JPH02281650A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02281650A
JPH02281650A JP10245189A JP10245189A JPH02281650A JP H02281650 A JPH02281650 A JP H02281650A JP 10245189 A JP10245189 A JP 10245189A JP 10245189 A JP10245189 A JP 10245189A JP H02281650 A JPH02281650 A JP H02281650A
Authority
JP
Japan
Prior art keywords
opening
capacitor electrode
capacitor
silicon nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10245189A
Other languages
Japanese (ja)
Inventor
Toshihiro Ogawa
智弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10245189A priority Critical patent/JPH02281650A/en
Publication of JPH02281650A publication Critical patent/JPH02281650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To lessen the occupied area on a semiconductor chip by a method wherein the capacitor is provided with a laminated capacity section, a first and a second opening, a first and a second insulating film, and a first and a second conductor layer. CONSTITUTION:A field oxide film 2 is formed on a silicon board 1, and a lower insulating film is formed thereon. Then, a capacitor electrode 4 is formed on a silicon nitride film 3, and a silicon nitride film 5 is deposited thereon to form a dielectric layer. Next, an electrode 6 is formed on the silicon nitride film 5, a structure composed of the silicon nitride film 3 to the capacitor electrode 6 is successively laminated in repetition, and a silicon nitride film 7 is deposited thereon as an uppermost layer to constitute a multi-structured laminated capacitive section. Then, the laminated capacitive section is selectively etched in an isotropic manner to form a first opening 8. Only the inside of the opening 8 is selectively subjected to an isotropic etching to remove the side face of the capacitive section electrode 6 which contains phosphorus atoms as impurity. Then, a silicon nitride film 9 is formed on the surface including the opening 8, which is isotropically etched to remove the part of the silicon nitride film 9 on the flat part. Next, a polycrystalline silicon layer 10 is formed on the surface including the opening 8 to be filled into the opening 8, and boron atoms are thermally diffused into the polycrystalline silicon layer 10 as impurity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置及びその製造方法に関し、特にコ
ンデンサを有する半導体装置及びその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device having a capacitor and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の半導体装置は、半導体基板上に設けた絶縁股上に
、各容量部電極のそれぞれに誘電体層を挟んで交互に外
部へ引出し、外部配線に電気的接続を行なっていた。
In a conventional semiconductor device, a dielectric layer is sandwiched between each capacitor electrode on an insulating layer provided on a semiconductor substrate, and the capacitor electrodes are alternately drawn out and electrically connected to external wiring.

従来技術では、誘電体層を介して容量部電極を一層ずつ
形成する毎に導体層の堆積とホトリソグラフィ技術を用
いて、交互に容量部電極をパターニングすることにより
、コンデンサを形成していた。
In the prior art, a capacitor is formed by alternately patterning capacitor electrodes by depositing a conductor layer and using photolithography technology each time a capacitor electrode is formed layer by layer via a dielectric layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置は、半導体基板上に大容量のコンデン
サを作る場合、容量部電極の対向面積を大きくする必要
があるため、容量部電極と誘電体層を交互に多層に重ね
た積層構造が用いられる。
In conventional semiconductor devices, when creating a large capacitance capacitor on a semiconductor substrate, it is necessary to increase the opposing area of capacitor electrodes, so a laminated structure in which capacitor electrodes and dielectric layers are stacked alternately is used. It will be done.

従来の技術では、各容量部電極を形成する毎にホトリソ
グラフィ技術を用いたパターニングを行わなければなら
ないため、積層構造の暦数を増加すると製造工数が大幅
に増加し、積層構造の層数が制限され、容量部電極一層
あたりの面積が大きくなった。また、各容量部電極の形
が異なりコンタクト部が凹凸になるため、コンタクト部
のマージンを大きくとる必要があり半導体チップ上のコ
ンデンサの占有面積が増加した。
With conventional technology, patterning using photolithography must be performed each time each capacitor electrode is formed, so increasing the number of layers in the laminated structure significantly increases the number of manufacturing steps, and the number of layers in the laminated structure increases. As a result, the area per layer of the capacitor electrode has become large. Furthermore, since the shape of each capacitor electrode is different and the contact portion is uneven, it is necessary to provide a large margin for the contact portion, which increases the area occupied by the capacitor on the semiconductor chip.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、化学的性質のことなる2種類の
導電層を容量膜を挟んで交互に積層して積層構造を形成
し、この積層構造を選択的に異方性エツチングして切断
面を作り、この切断面を前記2種の導電層に対しエツチ
ング速度の異なる化学物質により選択エツチングを行い
、前記2種の導電層のうち一方と選択的に電気的接続を
行う手段を有しており、各導電層形成毎のホトリソグラ
フィ技術によるパターニング工程を用いることなくコン
デンサの多層化が可能であり、コンデンサの半導体チッ
プ上の占有面積の縮小を可能とする。
In the semiconductor device of the present invention, two types of conductive layers with different chemical properties are alternately laminated with a capacitive film in between to form a laminated structure, and this laminated structure is selectively anisotropically etched to form a cut surface. and selectively etching the cut surface with chemical substances having different etching speeds for the two types of conductive layers to selectively establish an electrical connection with one of the two types of conductive layers. Therefore, the capacitor can be multilayered without using a patterning process using photolithography technology for each conductive layer formation, and the area occupied by the capacitor on the semiconductor chip can be reduced.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(j、)は本発明の一実施例を説明する
ための半導体チップの平面図及び工程順に示しなA−A
’線断面図である。
FIGS. 1(a) to 1(j) are a plan view of a semiconductor chip and a process order diagram for explaining one embodiment of the present invention.A-A
'It is a line cross-sectional view.

まず、第1図(a)、(b)に示すように、シリコン基
板1の上に酸化ケイ素膜を気相成長法により950nm
の厚さに堆積してフィールド酸化!2を形成する。次に
、フィールド酸化膜2の上に窒化ケイ素膜3を150n
mの厚さに堆積させ下層絶縁膜を形成する。次に、窒化
ケイ素膜3の上に多結晶シリコン膜を400nmの厚さ
に堆積し、イオン注入法によりホウ素原子を注入して容
量部電極4を形成する。次に、多結晶シリコン膜4の上
に窒化ケイ素膜5を50nmの厚さに堆積し誘電体層を
形成する。次に、窒化ケイ素膜5の上に多結晶シリコン
膜を400nmの厚さに堆積し、イオン注入法によりリ
ン原子を注入し容量部電極6を形成する。次に、容量部
電極6の上に前述した窒化ケイ素膜3から容量部電極6
までを順次繰返して積層する。次に、最上層に窒化ケイ
素M7を50nmの厚さに堆積して多層構造の。積層容
量部を形成する。次に、異方性エツチング法により選択
的に前記積層容量部をエツチングして第1の開口部8を
形成する。
First, as shown in FIGS. 1(a) and 1(b), a silicon oxide film is deposited on a silicon substrate 1 to a thickness of 950 nm by vapor phase growth.
Field oxidation deposited to the thickness of! form 2. Next, a silicon nitride film 3 of 150 nm is deposited on the field oxide film 2.
A lower insulating film is formed by depositing the lower insulating film to a thickness of m. Next, a polycrystalline silicon film is deposited to a thickness of 400 nm on the silicon nitride film 3, and boron atoms are implanted by ion implantation to form the capacitor electrode 4. Next, a silicon nitride film 5 is deposited to a thickness of 50 nm on the polycrystalline silicon film 4 to form a dielectric layer. Next, a polycrystalline silicon film is deposited to a thickness of 400 nm on the silicon nitride film 5, and phosphorus atoms are implanted by ion implantation to form the capacitor electrode 6. Next, the silicon nitride film 3 described above is applied onto the capacitor electrode 6.
Repeat the above steps in order to stack the layers. Next, silicon nitride M7 was deposited as the top layer to a thickness of 50 nm to form a multilayer structure. A laminated capacitor section is formed. Next, the laminated capacitor section is selectively etched using an anisotropic etching method to form the first opening 8.

次に、第1図(c)に示すように、開口部8の内側のみ
を選択的にヒドラジン水溶液により等方性エツチングし
てリン原子を不純物として含む容量部電極6の側面を5
00nmの厚さだけ除去する。この時、ホウ素原子を含
む容量部電極4は、リン原子を含む容量部電極6に比ベ
エッチング速度が低いため、あまりエツチングされない
Next, as shown in FIG. 1(c), only the inside of the opening 8 is isotropically etched with a hydrazine aqueous solution to remove the side surface of the capacitor electrode 6 containing phosphorus atoms as an impurity.
00 nm thickness is removed. At this time, the capacitor electrode 4 containing boron atoms has a lower etching rate than the capacitor electrode 6 containing phosphorus atoms, so it is not etched much.

次に、第1図(d)に示すように、開口部8を含む表面
に減圧気相成長法により窒化ケイ素膜9を200nmの
厚さに形成する。このとき、容量部電極6の側面は深く
エツチングされているため、その部分に堆積した窒化ケ
イ素膜9は他の部分に比べ厚くなる。
Next, as shown in FIG. 1(d), a silicon nitride film 9 is formed to a thickness of 200 nm on the surface including the opening 8 by low pressure vapor phase epitaxy. At this time, since the side surface of the capacitor electrode 6 is deeply etched, the silicon nitride film 9 deposited on that portion is thicker than on other portions.

次に、第1図(e)に示すように、熱リン酸で窒化ケイ
素膜9を等方性エツチングして平坦部の窒化ケイ素膜9
を除去する。このとき容量部電極6の側面の凹部につい
た窒化ケイ素は、エツチングされないで残る0次に、開
口部8を含む表面に多結晶シリコン層10を堆積させて
、開口部8内で充填し、不純物としてホウ素原子を多結
晶シリコン膜10に熱拡散する。次に、多結晶シリコン
層10上に窒化ケイ素膜11を200nmの厚さに積層
し容量部絶縁膜を形成する。次に、前記積層容量部を選
択的に順次エツチングして第2の開口部12を設ける。
Next, as shown in FIG. 1(e), the silicon nitride film 9 is isotropically etched with hot phosphoric acid to etch the silicon nitride film 9 in the flat part.
remove. At this time, the silicon nitride adhering to the recess on the side surface of the capacitor electrode 6 is left unetched. Next, a polycrystalline silicon layer 10 is deposited on the surface including the opening 8, and the opening 8 is filled with impurities. As a result, boron atoms are thermally diffused into the polycrystalline silicon film 10. Next, a silicon nitride film 11 is laminated to a thickness of 200 nm on the polycrystalline silicon layer 10 to form a capacitor insulating film. Next, the laminated capacitor section is selectively and sequentially etched to form a second opening 12.

次に、第1図(f)に示すように、開口部12の内側の
みを選択的にヒドラジン水溶液によりエツチングしてリ
ン原子を不純物として含む容量部電極6の側面を500
nmの厚さだけ除去する。
Next, as shown in FIG. 1(f), only the inside of the opening 12 is selectively etched with a hydrazine aqueous solution to remove 500% of the side surface of the capacitor electrode 6 containing phosphorus atoms as impurities.
Only nm thickness is removed.

次に、第1の開口部8の場合と同様にして窒化ケイ素膜
13を200nmの厚さに形成し、熱リン酸で前記窒化
ケイ素膜13を等方性エツチングして容量部電極6の側
面にのみ窒化ケイ素膜13を残す。
Next, in the same manner as in the case of the first opening 8, a silicon nitride film 13 is formed to a thickness of 200 nm, and the silicon nitride film 13 is isotropically etched with hot phosphoric acid to etch the side surface of the capacitor electrode 6. The silicon nitride film 13 is left only on.

次に、第1図(g)に示すように、希硝酸により、ホウ
素原子を不純物として含む容量部電極4の側面を900
nmの厚さだけエツチングして除去する。この時、容量
部電極6の側面は窒化ケイ素膜13に覆われているため
エツチングされない。
Next, as shown in FIG. 1(g), the side surface of the capacitor electrode 4 containing boron atoms as an impurity was coated with dilute nitric acid at a 900-degree angle.
It is etched and removed by a thickness of nm. At this time, the side surfaces of the capacitor electrode 6 are not etched because they are covered with the silicon nitride film 13.

次に、第1図(h)に示すように、開口部12を含む表
面に減圧気相成長法により窒化ケイ素膜14を300n
mの厚さに形成する。
Next, as shown in FIG. 1(h), a silicon nitride film 14 of 300 nm is deposited on the surface including the opening 12 by low pressure vapor phase epitaxy.
Form to a thickness of m.

次に、第1図(i)に示すように、熱リン酸で窒化ケイ
素膜14を等方性エツチングして容量部電極6の側面を
露出させる。
Next, as shown in FIG. 1(i), the silicon nitride film 14 is isotropically etched with hot phosphoric acid to expose the side surface of the capacitor electrode 6.

次に、第1図<j)に示すように、開口部12を含む表
面に多結晶シリコン層15を堆積して開口部12を充填
し、不純物としてリン原子を熱拡散し、容量部電極6と
接続する外部引出電極を形成する。次に、前記積層容量
部を選択的に異方性エツチングして開口部10.12を
含む領域に積層コンデンサを形成し、積層コンデンサの
外周側面を熱酸化して酸化ケイ素膜16を形成する0次
に、窒化ケイ素膜11を選択的にエツチングして多結晶
シリコン層10のコンタクト用開孔部17を形成し、ア
ルミニウム層を10.5μmの厚さに積層し、選択的に
エツチングして多結晶シリコン層10と接続する電極1
8aと多結晶シリコン層15と接続する電極18bをそ
れぞれ形成する。
Next, as shown in FIG. 1<j), a polycrystalline silicon layer 15 is deposited on the surface including the opening 12 to fill the opening 12, and phosphorus atoms as impurities are thermally diffused to form the capacitor electrode 6. Form an external lead electrode connected to the Next, the multilayer capacitor is selectively anisotropically etched to form a multilayer capacitor in a region including the opening 10.12, and the outer peripheral side of the multilayer capacitor is thermally oxidized to form a silicon oxide film 16. Next, the silicon nitride film 11 is selectively etched to form a contact opening 17 in the polycrystalline silicon layer 10, and an aluminum layer is laminated to a thickness of 10.5 μm, and then selectively etched to form a polycrystalline silicon layer 10. Electrode 1 connected to crystalline silicon layer 10
8a and an electrode 18b connected to the polycrystalline silicon layer 15, respectively.

なお、ここで開孔部8,12を設ける代りに、前記積層
容量部を選択的にエツチングして積層コンデンサを形成
し、前記積層コンデンサの対向する二つの切断面に露出
した容量電極4,6を前述した工程と同様に処理するこ
とによって同様の構成を得ることができる。
Here, instead of providing the openings 8 and 12, the multilayer capacitor is selectively etched to form a multilayer capacitor, and the capacitor electrodes 4 and 6 exposed on two opposing cut surfaces of the multilayer capacitor are etched. A similar structure can be obtained by processing in the same manner as in the steps described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、シリコン基板上に設けた
コンデンサの導電層の暦数を大幅に増加でき、これによ
り容量電極1層当りの面積およびコンタクト領域を減ら
し、コンデンサのチップ上の占有面積を縮小することが
可能である。
As explained above, the present invention can significantly increase the number of conductive layers of a capacitor provided on a silicon substrate, thereby reducing the area per layer of capacitor electrode and contact area, and reducing the area occupied on the capacitor chip. It is possible to reduce the

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(j)は本発明の一実施例を説明するた
めの半導体チップの平面図及び工程順に示したA−A’
線断面図である。 1・・・シリコン基板、2・・・酸化ケイ素膜、3・・
・窒化ケイ素膜、4・・・容量部電極、5・・・窒化ケ
イ素膜、6・・・容量部電極、7・・・窒化ケイ素膜、
8・・・開口部、9・・・窒化ケイ素膜、1o・・・多
結晶シリコン層、 ・・窒化ケイ素膜、 2・・・開口部、 4・・・窒化ケイ素膜、 5・・・多結晶シリコン層、 6・・・酸化ケイ素膜、 ・・開口部、 8b・・・電極。
FIGS. 1(a) to 1(j) are a plan view of a semiconductor chip and A-A' shown in order of steps for explaining one embodiment of the present invention.
FIG. 1... Silicon substrate, 2... Silicon oxide film, 3...
・Silicon nitride film, 4... Capacitive part electrode, 5... Silicon nitride film, 6... Capacitive part electrode, 7... Silicon nitride film,
8... Opening, 9... Silicon nitride film, 1o... Polycrystalline silicon layer,... Silicon nitride film, 2... Opening, 4... Silicon nitride film, 5... Polycrystalline silicon layer. Crystalline silicon layer, 6...Silicon oxide film,...Opening, 8b...Electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に設けたフィールド酸化膜上に第1
の容量電極と第2の容量電極とを誘電体層を介して交互
に積層して設けた積層容量部と、前記積層容量部の上面
より選択的に順次エッチングして設けた第1及び第2の
開口部と、前記第1の開口部内の前記第2の容量電極の
側面に設けた第1の絶縁膜と、前記第1の開口部内を充
填して前記第1の容量電極とを接続する第1の導体層と
、前記第2の開口部内の前記第1の容量電極の側面に設
けた第2の絶縁膜と、前記第2の開口部内を充填して前
記第2の容量電極と接続する第2の導体層とを有するこ
とを特徴とする半導体装置。
(1) The first layer is placed on the field oxide film provided on the semiconductor substrate.
a laminated capacitor section in which a capacitor electrode and a second capacitor electrode are alternately laminated with dielectric layers interposed therebetween; an opening, a first insulating film provided on a side surface of the second capacitor electrode in the first opening, and the first capacitor electrode by filling the inside of the first opening. a first conductor layer, a second insulating film provided on a side surface of the first capacitor electrode in the second opening, and a second insulating film that fills the second opening and is connected to the second capacitor electrode. A semiconductor device characterized by having a second conductor layer.
(2)半導体基板上に設けたフィールド酸化膜上に第1
の容量電極と前記第1の容量電極よりもエッチング速度
の大きい第2の容量電極とを誘電体層を介して交互に積
層して積層容量部を形成する工程と、前記積層容量部を
選択的に順次異方性エッチングして第1の開口部を形成
する工程と、前記第2の容量電極に対して前記第1の容
量電極よりも大きいエッチング速度を有するエッチング
液による等方性エッチングにより前記第1の開口部の前
記第2の容量電極の側面を部分的に除去して凹部を設け
る工程と、前記第1の開口部を含む表面に第1の絶縁膜
を堆積して異方性エッチングし前記第2の容量電極の側
面の前記凹部にのみ前記第1の絶縁膜を残す工程と、前
記第1の開口部内に第1の導体層を充填して前記第1の
容量電極と接続する工程と、前記積層容量部を選択的に
異方性エッチングして第2の開口部を設ける工程と、等
方性エッチングにより前記第2の開口部の前記第2の容
量電極の側面を部分的に除去して凹部を設け前記第2の
開口部を含む表面に保護膜を堆積して異方性エッチング
し前記凹部のみに前記保護膜を残す工程と、等方性エッ
チングにより前記第1の容量電極の側面を前記凹部より
深くエッチングする工程と、前記第2の開口部に第2の
絶縁膜を堆積して異方性エッチングし前記第1の容量電
極の側面にのみ第2の絶縁膜を残す工程と、等方性エッ
チングにより前記保護膜を除去して前記第2の容量電極
の側面を露出させる工程と、前記第2の開口部内に第2
の導体層を充填して前記第2の容量電極と接続する工程
とを含むことを特徴とする半導体装置の製造方法。
(2) The first layer is placed on the field oxide film provided on the semiconductor substrate.
a step of forming a laminated capacitor part by alternately laminating capacitor electrodes and a second capacitor electrode having a higher etching rate than the first capacitor electrode via a dielectric layer, and selectively forming the laminated capacitor part. forming a first opening by sequentially anisotropically etching the second capacitor electrode, and isotropically etching the second capacitor electrode with an etching solution having a higher etching rate than the first capacitor electrode. a step of partially removing a side surface of the second capacitor electrode in a first opening to provide a recess; depositing a first insulating film on the surface including the first opening; and anisotropic etching. and leaving the first insulating film only in the recess on the side surface of the second capacitor electrode, and filling the first opening with a first conductor layer and connecting it to the first capacitor electrode. a step of selectively anisotropically etching the laminated capacitor portion to provide a second opening; and partially etching a side surface of the second capacitor electrode in the second opening by isotropic etching. forming a recess by depositing a protective film on the surface including the second opening, and anisotropically etching the protective film to leave the protective film only in the recess; and isotropically etching the first capacitor. etching the side surface of the electrode deeper than the recess; and depositing a second insulating film in the second opening and anisotropically etching the second insulating film only on the side surface of the first capacitor electrode. a step of removing the protective film by isotropic etching to expose the side surface of the second capacitor electrode;
A method for manufacturing a semiconductor device, comprising the step of filling a conductor layer and connecting it to the second capacitor electrode.
JP10245189A 1989-04-21 1989-04-21 Semiconductor device and manufacture thereof Pending JPH02281650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10245189A JPH02281650A (en) 1989-04-21 1989-04-21 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10245189A JPH02281650A (en) 1989-04-21 1989-04-21 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02281650A true JPH02281650A (en) 1990-11-19

Family

ID=14327839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10245189A Pending JPH02281650A (en) 1989-04-21 1989-04-21 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02281650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573584B1 (en) * 1999-10-29 2003-06-03 Kyocera Corporation Thin film electronic device and circuit board mounting the same
US6624500B2 (en) * 2000-11-30 2003-09-23 Kyocera Corporation Thin-film electronic component and motherboard
JP2020194060A (en) * 2019-05-28 2020-12-03 セイコーエプソン株式会社 Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573584B1 (en) * 1999-10-29 2003-06-03 Kyocera Corporation Thin film electronic device and circuit board mounting the same
US6624500B2 (en) * 2000-11-30 2003-09-23 Kyocera Corporation Thin-film electronic component and motherboard
JP2020194060A (en) * 2019-05-28 2020-12-03 セイコーエプソン株式会社 Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4685197A (en) Fabricating a stacked capacitor
US4827323A (en) Stacked capacitor
JPH0457109B2 (en)
JP3401073B2 (en) Method for manufacturing semiconductor device
US5702974A (en) Method for fabricating capacitor of semiconductor device
JP3288805B2 (en) Method for manufacturing capacitor
JPH02281650A (en) Semiconductor device and manufacture thereof
JP2001053251A (en) Manufacture of semiconductor device
JP3008599B2 (en) Semiconductor device and manufacturing method thereof
JP2000252422A (en) Semiconductor device and its manufacture
JP2891242B2 (en) Method for manufacturing semiconductor device
KR100340907B1 (en) Method of fabricating capacitor
JPS59188963A (en) Semiconductor device
JP2767104B2 (en) Method for manufacturing semiconductor device
JPS63229845A (en) Manufacture of semiconductor integrated circuit device
JPH0228968A (en) Semiconductor storage device and manufacture thereof
JP3021711B2 (en) Manufacturing method of semiconductor integrated circuit
JPH06120445A (en) Manufacture of semiconductor device
JPS63107141A (en) Manufacture of semiconductor device
JPH04179266A (en) Semiconductor device and manufacture thereof
JP2000114473A (en) Semiconductor device
JPH0445571A (en) Manufacture of semiconductor device
JPH04116865A (en) Semiconductor storage device and its manufacture
JPH01278060A (en) Manufacture of capacitor
JPH03139876A (en) Manufacture of semiconductor device