be obtained, and if the R content is too high, high residual magnetic flux density cannot be obtained.

【0020】R214B系焼結磁石では、Rリッチ相が
液相となって流動することにより焼結反応が進行するの
で、原料粉末を一般にR214BよりもRリッチとす
る。本発明では、成形体用合金粉末の成形体にRリッチ
な溶浸用合金を溶浸させることにより、成形体中の粒子
周囲に保磁力発生のためのRリッチ相を形成するので、
成形体用合金の組成をR214BよりもRリッチとする
必要はない。逆に、成形体用合金のR比率が高すぎる
と、成形体の熱収縮開始温度が低くなってしまい、溶浸
の際にやや収縮が大きくなってしまう。
In the R 2 T 14 B system sintered magnet, the R-rich phase becomes a liquid phase and flows, and the sintering reaction proceeds. Therefore, the raw material powder is generally made R-rich rather than R 2 T 14 B. . In the present invention, since the R-rich infiltration alloy is infiltrated into the compact of the compacted alloy powder, the R-rich phase for generating coercive force is formed around the particles in the compact.
It is not necessary that the composition of the molded alloy be R-rich than R 2 T 14 B. On the contrary, if the R ratio of the alloy for a molded body is too high, the heat shrinkage start temperature of the molded body becomes low, and the shrinkage slightly increases during the infiltration.

【0021】成形体用合金中のB含有量が少なすぎると
高保磁力が得られなくなり、B含有量が多すぎると高残
留磁束密度が得られなくなる。
If the B content in the alloy for compacts is too low, a high coercive force cannot be obtained, and if the B content is too high, a high residual magnetic flux density cannot be obtained.

【0022】成形体用合金では、Fe+CoがTの50
重量%以上、特に90重量%以上を占めることが好まし
い。T中のFe+Coの比率が小さすぎると、磁石化し
たときに飽和磁化が小さくなり、高残留磁束密度が得ら
れなくなる。
In the alloy for compacts, Fe + Co has a T content of 50.
It is preferable that it accounts for at least 90% by weight, especially 90% by weight. If the ratio of Fe + Co in T is too small, the saturation magnetization becomes small when magnetized, and a high residual magnetic flux density cannot be obtained.

【0023】また、成形体用合金では、Fe/(Fe+
Co)が70重量%以上であることが好ましい。Feが
少ないと磁石化したときに高残留磁束密度が得られなく
なる。
In addition, in the alloy for compacts, Fe / (Fe +
Co) is preferably 70% by weight or more. If the amount of Fe is small, a high residual magnetic flux density cannot be obtained when magnetized.

【0024】上記各元素の他、保磁力改善や耐食性改善
などのために、Al、C、Si、Cr、Mn、Mg、N
b、Sn、W、V、Zr、Ti、Moなどの元素を添加
してもよいが、添加量が6重量%を超えると残留磁束密
度の低下が問題となる。
In addition to the above elements, for improving coercive force and corrosion resistance, Al, C, Si, Cr, Mn, Mg, N
Elements such as b, Sn, W, V, Zr, Ti and Mo may be added, but if the addition amount exceeds 6% by weight, the reduction of the residual magnetic flux density becomes a problem.

【0025】磁石中には、これらの元素の他、酸素等の
不可避的不純物や微量添加物などが含まれていてもよ
い。
In addition to these elements, the magnet may contain unavoidable impurities such as oxygen and trace additives.

【0026】本発明では、成形体用合金粉末を磁界中で
配向しながら成形するので、粉末化したときに単結晶粒
子となるような結晶粒径であることが好ましいが、多結
晶粒子であっても粒子内で結晶粒が配向していればよい
ので、平均結晶粒径は、例えば3〜600μm 程度の広
い範囲から選択することができる。
In the present invention, since the alloy powder for compacts is compacted while being oriented in a magnetic field, it is preferable that the grain size is such that it becomes single crystal grains when pulverized, but it is polycrystalline grains. However, since it is sufficient that the crystal grains are oriented within the grains, the average crystal grain size can be selected from a wide range of, for example, about 3 to 600 μm.

【0027】成形体用合金の粉末の平均粒子径は、好ま
しくは0.1〜50μm 、より好ましくは1〜10μm
である。平均粒子径が小さすぎると成形体の密度が上が
りにくくなって高残留磁束密度が得られにくく、また、
粉末中の酸素量が多くなるため、溶浸用合金の使用量と
のバランスによっては高保磁力が得られにくくなる。一
方、平均粒子径が大きすぎると、多結晶粒子の比率が増
えて、高残留磁束密度が得られにくくなる。
The average particle size of the powder of the alloy for compacts is preferably 0.1 to 50 μm, more preferably 1 to 10 μm.
Is. If the average particle size is too small, it is difficult to increase the density of the molded body and it is difficult to obtain a high residual magnetic flux density.
Since the amount of oxygen in the powder is large, it becomes difficult to obtain a high coercive force depending on the balance with the amount of the infiltration alloy used. On the other hand, if the average particle diameter is too large, the proportion of polycrystalline particles increases and it becomes difficult to obtain a high residual magnetic flux density.

【0028】成形体用合金の粉末の製造方法は特に限定
されず、鋳造合金を水素吸蔵粉砕などにより粉末化する
方法や、還元拡散法等のいずれを用いてもよく、焼結磁
石を粉砕して粉末化したもの、あるいは焼結磁石の研削
屑を用いてもよい。磁界配向により異方性化された焼結
磁石を粉砕あるいは研削すれば、配向された小径の結晶
粒からなる多結晶粒子を得ることができるので、高残留
磁束密度かつ高保磁力の磁石が得られる。また、研削屑
は酸素含有量が多いため、成形体としたときの熱収縮開
始温度が高くなる。このため、融点の高い溶浸用合金を
用いた場合でも収縮率を小さくできることになり、材料
選択の自由度が大きくなる。
The method for producing the powder of the alloy for compacts is not particularly limited, and any method such as a method of pulverizing a cast alloy by hydrogen absorption pulverization or a reduction diffusion method may be used. It is also possible to use powder that has been pulverized by the above method, or grinding scraps of a sintered magnet. By crushing or grinding a sintered magnet anisotropy by magnetic field orientation, it is possible to obtain polycrystalline particles consisting of oriented small crystal grains, so that a magnet with high residual magnetic flux density and high coercive force can be obtained. . Further, since the grinding dust has a large oxygen content, the heat shrinkage start temperature of the formed compact becomes high. Therefore, even when an infiltration alloy having a high melting point is used, the shrinkage ratio can be reduced, and the degree of freedom in material selection is increased.

【0029】<溶浸用合金>溶浸用合金は、Rを含み、
214BよりもRリッチな合金である。
<Infiltration Alloy> The infiltration alloy contains R,
It is an alloy richer in R than R 2 T 14 B.

【0030】溶浸する際には、成形体の温度も溶浸用合
金と同程度となっていることが好ましいため、成形体も
昇温される。したがって、溶浸用合金の融点は、その融
点まで昇温したときに、成形体の収縮率が所望の範囲に
収まるものであればよい。具体的には実験的に決定すれ
ばよいが、上記した成形体用合金を用いる場合には、好
ましくは1000℃以下、より好ましくは700℃以下
とする。
During infiltration, it is preferable that the temperature of the compact is about the same as that of the alloy for infiltration, so the compact is also heated. Therefore, the melting point of the infiltration alloy may be such that the shrinkage rate of the molded body falls within a desired range when the temperature rises to the melting point. Specifically, it may be experimentally determined, but when the above-mentioned alloy for molded body is used, the temperature is preferably 1000 ° C. or lower, more preferably 700 ° C. or lower.

【0031】そして、成形体の収縮率を著しく小さくし
たい場合には、成形体の熱収縮開始温度よりも融点が低
い溶浸用合金を用いる。なお、成形体用合金の粉末の成
形体の熱収縮開始温度とは、液相出現により物理的に成
形体が収縮を開始する温度であり、熱機械分析機(Ther
momechanical Analyzer )などにより測定する。上記し
た成形体用合金の粉末の成形体では、熱収縮開始温度
は、組成や昇温速度などによって異なるが、通常、65
0〜1050℃程度であり、例えば5〜10℃/min で
等速昇温した場合では、R量を29重量%以下とすれ
ば、熱収縮開始温度を800℃以上にすることができ
る。
When it is desired to reduce the shrinkage rate of the molded body significantly, an infiltration alloy having a melting point lower than the heat shrinkage start temperature of the molded body is used. The thermal contraction start temperature of the molded body of the powder for a molded body is a temperature at which the molded body physically starts shrinking due to the appearance of a liquid phase, and the thermomechanical analyzer (Ther
momechanical Analyzer). In the above-mentioned powder compact of the alloy for compacts, the heat shrinkage start temperature varies depending on the composition, temperature rising rate, etc.
The temperature is about 0 to 1050 ° C, and for example, when the temperature is increased at a constant rate of 5 to 10 ° C / min, the heat shrinkage start temperature can be set to 800 ° C or more if the R content is set to 29% by weight or less.

【0032】溶浸用合金の融点は、好ましくは300℃
以上、より好ましくは400℃以上とする。融点が低す
ぎると、成形時に潤滑剤やバインダとして用いるワック
ス等の有機物の分解温度との関係から、磁石中の残留炭
素量が増加し、保磁力が低くなってしまう。また、成形
体用合金粉末のもつ吸着水が抜けきらないうちに溶浸が
始まることになり、この点からも保磁力低下を招く。
The melting point of the infiltration alloy is preferably 300 ° C.
As described above, more preferably at 400 ° C. or higher. If the melting point is too low, the amount of residual carbon in the magnet will increase and the coercive force will decrease due to the relationship with the decomposition temperature of organic substances such as wax used as a lubricant or binder during molding. In addition, infiltration begins before the adsorbed water of the alloy powder for compacts is completely removed, which also leads to a decrease in coercive force.

【0033】なお、R214B(R=Nd、T=Feの
とき、26.7重量%Nd−72.3重量%Fe−1.
0重量%B)にほぼ等しい組成の成形体用合金を用いた
場合、熱収縮開始温度が実質的に認められなかったり、
測定が困難な場合がある。
R 2 T 14 B (when R = Nd and T = Fe, 26.7 wt% Nd-72.3 wt% Fe-1.
When an alloy for a molded body having a composition substantially equal to 0 wt% B) is used, the heat shrinkage initiation temperature is not substantially observed,
Measurement may be difficult.

【0034】溶浸用合金の組成は、必要とされる融点が
得られるように決定すればよく、特に限定されないが、
Rに加え、M(Mは、Fe、Co、Ni、Cu、Al、
Sn、GaおよびAgの少なくとも1種である)を含む
ことが好ましい。Rとしては、Nd、Pr、Dyおよび
Ceの少なくとも1種、特にNd、PrおよびDyの少
なくとも1種が好ましい。Mとしては、Fe、Co、C
uおよびAlの少なくとも1種、特にFe、Coおよび
Cuの少なくとも1種がより好ましい。
The composition of the infiltration alloy may be determined so that the required melting point can be obtained, and is not particularly limited.
In addition to R, M (M is Fe, Co, Ni, Cu, Al,
Sn, Ga and / or Ag). As R, at least one of Nd, Pr, Dy and Ce, particularly at least one of Nd, Pr and Dy is preferable. As M, Fe, Co, C
More preferred is at least one of u and Al, particularly at least one of Fe, Co and Cu.

【0035】溶浸用合金のR含有量は、好ましくは40
〜99重量%、より好ましくは60〜90重量%であ
る。Rが少なすぎると融点を低くすることが難しくな
り、また、磁石の保磁力向上効果も不十分となる。Rが
多すぎるか、あるいはR単体であっても、やはり融点が
高くなってしまう。なお、残部は実質的に上記Mである
ことが好ましい。ただし、Mの一部に替えて、B、S
i、Cやその他の元素の少なくとも1種を添加してもよ
い。ただし、これらの元素の合計含有率は、溶浸用合金
の3重量%以下とすることが好ましい。また、これらの
他、酸素等の不可避的不純物や微量添加元素が含まれて
いてもよい。
The R content of the infiltration alloy is preferably 40
˜99% by weight, more preferably 60 to 90% by weight. If R is too small, it becomes difficult to lower the melting point, and the effect of improving the coercive force of the magnet becomes insufficient. If the amount of R is too large, or if R alone, the melting point will be high. The balance is preferably substantially M as described above. However, instead of a part of M, B, S
At least one of i, C and other elements may be added. However, the total content of these elements is preferably 3% by weight or less of the infiltration alloy. In addition to these, unavoidable impurities such as oxygen and trace addition elements may be contained.

【0036】溶浸用合金はバルク状であってもよく、粉
末状であってもよいが、溶浸用合金はR含有量が多く酸
化されやすいため、好ましくはバルク状のものまたは粗
粉を用いる。
The infiltration alloy may be in a bulk form or in a powder form. However, since the infiltration alloy has a large R content and is easily oxidized, a bulk form or a coarse powder is preferably used. To use.

【0037】溶浸用合金の製造方法は特に限定されず、
鋳造法や液体急冷法等のいずれを用いてもよい。
The method for producing the alloy for infiltration is not particularly limited,
Any of a casting method and a liquid quenching method may be used.

【0038】<成形>成形体用合金の粉末は、通常、焼
結磁石製造の際の磁石粉末成形と同様にして圧縮成形す
るが、本発明では射出成形や、押出し成形などを行なっ
てもよい。異方性磁石を製造するためには、磁界中で成
形して成形体用合金の粉末を配向する。
<Molding> The powder of the alloy for a molded body is usually compression-molded in the same manner as the magnet powder molding at the time of producing a sintered magnet, but in the present invention, injection molding or extrusion molding may be performed. . In order to manufacture an anisotropic magnet, it is formed in a magnetic field to orient the powder of the alloy for compacts.

【0039】成形体の密度は特に限定されないが、通
常、成形体密度が高いほど残留磁束密度は高くなるの
で、成形体密度は、好ましくは4.0g/cm3 以上、より
好ましくは4.5g/cm3 以上とする。
The density of the molded product is not particularly limited, but the higher the density of the molded product is, the higher the residual magnetic flux density is. Therefore, the density of the molded product is preferably 4.0 g / cm 3 or more, more preferably 4.5 g. / cm 3 or more.

【0040】成形体密度の高低によらず、溶浸後には、
通常、相対密度が95%以上となる。この場合の相対密
度とは、成形体中の空孔すべてに溶浸用合金が充填され
たと仮定したときの磁石密度に対する実際に製造された
磁石の密度の比率である。
After infiltration, regardless of the density of the compact,
Usually, the relative density is 95% or more. The relative density in this case is the ratio of the density of the actually manufactured magnet to the density of the magnet when it is assumed that all the pores in the molded body are filled with the infiltration alloy.

【0041】圧縮成形の際の成形圧力は特に限定され
ず、所望の密度の成形体が得られるように適宜決定すれ
ばよい。
The molding pressure at the time of compression molding is not particularly limited and may be appropriately determined so that a molded product having a desired density can be obtained.

【0042】なお、射出成形や押出し成形を行なう場合
には、保形性を高めるために成形体用粉末にバインダを
添加することが好ましい。バインダとしては、圧粉磁石
や圧粉コア等に通常用いられているもののいずれであっ
てもよく、例えば、ワックスなどを好ましく用いること
ができる。
When injection molding or extrusion molding is carried out, it is preferable to add a binder to the powder for molding in order to improve the shape retention. The binder may be any of those normally used for powder magnets, powder cores, etc. For example, wax or the like can be preferably used.

【0043】成形時の磁界強度は、通常、10 kOe以
上、好ましくは15 kOe以上とする。成形時に印加する
磁界は、直流磁界であってもパルス磁界であってもよ
く、これらを併用してもよい。本発明は、圧力印加方向
と磁界印加方向とがほぼ直交するいわゆる横磁場成形法
にも、圧力印加方向と磁界印加方向とがほぼ一致するい
わゆる縦磁場成形法にも適用することができる。
The magnetic field strength during molding is usually 10 kOe or more, preferably 15 kOe or more. The magnetic field applied during molding may be a DC magnetic field or a pulsed magnetic field, or may be a combination of these. The present invention can be applied to a so-called transverse magnetic field forming method in which a pressure applying direction and a magnetic field applying direction are substantially orthogonal to each other, and a so-called longitudinal magnetic field forming method in which a pressure applying direction and a magnetic field applying direction are substantially coincident with each other.

【0044】成形は、粉末の酸化を避けるために、通
常、50℃以下で行なう。
The molding is usually carried out at 50 ° C. or lower in order to avoid oxidation of the powder.

【0045】<溶浸>溶浸は、溶浸用合金をその融点以
上まで加熱することにより行なう。
<Infiltration> Infiltration is carried out by heating the alloy for infiltration to its melting point or higher.

【0046】溶浸用合金の加熱手段は特に限定されず、
電気炉や高周波加熱炉等のいずれを用いてもよいが、成
形体も同時に加熱できる手段、例えば、電気炉を用いる
ことが好ましい。成形体を溶浸用合金と同等の温度まで
加熱することにより、成形体へ均一な溶浸ができる。
The heating means for the infiltration alloy is not particularly limited,
Either an electric furnace or a high-frequency heating furnace may be used, but it is preferable to use a means capable of simultaneously heating the molded body, for example, an electric furnace. By heating the compact to a temperature equivalent to that of the alloy for infiltration, it is possible to uniformly infiltrate the compact.

【0047】具体的な溶浸方法は特に限定されない。例
えば、溶浸用合金の融液に成形体を浸漬する方法や、融
液を成形体に注ぐ方法、融液に成形体の一部を浸して成
形体内に吸い取る方法などのいずれを用いてもよい。た
だし、好ましくは、成形体と溶浸用合金とを接触させた
状態で、溶浸用合金を溶融する方法を用いる。具体的に
は、成形体上に溶浸用合金を載置し、これを溶融するこ
とが好ましい。溶浸用合金の融液に成形体を浸漬する方
法を用いてもよいが、この場合には、融液から引き上げ
た後に、成形体の表面全面で溶浸用合金が凝固するた
め、それを研削して除去する工程を設ける必要がある。
これに対し、溶浸用合金を必要量だけ成形体上に載置し
て溶融すれば、溶浸後の成形体表面にはほとんど溶浸用
合金が残存しないか、あるいは成形体上面にわずかに残
存するだけなので、工程を簡略化することができる。し
かも、この方法では、溶融時に溶浸用合金は成形体以外
と接触していないため、不純物の混入を防ぐことができ
る。
The specific infiltration method is not particularly limited. For example, any of a method of immersing the molded body in the melt of the alloy for infiltration, a method of pouring the melt into the molded body, a method of immersing a part of the molded body in the melt and sucking it into the molded body, etc. Good. However, it is preferable to use a method of melting the infiltration alloy in a state where the compact and the infiltration alloy are in contact with each other. Specifically, it is preferable to place an infiltration alloy on the compact and melt it. You may use the method of immersing the molded body in the melt of the infiltration alloy, but in this case, since the infiltration alloy is solidified on the entire surface of the molded body after pulling up from the melt, It is necessary to provide a step of removing by grinding.
On the other hand, if a required amount of the infiltration alloy is placed on the compact and melted, almost no infiltration alloy remains on the surface of the compact after the infiltration, or there is a slight amount of the infiltration alloy on the upper surface of the compact. Since it only remains, the process can be simplified. Moreover, in this method, since the infiltration alloy does not come into contact with anything other than the compact during melting, it is possible to prevent impurities from entering.

【0048】成形体上に溶浸用合金を載置する方法を用
いる場合、少なくとも成形体中の空隙を埋めるために必
要な量の溶浸用合金を用いればよいが、実用的にはやや
過剰の量を用いる。なお、成形体の空隙率は、成形体用
合金の組成と成形体密度とから算出することができる。
When the method of placing the infiltration alloy on the compact is used, at least the amount of the infiltration alloy required to fill the voids in the compact may be used, but it is practically slightly excessive. Is used. The porosity of the molded body can be calculated from the composition of the alloy for molded bodies and the molded body density.

【0049】溶浸用合金を成形体上に載置する形態は特
に限定されず、例えば、粗粉やインゴットの砕片を所定
量秤量して載置してもよいが、好ましくは、溶浸用合金
の粗粉を成形し、これを載置する。溶浸用合金を成形体
とすることにより、使用量の管理が正確かつ容易とな
る。この場合、溶浸用合金の成形体は、成形体用合金の
粉末の成形体の上面とほぼ同形状でほぼ同寸法の下面を
もつようにすることが好ましい。例えば、リング状磁石
を作製する場合には、溶浸用合金の成形体もリング状と
する。これにより、成形体への溶浸をより均一に行なう
ことができる。なお、2色成形と同様にして、成形体用
合金の粉末と溶浸用合金の粗粉とを、一体的に成形して
もよい。
The form of placing the infiltration alloy on the molded body is not particularly limited, and for example, a coarse powder or a crushed piece of an ingot may be weighed in a predetermined amount and placed, but preferably the infiltration alloy is used. Coarse powder of the alloy is molded and placed. By using the infiltrating alloy as a molded body, the usage amount can be controlled accurately and easily. In this case, it is preferable that the infiltrated alloy compact has a lower surface having substantially the same shape and substantially the same size as the upper surface of the compacted alloy powder compact. For example, when producing a ring-shaped magnet, the infiltrated alloy compact is also ring-shaped. Thereby, the infiltration into the molded body can be performed more uniformly. The powder of the alloy for compact and the coarse powder of the alloy for infiltration may be integrally molded in the same manner as the two-color compaction.

【0050】液相の溶浸用合金は成形体用合金粉末に対
する濡れ性が極めて良好であるため、溶融後、速やかに
成形体に染み込む。したがって、溶浸するだけであれば
融点以上まで加熱した後に温度保持を行なう必要はない
が、保磁力および残留磁束密度を高めるためには、溶浸
後、さらに昇温を続けて、溶浸用合金の融点より高い温
度に保持する熱処理を行なうことが好ましい。この熱処
理における保持温度は、溶浸用合金の融点によっても異
なるが、好ましくは800℃以上、より好ましくは90
0℃以上である。ただし、磁石の主相となるR214
相の結晶粒成長を抑制するために、保持温度は1100
℃以下とすることが好ましい。この熱処理において、温
度保持を行なう時間は、好ましくは0.5〜8時間であ
る。この時間が短すぎると熱処理による効果が不十分と
なり、長すぎるとR214B相の結晶粒成長が著しくな
る。このような熱処理を行なっても、溶浸後の成形体は
ほとんど収縮しない。
Since the liquid phase infiltrating alloy has extremely good wettability with respect to the alloy powder for compacts, it quickly permeates into the compact after melting. Therefore, if only infiltration, it is not necessary to maintain the temperature after heating to above the melting point, but in order to increase the coercive force and the residual magnetic flux density, continue to raise the temperature after infiltration and It is preferable to carry out a heat treatment in which the temperature is maintained above the melting point of the alloy. The holding temperature in this heat treatment varies depending on the melting point of the infiltration alloy, but is preferably 800 ° C. or higher, more preferably 90 ° C. or higher.
It is 0 ° C or higher. However, the main phase of the magnet is R 2 T 14 B
In order to suppress the grain growth of the phase, the holding temperature is 1100.
It is preferable that the temperature is not higher than ° C. In this heat treatment, the time for maintaining the temperature is preferably 0.5 to 8 hours. If this time is too short, the effect of the heat treatment becomes insufficient, and if it is too long, the crystal grain growth of the R 2 T 14 B phase becomes remarkable. Even if such heat treatment is performed, the molded body after infiltration hardly shrinks.

【0051】なお、上記熱処理は、溶浸後にいったん降
温してから行なってもよい。
The heat treatment may be performed after the temperature is once lowered after the infiltration.

【0052】溶浸後、または上記熱処理後、時効処理を
施してもよい。時効処理は、上記熱処理よりは保持温度
が低い熱処理であり、時効処理により保磁力を向上させ
ることができる。時効処理の際の保持温度は、好ましく
は400〜800℃、より好ましくは500〜700℃
である。また、温度保持時間は、好ましくは0.5〜4
時間である。時効処理は、上記熱処理後、冷却した後に
施すが、上記熱処理の降温過程において徐冷することに
より、時効処理と同等の効果を得ることができる。
An aging treatment may be performed after the infiltration or after the above heat treatment. The aging treatment is a heat treatment having a lower holding temperature than the above heat treatment, and the aging treatment can improve the coercive force. The holding temperature during the aging treatment is preferably 400 to 800 ° C, more preferably 500 to 700 ° C.
Is. The temperature holding time is preferably 0.5 to 4
It's time. The aging treatment is performed after the heat treatment and after cooling, but the effect equivalent to the aging treatment can be obtained by gradually cooling in the temperature decreasing process of the heat treatment.

【0053】なお、溶浸およびその後の熱処理は、溶浸
用合金および成形体の酸化を防ぐために、真空中または
Arガス等の不活性ガス雰囲気中で行なうことが好まし
い。
The infiltration and the subsequent heat treatment are preferably performed in a vacuum or in an inert gas atmosphere such as Ar gas in order to prevent the infiltration alloy and the compact from being oxidized.

【0054】<磁石>このようにして製造された磁石
は、実質的にR214Bから構成される主相と、この主
相を包囲する副相とを有する。副相は、R214Bより
もR比率の高いRリッチ相である。磁石中の副相の割合
は、成形体密度によって異なるが、通常、20〜40体
積%である。Coおよび/またはCuを含有する溶浸用
合金を用いた場合、副相中にはR3 Co相および/また
はRCu相が含まれ、溶浸用合金の組成によっては副相
は実質的にこれらの相だけから構成される。
<Magnet> The magnet manufactured in this manner has a main phase substantially composed of R 2 T 14 B and a sub-phase surrounding the main phase. The sub-phase is an R-rich phase having a higher R ratio than R 2 T 14 B. The ratio of the sub-phase in the magnet varies depending on the density of the compact, but is usually 20 to 40% by volume. When an infiltration alloy containing Co and / or Cu is used, the subphase contains an R 3 Co phase and / or an RCu phase, and depending on the composition of the infiltration alloy, the subphase is substantially It consists of only the phase.

【0055】溶浸用合金にFeが含まれていた場合に
は、R3 Co相のCoの少なくとも一部およびRCu相
のCuの少なくとも一部がFeで置換されており、ま
た、溶浸用合金にFeが含まれていなかった場合でも、
主相からの拡散により、通常、このようなFeによる置
換がみられる。
When the infiltration alloy contains Fe, at least a part of Co in the R 3 Co phase and at least a part of Cu in the RCu phase are replaced with Fe, and Even if the alloy did not contain Fe,
Due to diffusion from the main phase, such substitution with Fe is usually observed.

【0056】また、溶浸用合金がCoおよびCuを含有
するものであったときには、R3 Co相およびRCu相
が含まれ、R3 Co相のCoの少なくとも一部がCuで
置換されており、RCu相のCuの少なくとも一部がC
oで置換されている。
When the infiltration alloy contains Co and Cu, the R 3 Co phase and the RCu phase are contained, and at least a part of Co in the R 3 Co phase is replaced with Cu. , At least a part of Cu in the RCu phase is C
replaced by o.

【0057】R3 Co相およびRCu相は磁石の耐食性
を向上させる効果を示し、RCu相の効果がより高い。
そして、R3 Co相としてR3 (Co1-w-x Few Cu
x )相(0.01≦w≦0.3、0.01≦x≦0.
3)を含み、かつRCu相としてR(Cu1-y-z Coy
Fez )相(0.01≦y≦0.3、0.01≦z≦
0.3)を含むときには、耐食性向上効果は著しく高く
なる。磁石中におけるこれらの相の含有率は、それぞれ
1〜30体積%であることが好ましい。そして、磁石中
におけるこれらの相の合計含有率は、20〜40体積%
であることが好ましい。すなわち、副相は、実質的にこ
れらの相だけから構成されることが好ましい。なお、こ
のような場合でも、副相にはR酸化物相等の他の相が含
まれるが、これら他の相の磁石中の比率は、5体積%程
度以下である。磁石断面に現れるR3Co相やRCu相
の径は、通常、50μm 以下である。
The R 3 Co phase and the RCu phase show the effect of improving the corrosion resistance of the magnet, and the effect of the RCu phase is higher.
Then, as the R 3 Co phase, R 3 (Co 1-wx Fe w Cu
x ) phase (0.01≤w≤0.3, 0.01≤x≤0.
3) and R (Cu 1-yz Co y as RCu phase)
Fe z ) phase (0.01 ≦ y ≦ 0.3, 0.01 ≦ z ≦
When 0.3) is included, the effect of improving the corrosion resistance is significantly enhanced. The content of each of these phases in the magnet is preferably 1 to 30% by volume. The total content of these phases in the magnet is 20-40% by volume.
Is preferred. That is, it is preferable that the sub-phase is substantially composed of only these phases. Even in such a case, the sub-phase includes other phases such as the R oxide phase, but the ratio of these other phases in the magnet is about 5% by volume or less. The diameter of the R 3 Co phase or RCu phase appearing in the magnet cross section is usually 50 μm or less.

【0058】磁石の組成は、成形体用合金の組成、溶浸
用合金の組成、これらの合金の比率などによって決定さ
れるが、好ましくは、Rを30〜60重量%、Bを0.
3〜6重量%含むものとし、より好ましくは、Rを35
〜45重量%、Bを0.6〜1.3重量%含むものとす
る。なお、残部は、成形体用合金に由来するTおよび溶
浸用合金に由来するMなどである。
The composition of the magnet is determined by the composition of the alloy for compacts, the composition of the alloy for infiltration, the ratio of these alloys, etc. Preferably, R is 30 to 60% by weight and B is 0.
3 to 6% by weight, more preferably R is 35
.About.45% by weight and B in an amount of 0.6 to 1.3% by weight. The balance is T derived from the alloy for compacts and M derived from the alloy for infiltration.

【0059】<その他>磁石には、耐食性を向上させる
ために、必要に応じて樹脂の電着塗装や、無電解めっき
および/または電解めっき等により防食被覆を設けても
よい。
<Others> In order to improve the corrosion resistance, the magnet may be provided with an anticorrosion coating by electrodeposition coating of a resin, electroless plating and / or electrolytic plating, if necessary.

【0060】本発明は、寸法精度が要求される薄肉の異
方性リング状磁石や異方性板状磁石の製造に特に好適で
ある。
The present invention is particularly suitable for manufacturing thin anisotropic ring-shaped magnets and anisotropic plate-shaped magnets which require dimensional accuracy.

【0061】[0061]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0062】<実施例1>まず、成形体用合金のインゴ
ットを、Arガス雰囲気中で高周波溶解して鋳造した。
インゴットの組成は、重量百分率で (30Nd−3Dy)−1.2B−残部Fe とした。この合金インゴットの平均結晶粒径は、120
μm であった。このインゴットを、窒素ガス雰囲気中で
機械的粉砕した後、ジェットミルにより窒素ガス気流粉
砕し、平均粒子径4.5μm の成形体用合金粉末とし
た。
<Example 1> First, an alloy ingot for a molded body was subjected to high frequency melting in an Ar gas atmosphere and cast.
The composition of the ingot was (30Nd-3Dy) -1.2B-balance Fe in weight percentage. The average grain size of this alloy ingot is 120
It was μm. The ingot was mechanically pulverized in a nitrogen gas atmosphere and then pulverized with a jet gas in a nitrogen gas stream to obtain an alloy powder for a molded body having an average particle diameter of 4.5 μm.

【0063】この成形体用合金粉末を、15 kOeの磁界
中で、磁界方向に直交する方向に6t/cm2 の圧力を印加
して圧縮成形し、10mm×10mm×10mmの立方体形状
の成形体を得た。この成形体の密度は、5.20g/cm3
であった。この成形体の熱収縮開始温度は、650〜7
00℃の範囲にあった。
This alloy powder for compacts was compression-molded in a magnetic field of 15 kOe by applying a pressure of 6 t / cm 2 in a direction orthogonal to the magnetic field direction, and a compact having a cubic shape of 10 mm × 10 mm × 10 mm was formed. Got The density of this molded body is 5.20 g / cm 3.
Met. The heat shrinkage start temperature of this molded product is 650 to 7
It was in the range of 00 ° C.

【0064】次に、Arガス雰囲気中でアーク溶解によ
り溶浸用合金を製造した。溶浸用合金の組成は、重量百
分率で 85Nd−15Fe とした。溶浸用合金の融点は、650℃であった。
Next, an alloy for infiltration was manufactured by arc melting in an Ar gas atmosphere. The composition of the alloy for infiltration was 85Nd-15Fe in weight percentage. The melting point of the infiltration alloy was 650 ° C.

【0065】次いで、成形体用合金粉末の成形体上に、
数ミリ角に砕いた溶浸用合金を載置した。なお、溶浸用
合金の使用量は、計算によって求めた成形体中の空隙量
の3重量%増しとした。これらを電気炉により真空中で
950℃まで昇温し、2時間保持した。溶浸用合金は、
その融点付近で溶融して成形体に染み込んだ。冷却後、
再び昇温して620℃に1時間保持することにより時効
処理を行ない、磁石サンプルNo. 1を得た。
Next, on the compact of the alloy powder for compact,
An infiltration alloy crushed into a few millimeters square was placed. The amount of the alloy for infiltration used was increased by 3% by weight of the amount of voids in the molded body calculated. These were heated to 950 ° C. in a vacuum in an electric furnace and held for 2 hours. The alloy for infiltration is
It melted around its melting point and soaked into the molded body. After cooling
Aging treatment was performed by raising the temperature again and holding it at 620 ° C. for 1 hour to obtain magnet sample No. 1.

【0066】成形体に対する磁石サンプルNo. 1の収縮
率は、成形時の磁界方向で2.5%、磁界方向に直交す
る方向で1.4%であった。磁石の密度は7.40g/cm
3 (理論密度の98%以上)であり、焼結磁石と同等で
あった。サンプルNo. 1の磁気特性は、残留磁束密度
(Br )が9.1kG、保磁力(HCJ)が12.5 kO
e、最大エネルギー積{(BH)max }が19.7MGOeであ
った。
The shrinkage ratio of the magnet sample No. 1 with respect to the molded body was 2.5% in the magnetic field direction during molding and 1.4% in the direction perpendicular to the magnetic field direction. Magnet density is 7.40 g / cm
3 (98% or more of the theoretical density), which was equivalent to that of a sintered magnet. The magnetic characteristics of sample No. 1 have a residual magnetic flux density (Br) of 9.1 kG and a coercive force (HCJ) of 12.5 kO.
e, the maximum energy product {(BH) max} was 19.7 MGOe.

【0067】<実施例2>溶浸用合金の組成を表1に示
すものとした以外は実施例1と同様にして磁石サンプル
を製造した。表1に示す溶浸用合金はすべてが950℃
までに溶融するものであり、サンプルNo. 2−8、2−
10、2−12、2−13を除き、溶浸用合金の融点は
700℃以下であった。これらのサンプルについて、実
施例1と同様な測定を行なった。結果を表1に示す。
Example 2 A magnet sample was manufactured in the same manner as in Example 1 except that the composition of the infiltration alloy was as shown in Table 1. All of the infiltration alloys shown in Table 1 are 950 ° C.
It melts up to and including Sample No. 2-8, 2-
Except for 10, 2-12 and 2-13, the melting point of the infiltration alloy was 700 ° C or lower. The same measurements as in Example 1 were performed on these samples. The results are shown in Table 1.

【0068】[0068]

【表1】 [Table 1]

【0069】<実施例3>成形体用合金の組成を表2に
示すものとした以外は実施例1と同様にして磁石サンプ
ルを製造した。表2に示す合金粉末の成形体の熱収縮開
始温度は、すべて650℃以上であった。これらのサン
プルについて、実施例1と同様な測定を行なった。結果
を表2に示す。
Example 3 A magnet sample was manufactured in the same manner as in Example 1 except that the composition of the alloy for compacts was as shown in Table 2. The heat shrinkage initiation temperatures of the alloy powder compacts shown in Table 2 were all 650 ° C or higher. The same measurements as in Example 1 were performed on these samples. The results are shown in Table 2.

【0070】[0070]

【表2】 [Table 2]

【0071】<実施例4>成形圧力を表3に示す値とし
た以外は実施例1と同様にして磁石サンプルを製造し
た。各サンプルについて、実施例1と同様な測定を行な
った。結果を表3に示す。
Example 4 A magnet sample was manufactured in the same manner as in Example 1 except that the molding pressure was changed to the value shown in Table 3. The same measurement as in Example 1 was performed on each sample. The results are shown in Table 3.

【0072】[0072]

【表3】 [Table 3]

【0073】なお、上記各実施例において、サンプルの
組成はすべてRを30〜60重量%、Bを0.3〜6重
量%含むものであり、各サンプルの相対密度は、すべて
98%以上であった。
In each of the above examples, the composition of each sample contained 30 to 60% by weight of R and 0.3 to 6% by weight of B, and the relative density of each sample was 98% or more. there were.

【0074】<副相の構成>表4に示す磁石サンプルに
ついて、副相の構成を調べた。表4のサンプルNo.5−
1、5−2、5−3は、表4に示す溶浸用合金を用いた
以外はサンプルNo.1と同様にして作製した。
<Structure of Sub-Phase> Regarding the magnet samples shown in Table 4, the structure of the sub-phase was examined. Sample No. 5 in Table 4
Nos. 1, 5-2 and 5-3 were produced in the same manner as Sample No. 1 except that the alloys for infiltration shown in Table 4 were used.

【0075】表4の各サンプルは、成形体用合金の粉末
に由来する主相と、溶浸用合金に由来する副相とを有し
ていた。副相に含まれるR3 Co相、RCu相、R相お
よびこれら以外の相の体積比率を、表4に示す。これら
の体積比率は、いずれもサンプル全体に対する体積比率
である。また、表4には、サンプル中に占める副相全体
の体積比率も示した。これらの体積比率は、サンプル断
面の走査型電子顕微鏡写真(組成像)を用いて測定した
各相の面積から算出した。サンプルNo. 2−18の断面
写真を図1に示す。図1において、黒色の領域が主相で
あり、灰色の領域がRCu相であり、白色の領域がR3
Co相およびR酸化物相である。サンプルNo. 2−1
1、2−18、5−1の断面に現われたR3 Co相およ
びRCu相は、径が20μm 以下であった。各相の同定
には、SEM−EDXおよびEPMAを用いた。
Each of the samples in Table 4 had a main phase derived from the powder of the alloy for compacts and a subphase derived from the alloy for infiltration. Table 4 shows the volume ratios of the R 3 Co phase, the RCu phase, the R phase and the phases other than these contained in the sub phase. All of these volume ratios are volume ratios to the entire sample. In addition, Table 4 also shows the volume ratio of the entire subphase in the sample. These volume ratios were calculated from the area of each phase measured using a scanning electron micrograph (composition image) of a sample cross section. A cross-sectional photograph of Sample No. 2-18 is shown in FIG. In FIG. 1, the black region is the main phase, the gray region is the RCu phase, and the white region is R 3
It is a Co phase and an R oxide phase. Sample No. 2-1
The R 3 Co phase and the RCu phase appearing in the cross sections of 1, 2-18 and 5-1 had a diameter of 20 μm or less. SEM-EDX and EPMA were used for identification of each phase.

【0076】表4に示す各サンプルについて、耐食性を
調べるためにプレッシャークッカー試験(120℃・1
00%RH)を行ない、100時間経過後に、サンプル
の単位表面積あたりの重量変化量を求めた。結果を表4
に示す。表4において重量変化量の符号がマイナスにな
っているのは、サンプル表面付近の粒界腐食により主相
の脱落が生じたためである。
For each sample shown in Table 4, a pressure cooker test (120 ° C.
(00% RH), and after 100 hours, the amount of change in weight per unit surface area of the sample was determined. The results are shown in Table 4.
Shown in. In Table 4, the sign of the amount of change in weight is negative because the main phase was dropped due to intergranular corrosion near the sample surface.

【0077】[0077]

【表4】 [Table 4]

【0078】表4に示す副相中の「その他」の相とは、
主としてNd酸化物相であるが、サンプルNo. 1−1で
はNdFe相を主体とするものであった。
The "other" phase in the subphases shown in Table 4 means
Although it is mainly an Nd oxide phase, Sample No. 1-1 was mainly composed of an NdFe phase.

【0079】表4に示されるように、R3 Co相および
RCu相の両方を有するサンプルNo. 2−11、2−1
8、5−1では、重量変化量が著しく小さく、耐食性が
極めて良好であることがわかる。これに対し、RCu相
を含まずR3 Co相だけを含むサンプルNo. 5−2、5
−3では、耐食性が低くなっており、R3 Co相および
RCu相のいずれも含まないサンプルNo. 1−1では、
耐食性が著しく低い。
As shown in Table 4, sample Nos. 2-11 and 2-1 having both R 3 Co phase and RCu phase.
It can be seen that in Nos. 8 and 5-1, the amount of change in weight is extremely small and the corrosion resistance is extremely good. On the other hand, sample Nos. 5-2 and 5 containing only the R 3 Co phase without containing the RCu phase
-3, the corrosion resistance is low, and in Sample No. 1-1 containing neither R 3 Co phase nor RCu phase,
Corrosion resistance is extremely low.

【0080】なお、サンプルNo. 2−11、2−18、
5−1において、R3 Co相のCoの一部はCuおよび
Feで置換されており、RCu相のCuの一部はCoお
よびFeで置換されていた。具体的には、R3 Co相の
組成は、 R3 (Co1-w-x Few Cux ) において w≒0.25、 x≒0.23 であり、RCu相の組成は、 R(Cu1-y-z Coy Fez ) において y≒0.10、 z≒0.12 であった。
Sample Nos. 2-11, 2-18,
In No. 5-1, part of Co in the R 3 Co phase was replaced with Cu and Fe, and part of Cu in the RCu phase was replaced with Co and Fe. Specifically, the composition of the R 3 Co phase is w≈0.25, x≈0.23 in R 3 (Co 1-wx Fe w Cu x ), and the composition of the RCu phase is R (Cu 1 -yz Co y Fe z) y ≒ 0.10 in, had a z ≒ 0.12.

【0081】なお、表1〜3に示される各サンプルも、
成形体用合金の粉末に由来する主相と、溶浸用合金に由
来する副相とを有しており、サンプル中の副相の比率
は、いずれも20〜40体積%の範囲にあった。
The samples shown in Tables 1 to 3 also
It has a main phase derived from the powder of the alloy for compacts and a subphase derived from the alloy for infiltration, and the ratio of the subphase in the sample was in the range of 20 to 40% by volume. .

【0082】<半焼結磁石との比較>成形体用合金とし
て 29Nd−1B−残部Fe(重量%) を用い、溶浸用合金として 85Nd−残部Fe(重量%) を用い、溶浸を行なって磁石サンプルNo. 6−1を作製
した。ただし、溶浸の際の熱処理は、前述した特開平3
−80508号公報の実施例に準じて700℃で10時
間行なった。
<Comparison with Semi-Sintered Magnet> 29Nd-1B-remaining Fe (wt%) was used as the alloy for compacts, and 85Nd-remaining Fe (wt%) was used as the infiltration alloy for infiltration. A magnet sample No. 6-1 was prepared. However, the heat treatment at the time of infiltration is the same as that described in the above-mentioned JP-A-3
It was carried out at 700 ° C. for 10 hours according to the example of -80508.

【0083】また、特開平3−80508号公報記載の
方法に準じて、サンプルNo. 6−1に用いた成形体に4
00℃で0.5時間熱処理を施した後、サンプルNo. 6
−1と同様にして溶浸を行ない、サンプルNo. 6−2と
した。
Further, according to the method described in JP-A-3-80508, the molded body used in Sample No. 6-1 was
Sample No. 6 after heat treatment at 00 ℃ for 0.5 hours
Infiltration was carried out in the same manner as in No. 1 to obtain Sample No. 6-2.

【0084】これらのサンプルについて磁気特性を測定
した。この結果、サンプルNo. 6−1が、 Br =8.6kG、 HCJ=6.1 kOe、 (BH)max =13MGOe であったのに対し、サンプルNo. 6−2では、 Br =8.2kG、 HCJ=5.1 kOe、 (BH)max =11MGOe であり、成形体の熱処理による磁気特性の劣化が認めら
れた。
The magnetic properties of these samples were measured. As a result, sample No. 6-1 had Br = 8.6 kG, HCJ = 6.1 kOe, and (BH) max = 13 MGOe, whereas sample No. 6-2 had Br = 8.2 kG. , HCJ = 5.1 kOe, (BH) max = 11 MGOe, and deterioration of the magnetic properties due to the heat treatment of the compact was observed.

【0085】以上の実施例の結果から、本発明の効果が
明らかである。
From the results of the above examples, the effects of the present invention are clear.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒子構造を示す図面代用写真であって本発明の
磁石の断面の走査型電子顕微鏡写真(組成像)である。
FIG. 1 is a drawing-substituting photograph showing a particle structure, which is a scanning electron micrograph (composition image) of a cross section of a magnet of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月5日[Submission date] August 5, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、Yを含む希土類元素の少なく
とも1種である)、T(Tは、Feであるか、Co、N
iおよびCuの少なくとも1種ならびにFeである)お
よびBを含有し、実質的にR214Bからなる相を含む
成形体用合金と、Rを含み、R214BよりもRリッチ
な溶浸用合金とを用い、溶融した溶浸用合金を、成形体
用合金の粉末の成形体に溶浸させて磁石を得ることを特
徴とする磁石の製造方法。
1. R (R is at least one kind of rare earth element including Y), T (T is Fe, Co, N
i and Cu is at least one and Fe) and containing B, substantially the molded body alloy containing phase consisting R 2 T 14 B, wherein the R, R-rich than R 2 T 14 B A method for producing a magnet, characterized in that the molten alloy for infiltration is infiltrated into a compact of a powder of the alloy for compact to obtain a magnet.
【請求項2】 溶浸用合金の融点が1000℃以下であ
る請求項1の磁石の製造方法。
2. The method for producing a magnet according to claim 1, wherein the melting point of the infiltration alloy is 1000 ° C. or lower.
【請求項3】 溶浸用合金の融点が、前記成形体の熱収
縮開始温度よりも低い請求項1または2の磁石の製造方
法。
3. The method for producing a magnet according to claim 1, wherein the melting point of the infiltration alloy is lower than the heat shrinkage initiation temperature of the compact.
【請求項4】 前記成形体と溶浸用合金とを接触させた
状態で昇温して溶浸用合金を溶融する請求項1〜3のい
ずれかの磁石の製造方法。
4. The method for producing a magnet according to claim 1, wherein the infiltration alloy is melted by raising the temperature in a state where the compact and the infiltration alloy are in contact with each other.
【請求項5】 前記成形体の密度が4.0g/cm3 以上で
ある請求項1〜4のいずれかの磁石の製造方法。
5. The method for producing a magnet according to claim 1, wherein the molded body has a density of 4.0 g / cm 3 or more.
【請求項6】 相対密度が95%以上である磁石を製造
する請求項1〜5のいずれかの磁石の製造方法。
6. The method for producing a magnet according to claim 1, wherein a magnet having a relative density of 95% or more is produced.
【請求項7】 成形体用合金が、 Rを26〜38重量%、 Bを0.9〜3重量%含み、残部が実質的にTである請
求項1〜6のいずれかの磁石の製造方法。
7. The magnet for producing a magnet according to claim 1, wherein the alloy for a molded body contains 26 to 38% by weight of R, 0.9 to 3% by weight of B, and the balance is substantially T. Method.
【請求項8】 Nd+Prが成形体用合金のRの50重
量%以上を占める請求項1〜7のいずれかの磁石の製造
方法。
8. The method for producing a magnet according to claim 1, wherein Nd + Pr accounts for 50% by weight or more of R of the alloy for molded body.
【請求項9】 Fe+CoがTの50重量%以上を占め
る請求項1〜8のいずれかの磁石の製造方法。
9. The method for producing a magnet according to claim 1, wherein Fe + Co accounts for 50% by weight or more of T.
【請求項10】 成形体用合金の粉末の平均粒子径が
0.1〜50μm である請求項1〜9のいずれかの磁石
の製造方法。
10. The method for producing a magnet according to claim 1, wherein the powder of the alloy for molding has an average particle diameter of 0.1 to 50 μm.
【請求項11】 溶浸用合金がRを40〜99重量%含
む請求項1〜10のいずれかの磁石の製造方法。
11. The method for producing a magnet according to claim 1, wherein the infiltration alloy contains 40 to 99% by weight of R.
【請求項12】 溶浸用合金の残部が実質的にM(M
は、Fe、Co、Ni、Cu、Al、Sn、Gaおよび
Agの少なくとも1種である)である請求項11の磁石
の製造方法。
12. The balance of the infiltration alloy is substantially M (M
Is at least one of Fe, Co, Ni, Cu, Al, Sn, Ga and Ag).
【請求項13】 Mの一部に替えて、B、SiおよびC
の少なくとも1種を含み、これらの合計含有量が溶浸用
合金の3重量%以下である請求項12の磁石の製造方
法。
13. B, Si and C in place of part of M
13. The method for producing a magnet according to claim 12, wherein the total content of these is at least 3% by weight of the alloy for infiltration.
【請求項14】 前記成形体が磁界中で成形されたもの
である請求項1〜13のいずれかの磁石の製造方法。
14. The method for producing a magnet according to claim 1, wherein the molded body is molded in a magnetic field.
【請求項15】 溶浸後の成形体に、溶浸用合金の融点
よりも高い温度で熱処理を施す請求項1〜14のいずれ
かの磁石の製造方法。
15. The method for producing a magnet according to claim 1, wherein the infiltrated compact is subjected to heat treatment at a temperature higher than the melting point of the infiltration alloy.
【請求項16】 前記熱処理の際の保持温度が800℃
以上である請求項15の磁石の製造方法。
16. The holding temperature during the heat treatment is 800 ° C.
The method for manufacturing a magnet according to claim 15, which is the above.
【請求項17】 実質的にR214B相(Rは、Yを含
む希土類元素の少なくとも1種であり、Tは、Feであ
るか、Co、NiおよびCuの少なくとも1種ならびに
Feである)からなる粒状の主相と、R214Bよりも
Rリッチであり、前記主相を包囲する副相とを含み、副
相中にR3 Co相および/またはRCu相を含み、磁石
中の副相の割合が20〜40体積%であることを特徴と
する磁石。
17. A substantially R 2 T 14 B phase (R is at least one of rare earth elements including Y, T is Fe, or at least one of Co, Ni and Cu and Fe). And a subphase that is R richer than R 2 T 14 B and surrounds the main phase, and contains a R 3 Co phase and / or an RCu phase in the subphase, A magnet characterized in that the proportion of the subphase in the magnet is 20 to 40% by volume.
【請求項18】 R3 Co相のCoの少なくとも一部お
よびRCu相のCuの少なくとも一部がFeで置換され
ている請求項17の磁石。
18. The magnet according to claim 17, wherein at least a part of Co in the R 3 Co phase and at least a part of Cu in the RCu phase are substituted with Fe.
【請求項19】 R3 Co相のCoの少なくとも一部が
Cuで置換されており、RCu相のCuの少なくとも一
部がCoで置換されている請求項17または18の磁
石。
19. The magnet according to claim 17, wherein at least part of Co in the R 3 Co phase is replaced with Cu, and at least part of Cu in the RCu phase is replaced with Co.
【請求項20】 副相が、R3 (Co1-w-x Few Cu
x )相(0.01≦w≦0.3、0.01≦x≦0.
3)およびR(Cu1-y-z Coy Fez )相(0.01
≦y≦0.3、0.01≦z≦0.3)を含み、磁石中
におけるこれらの相の含有率がそれぞれ1〜30体積%
であり、磁石中におけるこれらの相の合計含有率が20
〜40体積%である請求項17の磁石。
20. The subphase is R 3 (Co 1-wx Fe w Cu
x ) phase (0.01≤w≤0.3, 0.01≤x≤0.
3) and R (Cu 1-yz Co y Fe z ) phase (0.01
≦ y ≦ 0.3, 0.01 ≦ z ≦ 0.3), and the content of each of these phases in the magnet is 1 to 30% by volume.
And the total content of these phases in the magnet is 20
18. The magnet of claim 17, which is -40% by volume.
【請求項21】Rを30〜60重量%、 Bを0.3〜6重量%含む請求項17〜20の磁石。21. The magnet according to claim 17, which contains 30 to 60% by weight of R and 0.3 to 6% by weight of B.
JP09048294A 1994-04-05 1994-04-05 Magnet and manufacturing method thereof Expired - Fee Related JP3405806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09048294A JP3405806B2 (en) 1994-04-05 1994-04-05 Magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09048294A JP3405806B2 (en) 1994-04-05 1994-04-05 Magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07283016A true JPH07283016A (en) 1995-10-27
JP3405806B2 JP3405806B2 (en) 2003-05-12

Family

ID=13999787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09048294A Expired - Fee Related JP3405806B2 (en) 1994-04-05 1994-04-05 Magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3405806B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107362A1 (en) * 2002-06-13 2003-12-24 住友特殊金属株式会社 Rare earth sintered magnet and method for production thereof
JP2005268684A (en) * 2004-03-22 2005-09-29 Tdk Corp Recycling method of sintered magnetic sludge, manufacturing method of r-tm-b series permanent magnet and magnet manufacturing system
WO2005091315A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JP2011199180A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
JP2012028704A (en) * 2010-07-27 2012-02-09 Tdk Corp Rare earth sintered magnet
WO2012036294A1 (en) * 2010-09-15 2012-03-22 トヨタ自動車株式会社 Method for producing rare-earth magnet
US20130068992A1 (en) * 2010-05-20 2013-03-21 Kazuhiro Hono Method for producing rare earth permanent magnets, and rare earth permanent magnets
JP2013145832A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Method for manufacturing rare earth magnet
JP2013175705A (en) * 2012-01-26 2013-09-05 Toyota Motor Corp Method of manufacturing rare earth magnet
JP2014057075A (en) * 2009-12-09 2014-03-27 Aichi Steel Works Ltd Rare earth anisotropic magnet and method for manufacturing the same
JP2014086529A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Rare-earth sintered magnet and manufacturing method therefor
CN103915232A (en) * 2013-01-07 2014-07-09 昭和电工株式会社 R-T-B rare earth sintered magnet, alloy for R-T-B rare earth sintered magnet, and method of manufacturing the same
CN103946931A (en) * 2011-11-14 2014-07-23 丰田自动车株式会社 Method of manufacturing rare-earth magnets
CN104112581A (en) * 2013-04-22 2014-10-22 昭和电工株式会社 R-t-b Rare Earth Sintered Magnet And Method Of Manufacturing The Same
JP2015153813A (en) * 2014-02-12 2015-08-24 トヨタ自動車株式会社 Method for producing rare earth magnet
JP2017150022A (en) * 2016-02-23 2017-08-31 Jfeスチール株式会社 Lamination molding method, lamination-molded body production method, and lamination-molded body
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
US10242777B2 (en) * 2016-02-01 2019-03-26 Tdk Corporation Alloy for R-T-B based sintered magnet and R-T-B based sintered magnet
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
KR20210045245A (en) * 2019-10-16 2021-04-26 주식회사 엘지화학 Manufacturing method of sintered magnet
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107362A1 (en) * 2002-06-13 2003-12-24 住友特殊金属株式会社 Rare earth sintered magnet and method for production thereof
EP1494250A1 (en) * 2002-06-13 2005-01-05 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
CN1320564C (en) * 2002-06-13 2007-06-06 株式会社新王磁材 Rare earth sintered magnet and its mfg. method
EP1494250A4 (en) * 2002-06-13 2008-08-20 Hitachi Metals Ltd Rare earth sintered magnet and method for production thereof
JP2005268684A (en) * 2004-03-22 2005-09-29 Tdk Corp Recycling method of sintered magnetic sludge, manufacturing method of r-tm-b series permanent magnet and magnet manufacturing system
WO2005091315A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JPWO2005091315A1 (en) * 2004-03-23 2008-05-22 独立行政法人科学技術振興機構 R-Fe-B system thin film magnet and method for manufacturing the same
US7790300B2 (en) 2004-03-23 2010-09-07 Japan Science And Technology Agency R-Fe-B based thin film magnet and method for preparation thereof
JP4698581B2 (en) * 2004-03-23 2011-06-08 独立行政法人科学技術振興機構 R-Fe-B thin film magnet and method for producing the same
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JP2014057075A (en) * 2009-12-09 2014-03-27 Aichi Steel Works Ltd Rare earth anisotropic magnet and method for manufacturing the same
JP2011199180A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
US20130068992A1 (en) * 2010-05-20 2013-03-21 Kazuhiro Hono Method for producing rare earth permanent magnets, and rare earth permanent magnets
CN102376407A (en) * 2010-07-27 2012-03-14 Tdk株式会社 Rare earth sintered magnet
JP2012028704A (en) * 2010-07-27 2012-02-09 Tdk Corp Rare earth sintered magnet
WO2012036294A1 (en) * 2010-09-15 2012-03-22 トヨタ自動車株式会社 Method for producing rare-earth magnet
JP5196080B2 (en) * 2010-09-15 2013-05-15 トヨタ自動車株式会社 Rare earth magnet manufacturing method
RU2538272C2 (en) * 2010-09-15 2015-01-10 Тойота Дзидося Кабусики Кайся Manufacturing method of magnets from rare-earth metals
US8846136B2 (en) 2010-09-15 2014-09-30 Toyota Jidosha Kabushiki Kaisha Production method of rare earth magnet
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
CN103946931A (en) * 2011-11-14 2014-07-23 丰田自动车株式会社 Method of manufacturing rare-earth magnets
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
JP2013145832A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Method for manufacturing rare earth magnet
JP2013175705A (en) * 2012-01-26 2013-09-05 Toyota Motor Corp Method of manufacturing rare earth magnet
US9257227B2 (en) 2012-01-26 2016-02-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnet
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
JP2014086529A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Rare-earth sintered magnet and manufacturing method therefor
CN103915232A (en) * 2013-01-07 2014-07-09 昭和电工株式会社 R-T-B rare earth sintered magnet, alloy for R-T-B rare earth sintered magnet, and method of manufacturing the same
US9558872B2 (en) 2013-01-07 2017-01-31 Showa Denko K.K. R-T-B rare earth sintered magnet, alloy for R-T-B rare earth sintered magnet, and method of manufacturing the same
US10020097B2 (en) 2013-04-22 2018-07-10 Showa Denko K.K. R-T-B rare earth sintered magnet and method of manufacturing the same
CN104112581A (en) * 2013-04-22 2014-10-22 昭和电工株式会社 R-t-b Rare Earth Sintered Magnet And Method Of Manufacturing The Same
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
US10748684B2 (en) 2013-06-05 2020-08-18 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
US10056177B2 (en) 2014-02-12 2018-08-21 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
JP2015153813A (en) * 2014-02-12 2015-08-24 トヨタ自動車株式会社 Method for producing rare earth magnet
US10242777B2 (en) * 2016-02-01 2019-03-26 Tdk Corporation Alloy for R-T-B based sintered magnet and R-T-B based sintered magnet
JP2017150022A (en) * 2016-02-23 2017-08-31 Jfeスチール株式会社 Lamination molding method, lamination-molded body production method, and lamination-molded body
KR20210045245A (en) * 2019-10-16 2021-04-26 주식회사 엘지화학 Manufacturing method of sintered magnet
CN113039618A (en) * 2019-10-16 2021-06-25 株式会社Lg化学 Method for producing sintered magnet
JP2022511484A (en) * 2019-10-16 2022-01-31 エルジー・ケム・リミテッド Manufacturing method of sintered magnet

Also Published As

Publication number Publication date
JP3405806B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
JP3405806B2 (en) Magnet and manufacturing method thereof
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
US5641363A (en) Sintered magnet and method for making
EP1970924B1 (en) Rare earth permanent magnets and their preparation
EP2388350B1 (en) Method for producing r-t-b sintered magnet
JP4872887B2 (en) Porous material for R-Fe-B permanent magnet and method for producing the same
EP2237289B1 (en) Method of Producing Rare-Earth Magnet
KR20100016576A (en) R-t-b sintered magnet
CN105448444B (en) A kind of method and rare earth permanent-magnetic material of the rare earth permanent-magnetic material that processability improves
EP0249973A1 (en) Permanent magnetic material and method for producing the same
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JPH07272914A (en) Sintered magnet, and its manufacture
EP1632299A1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH07201623A (en) Sintered magnet and its production
JP2023173696A (en) Rare earth magnet and manufacturing method thereof
JPH0822909A (en) Permanent magnet having sufficient mechanical strength
JPH05230502A (en) Production of rare-earth element bond magnet
JPH07201622A (en) Sintered magnet and its production
JPH0620815A (en) Manufacture of rare earth bonded magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees