JPH0445571A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0445571A
JPH0445571A JP2152721A JP15272190A JPH0445571A JP H0445571 A JPH0445571 A JP H0445571A JP 2152721 A JP2152721 A JP 2152721A JP 15272190 A JP15272190 A JP 15272190A JP H0445571 A JPH0445571 A JP H0445571A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
become
insulating film
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2152721A
Other languages
Japanese (ja)
Other versions
JP2892443B2 (en
Inventor
Kentaro Yoshioka
献太郎 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2152721A priority Critical patent/JP2892443B2/en
Publication of JPH0445571A publication Critical patent/JPH0445571A/en
Application granted granted Critical
Publication of JP2892443B2 publication Critical patent/JP2892443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To see that the step at the wiring part to become a bit line does not become sharp by removing the lower electrode by continuous etching to expose the lower electrode during the patterning of an upper electrode. CONSTITUTION:A polycrystalline Si film 115 and an insulating film 116 are made continuously on a capacitor insulating film 114. Next, the insulating film 116 is etched, until a polycrystalline Si film 190 is exposed, so as to form an opening 117 which includes bit contact. Next, an insulating film is made again on the whole face, and by etchback treatment, it is etched and left as sidewalls 118 and 119 so that they may cover the sides of the polycrystalline Si film 115 to become an upper electrode and the polycrystalline Si film pattern to become a lower electrode. Lastly, wiring 120 is made to be conductive with the Si film 190 at the bit line contact part, thus a stacked memory cell can be gotten. Thereupon, the step at the wiring part to become the bit line does not become sharp, and wiring coverage improves.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、スタック型メモリセルを有するD  RA
  M  (Dynamic  Randam  Ac
cess  Memory)  I  Cの段差被覆性
の大幅な改善と電極面積を最小限できるようにした半導
体装1の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention provides a DRA having stacked memory cells.
M (Dynamic Random Ac
The present invention relates to a method of manufacturing a semiconductor device 1 that greatly improves the step coverage of IC and minimizes the electrode area.

(従来の技術) 基板Si表面上に、セルキャパシタを形成するいわゆる
プレーナ型DRAMの微細化は、面積上の制限から高集
積化に通さず、IMDRAM以降はスタックまたはトレ
ンチ型に代表される3次元構造のセルが精力的に開発さ
れてきた。
(Prior art) The miniaturization of so-called planar DRAMs, in which cell capacitors are formed on the surface of a Si substrate, does not allow for higher integration due to area limitations. Structural cells have been vigorously developed.

その中でも、スタックキャパシタセルは製造上の容易性
から広く使用されているが、今後の微細化のためには、
さらに容量の増加が必須とされている。
Among them, stacked capacitor cells are widely used due to their ease of manufacturing, but in order to achieve future miniaturization, stacked capacitor cells are widely used.
Furthermore, an increase in capacity is essential.

第3図は従来の代表的なスタックキャパシタセルの断面
構造を示したものである。この第3図において、1は半
導体Si基板、2.3はこの半導体基板1と反対の導電
性を有する拡散層である。
FIG. 3 shows a cross-sectional structure of a typical conventional stacked capacitor cell. In FIG. 3, 1 is a semiconductor Si substrate, and 2.3 is a diffusion layer having conductivity opposite to that of the semiconductor substrate 1. In FIG.

また、5は薄い絶縁膜であり、その上に形成されたトラ
ンスファゲート電極、7.8はそれぞれ下部電極とゲー
ト電極を分離するための絶縁膜である。
Further, 5 is a thin insulating film, and a transfer gate electrode is formed on the thin insulating film, and 7 and 8 are insulating films for separating the lower electrode and the gate electrode, respectively.

この絶縁膜7,8上には、多結晶Si膜9が形成されて
いる。この多結晶Si膜9は下部電極となるものである
。この多結晶Si膜膜上上は、容量となる薄い絶縁膜1
0が形成されており、通常はこの絶縁膜10は酸化膜、
窒化膜の複合膜が使用される。
A polycrystalline Si film 9 is formed on the insulating films 7 and 8. This polycrystalline Si film 9 serves as a lower electrode. On this polycrystalline Si film, there is a thin insulating film 1 that becomes a capacitor.
0 is formed, and normally this insulating film 10 is an oxide film,
A composite membrane of nitride membranes is used.

この薄い絶縁膜10上にキャパシタ電極となる多結晶S
i膜11が形成されており、さらに、その上に酸化膜1
2、メタル配線層13が順次形成されている。
Polycrystalline S, which will become the capacitor electrode, is placed on this thin insulating film 10.
An i film 11 is formed, and an oxide film 1 is further formed thereon.
2. Metal wiring layers 13 are sequentially formed.

絶縁膜12は、下層配線層とM糸上部配線との分離を行
うための絶縁膜であり、通常ボロン、リン等の不純物と
して含む酸化膜が使用されている。
The insulating film 12 is an insulating film for separating the lower wiring layer and the upper M-thread wiring, and is usually an oxide film containing impurities such as boron and phosphorus.

また、メタル配線層13はコンタクト部14を介して半
導体基板lと導通する。
Further, the metal wiring layer 13 is electrically connected to the semiconductor substrate l via the contact portion 14.

なお、15は拡散層2と多結晶Si膜9とが導通ずるよ
うに形成したコンタクト部である。
Note that 15 is a contact portion formed so that the diffusion layer 2 and the polycrystalline Si film 9 are electrically connected.

(発明が解決しようとする課題) 従来のスタックキャパシタセルは以上のような構造をな
しており、微細化するうえで、以下に列挙する課題があ
る。
(Problems to be Solved by the Invention) The conventional stacked capacitor cell has the above-described structure, and there are problems listed below when miniaturizing the cell.

(1)キャパシタ容量が多結晶Si膜9,11からなる
下部電極、上部電極面積および電極間に介在する薄い絶
縁膜厚10で規定されるため、微細化を進めるうえでは
、電極面積の維持、膜質を損なうことなく薄膜化をする
必要がある等、困難な点が多々ある。
(1) Since the capacitor capacitance is defined by the area of the lower electrode made of polycrystalline Si films 9 and 11, the area of the upper electrode, and the thin insulating film thickness 10 interposed between the electrodes, in order to advance miniaturization, maintaining the electrode area, There are many difficulties, such as the need to make the film thinner without compromising film quality.

(2)微細化した場合、メモリセル部分で半導体基板と
導通を図かるコンタクト部15が微細化され、特にスタ
ック構造では、段差が急峻となるため、コンタクト部分
でのアルミ配線の段差被覆性の低下、固相エピタキシャ
ルによるコンタクト抵抗の増大等信転性上の課題が顕在
化してくる。
(2) When miniaturization occurs, the contact portion 15 that establishes conduction with the semiconductor substrate in the memory cell portion is miniaturized, and especially in a stacked structure, the steps become steep, so the coverage of the steps of the aluminum wiring at the contact portion is reduced. Problems with reliability, such as a decrease in contact resistance and an increase in contact resistance due to solid-phase epitaxial contact, become apparent.

この発明は前記従来技術が持っている問題点のうち、電
極面積を維持しながら薄膜化が困難な点と、微細化に伴
う信−転性の低下をきたす点について解決した半導体装
置の製造方法を提供するものである。
This invention is a method for manufacturing a semiconductor device that solves the problems of the above-mentioned conventional technology, such as the difficulty in thinning the electrode while maintaining the area, and the deterioration of reliability due to miniaturization. It provides:

(課題を解決するための手段) この発明は前記問題点を解決するために、半導体装置の
製造方法において、半導体基板の能動領域にトランスフ
ァゲート電極形成後絶縁膜を形成して平坦化してビット
およびセル用のコンタクト孔を形成する工程と、このコ
ンタクト孔を下部電極となる多結晶Si膜で埋めてキャ
パシタ電極および上部電極と絶縁膜を順次形成後、上部
電極のパターニング時に下部電極も連続エツチングによ
り除去して下部電極を露出させ、1ビツトずつに分割す
る工程とを導入したものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a semiconductor device in which an insulating film is formed on an active region of a semiconductor substrate after forming a transfer gate electrode and flattened to form bits and After forming a contact hole for the cell, filling this contact hole with a polycrystalline Si film that will become a lower electrode, and sequentially forming a capacitor electrode, an upper electrode, and an insulating film, the lower electrode is also etched by continuous etching when patterning the upper electrode. This method introduces a process of removing the lower electrode to expose the lower electrode and dividing it into individual bits.

(作 用) この発明によれば、半導体装置の製造方法において、以
上のような工程を導入したので、下部電極のパターニン
グ前に絶縁膜が平坦化され、下部電極のパターニングを
高精度で行い得るとともに、その後にキャパシタ電極、
上部電極、絶縁膜を形成して、下部電極のパターニング
と同時に下部電極のパターニングを行い、下部電極を1
ピントずつに分割するから、ビット線のコンタクト部に
あらかじめ下部電極が埋め込まれ、ビット線となる配線
部分の段差が急峻にならなくなり、したがって前記問題
点を除去できる。
(Function) According to the present invention, since the above steps are introduced in the method for manufacturing a semiconductor device, the insulating film is flattened before patterning the lower electrode, and the lower electrode can be patterned with high precision. and then the capacitor electrode,
The upper electrode and the insulating film are formed, and the lower electrode is patterned at the same time as the lower electrode is patterned.
Since the bit line is divided into focus units, the lower electrode is buried in the contact portion of the bit line in advance, and the level difference in the wiring portion that will become the bit line does not become steep, thereby eliminating the above-mentioned problem.

(実施例) 以下、この発明の半導体装置の製造方法の実施例につい
て図面に基づき説明する。第1図(a)ないし第1図(
i)はその一実施例の工程断面図である。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described based on the drawings. Figure 1(a) to Figure 1(
i) is a process sectional view of one embodiment.

まず、第1図fa)において、100はSi半導体基板
、101.102はメモリセルの能動領域191を分離
する厚いフィールド絶縁膜である。
First, in FIG. 1fa), 100 is a Si semiconductor substrate, and 101 and 102 are thick field insulating films separating active regions 191 of memory cells.

次いで、第1図ら)に示すように、薄いゲート絶縁膜1
03を能動領域191上に形成し、主に多結晶Si膜、
ポリサイド構造からなるトランスファゲート電極104
,105をパターニングした後、このSi半導体基板1
00と反対の導電性を有する拡散層106.107.1
08を形成する。
Next, as shown in FIG. 1, a thin gate insulating film 1 is formed.
03 is formed on the active region 191, mainly a polycrystalline Si film,
Transfer gate electrode 104 made of polycide structure
, 105, this Si semiconductor substrate 1
Diffusion layer 106.107.1 with conductivity opposite to 00
08 is formed.

次に、第1図(c)に示すように、全面に絶縁膜を形成
し、ポロンまたはリンを高濃度の不純物として含む絶縁
膜のりフローもしくは公知のエッチバック技術により平
坦な層109を得る。
Next, as shown in FIG. 1(c), an insulating film is formed on the entire surface, and a flat layer 109 is obtained by depositing an insulating film containing poron or phosphorus as an impurity at a high concentration or using a known etch-back technique.

次に、キャパシタ下部電極となる多結晶Si膜とSi半
導体基板100、ビット線となる配線とSi半導体基板
100との導通を得るためのコンタクト孔110.11
1と112をそれぞれ第1図(ロ)に示すように、ホト
リソグラフィおよびエツチングにより開孔する。
Next, contact holes 110 and 11 are provided to establish conduction between the polycrystalline Si film that will become the capacitor lower electrode and the Si semiconductor substrate 100, and between the wiring that will become the bit line and the Si semiconductor substrate 100.
As shown in FIG. 1(b), holes 1 and 112 are formed by photolithography and etching.

次いで、第1図(e)に示すように、前記コンタクト孔
110,111,112を埋め尽くし、平坦比で300
0人以内の堆積膜厚を有する多結晶Si膜を減圧CVD
法にて堆積した後、ビットコンタクトを挟んで2ビツト
分となる面積をパターニング形成し、多結晶Si膜パタ
ーン113を得た後、キャパシタ絶縁膜114を全面に
形成する。
Next, as shown in FIG. 1(e), the contact holes 110, 111, and 112 are filled with a flatness ratio of 300.
Low pressure CVD of polycrystalline Si film with a deposited film thickness of less than 0.
After deposition by the method, an area corresponding to two bits is formed by patterning with a bit contact in between to obtain a polycrystalline Si film pattern 113, and then a capacitor insulating film 114 is formed on the entire surface.

第2図は第1図(e)の工程で得た段階でのメモリセル
の平面図を示したものである。この第2図における20
0で囲まれた領域は能動領域を示し、第1図(a)の能
動領域191と同じである。また204.205はトラ
ンスファゲート電極の配線である。206,208は多
結晶S+膜とSi基板との導通を図るためのコンタクト
孔であり、第1図(e)で示した多結晶Si膜パターン
113で埋められている。
FIG. 2 shows a plan view of the memory cell at the stage obtained in the process of FIG. 1(e). 20 in this figure 2
The area surrounded by 0 indicates an active area, and is the same as the active area 191 in FIG. 1(a). Further, 204 and 205 are wirings of transfer gate electrodes. 206 and 208 are contact holes for establishing electrical conduction between the polycrystalline S+ film and the Si substrate, and are filled with the polycrystalline Si film pattern 113 shown in FIG. 1(e).

また、第2図の207はビット配線とSt半導体基板と
の導通をとるためのコンタクトであり、同様に第1図(
e)で示した多結晶Si膜パターン113で埋められて
いる。201は下部電極となる多結晶Si膜の形成パタ
ーンであり、通常はビット線コンタクトを境にして分離
されるようにパターン形成されているが、この発明では
、2ビツト分が1体となっている。
Further, 207 in FIG. 2 is a contact for establishing conduction between the bit wiring and the St semiconductor substrate, and similarly, 207 in FIG.
It is filled with a polycrystalline Si film pattern 113 shown in e). 201 is a pattern for forming a polycrystalline Si film that will become the lower electrode. Normally, the pattern is formed so that it is separated at the bit line contact, but in this invention, 2 bits are formed as one body. There is.

ここで、説明を再び第1図に戻す、第1図(f)では、
前記キャパシタ絶縁膜114上に上部電極となる多結晶
Si膜115.絶縁#116を連続形成する。
Here, the explanation returns to FIG. 1. In FIG. 1(f),
A polycrystalline Si film 115 serving as an upper electrode is formed on the capacitor insulating film 114. Continuously form insulation #116.

次に、第1図(8)に示すように、ビットコンタクトを
含む開孔部117を形成するように、前記絶縁膜116
.多結晶Si膜115.キャパシタ絶縁Ill 14.
多結晶Sト膜パターン113をエツチングにより除去す
る。また、この時、ビットコンタクト部分に埋め込まれ
た多結晶Si膜パターン113に相当する多結晶51M
190が露出する一迄エッチング処理する。
Next, as shown in FIG. 1 (8), the insulating film 116 is
.. Polycrystalline Si film 115. Capacitor insulation Ill 14.
The polycrystalline ST film pattern 113 is removed by etching. At this time, a polycrystalline 51M corresponding to the polycrystalline Si film pattern 113 embedded in the bit contact portion is also added.
Etching is performed until 190 is exposed.

第2図の平面図では、上部電極のパターン203は破線
で示すように、下部電極201を必らず分離するようエ
ツチング処理が施される。
In the plan view of FIG. 2, the upper electrode pattern 203 is etched to ensure that the lower electrode 201 is separated, as shown by the broken line.

次に、第1図(ハ)に示すように、再度全面に絶縁膜を
形成し、公知のエッチバック処理により、上部電極とな
る多結晶Si層膜115.下電極となる多結晶St膜パ
ターン113の側面を覆うようにサイドウオール膜11
8,119として残存させる。
Next, as shown in FIG. 1(c), an insulating film is again formed on the entire surface, and a well-known etch-back process is performed to form a polycrystalline Si layer film 115 that will become the upper electrode. A sidewall film 11 is formed to cover the side surface of the polycrystalline St film pattern 113 that will become the lower electrode.
It will remain as 8,119.

最後に、第1図(i)に示すように、前記ビア)線コン
タクト部分に埋め込まれた多結晶Si膜190に導通ず
るように、アルミニウムを主体とした配線120を形成
し、スタック型メモリセルを得る。
Finally, as shown in FIG. 1(i), a wiring 120 mainly made of aluminum is formed so as to be electrically conductive to the polycrystalline Si film 190 embedded in the via line contact portion, and the stacked memory cell is get.

(発明の効果) 以上詳述したように、この発明によれば、トランスファ
ゲート電極の形成後、絶縁膜を平坦化してコンタクト孔
を形成後、下部電極でコンタクト孔を埋め込んでキャパ
シタ絶縁膜と上部電極および絶縁膜を順次形成し、下部
電極が露出するまで、上部電極のパターニングを行って
、下部電極を1ビツトずつ分割するようにしたので、下
部電極パターニング以前に下層絶縁膜が十分平坦化され
ているため、下部電極のパターニング精度、合わせ余裕
等が向上し、電極実効面積の拡大が可能となる。
(Effects of the Invention) As described in detail above, according to the present invention, after forming a transfer gate electrode, after flattening the insulating film to form a contact hole, the lower electrode fills the contact hole and connects the capacitor insulating film to the upper part. The electrode and insulating film were formed one after another, and the upper electrode was patterned until the lower electrode was exposed, dividing the lower electrode into bits at a time, so the lower insulating film was sufficiently planarized before patterning the lower electrode. Therefore, the patterning accuracy and alignment margin of the lower electrode are improved, and the effective area of the electrode can be expanded.

また、ビット線コンタクト部に予め多結晶Si膜が埋め
込まれており、ビット線となる配線部分の段差が2峻と
ならず、配線被覆性が大幅に向上する。
Further, since a polycrystalline Si film is embedded in advance in the bit line contact portion, the level difference in the wiring portion that will become the bit line does not become two steep, and the wiring coverage is greatly improved.

さらに、上部電極と下部電極の多結晶Si膜を連続エツ
チング処理するため合わせ余裕等を考慮する必要がない
等の利点がある。
Further, since the polycrystalline Si films of the upper and lower electrodes are etched continuously, there is an advantage that there is no need to consider alignment margins, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(i)はこの発明の半導体装
置の製造方法の一実施例の工程断面図、第2図は同上実
施例における第1図(e)の工程終了段階の平面図、第
3図は従来のスタックキャパシタセルの断面図である。 100・・・Si半導体基板、101.102・・・フ
ィールド絶縁膜、103・・・ゲート絶縁膜、1041
05.204,205・・・トランスファゲート電極、
106〜10日・・・拡散層、109・・・平坦な層、
110〜112,117,206〜208・・・コンタ
クト孔、113・・・多結晶St膜パターン、114・
・・キャパシタ絶縁膜、115.190・・・多結晶S
i膜、116・・・絶縁膜、118.119・・・サイ
ドウオール、191.200・・・能動領域。 191:能動4動氏 本発明の工程前&JG 第1図 本発明のj:R断面図 第1図 11図(e)の平面口 第2図 <1ffiのフタ、クキぞハ゛シタヒ2シカvTdb図
第3図
1(a) to 1(i) are process sectional views of an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIG. 2 is a process sectional view of the process end stage of FIG. 1(e) in the same embodiment The plan view and FIG. 3 are cross-sectional views of a conventional stacked capacitor cell. 100...Si semiconductor substrate, 101.102...Field insulating film, 103...Gate insulating film, 1041
05.204,205...Transfer gate electrode,
106-10 days...diffuse layer, 109...flat layer,
110-112, 117, 206-208... contact hole, 113... polycrystalline St film pattern, 114...
...Capacitor insulating film, 115.190...Polycrystalline S
i film, 116... Insulating film, 118.119... Side wall, 191.200... Active region. 191: Active 4 motions Before the process of the present invention Figure 3

Claims (1)

【特許請求の範囲】 (a)半導体基板上の能動領域にトランスファーゲート
電極を形成した後、表面を平坦化した絶縁膜を形成する
工程と、 (b)基板に導通するコンタクト孔を形成し、このコン
タクト孔に下部電極となる多結晶Si膜とキャパシタ絶
縁膜、および上部電極となる多結晶Si膜および絶縁膜
を順次形成する工程と、 (c)ビットコンタクトとなる領域の前記上部電極とな
る多結晶Si絶縁膜と、この多結晶Si膜と上記キャパ
シタ電極、および上記下部電極となる多結晶Si膜とを
エッチングにより除去し、下部電極の多結晶Si膜を1
ビット分に分割しビットコンタクト部を埋めた多結晶S
i膜を露出させる工程と、(c)上記エッチングにより
除去した部分の側壁を、多結晶Si膜で被覆してサイド
ウォール膜を形成する工程と、 よりなる半導体装置の製造方法。
[Claims] (a) After forming a transfer gate electrode in an active region on a semiconductor substrate, a step of forming an insulating film with a flattened surface; (b) forming a contact hole conductive to the substrate; Steps of sequentially forming in this contact hole a polycrystalline Si film and a capacitor insulating film that will become a lower electrode, and a polycrystalline Si film and an insulating film that will become an upper electrode; (c) forming the upper electrode in a region that will become a bit contact; The polycrystalline Si insulating film, the polycrystalline Si film, the capacitor electrode, and the polycrystalline Si film that will become the lower electrode are removed by etching, and the polycrystalline Si film of the lower electrode is removed by etching.
Polycrystalline S divided into bits and filled in the bit contact area
A method for manufacturing a semiconductor device, comprising: exposing the i film; and (c) forming a sidewall film by covering the sidewall of the portion removed by the etching with a polycrystalline Si film.
JP2152721A 1990-06-13 1990-06-13 Method for manufacturing semiconductor device Expired - Fee Related JP2892443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152721A JP2892443B2 (en) 1990-06-13 1990-06-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152721A JP2892443B2 (en) 1990-06-13 1990-06-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0445571A true JPH0445571A (en) 1992-02-14
JP2892443B2 JP2892443B2 (en) 1999-05-17

Family

ID=15546700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152721A Expired - Fee Related JP2892443B2 (en) 1990-06-13 1990-06-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2892443B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900660A (en) * 1993-02-12 1999-05-04 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory calls
KR100474953B1 (en) * 1995-02-28 2005-05-18 텍사스 인스트루먼츠 인코포레이티드 Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900660A (en) * 1993-02-12 1999-05-04 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory calls
US6110774A (en) * 1993-02-12 2000-08-29 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory cells
KR100474953B1 (en) * 1995-02-28 2005-05-18 텍사스 인스트루먼츠 인코포레이티드 Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2892443B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5061651A (en) Method of making dram cell with stacked capacitor
JP2875588B2 (en) Method for manufacturing semiconductor device
JPH0724284B2 (en) Method for manufacturing semiconductor device
JPH05152541A (en) Semiconductor storage device having double laminated capacitor structure and manufacture thereof
GB2244861A (en) Integrated circuit capacitor
JPH09129850A (en) High permittivity capacitor of semiconductor element and its preparation
JPH03190162A (en) Semiconductor device and manufacture thereof
JPH01132152A (en) Manufacture of groove-shaped capacitor cell for semiconductor device
JPH03256358A (en) Semiconductor memory device and manufacturing method
JPS6074470A (en) Semiconductor device
JPH0727978B2 (en) Highly integrated semiconductor memory device and manufacturing method thereof
JPS6156445A (en) Semiconductor device
JP2001053251A (en) Manufacture of semiconductor device
EP0513988B1 (en) Method of producing capacitive element for dram
JPH0321062A (en) Semiconductor storage device
JPH0445571A (en) Manufacture of semiconductor device
JPH02263467A (en) Storage device
JPH03142966A (en) Manufacture of semiconductor device
JPH11261033A (en) Manufacture of dram element
JPS59188963A (en) Semiconductor device
JP3085831B2 (en) Method for manufacturing semiconductor device
JP2750171B2 (en) Method for manufacturing semiconductor device
JP2950550B2 (en) Method for manufacturing semiconductor memory device
JP3048417B2 (en) Method for manufacturing semiconductor device
US5242852A (en) Method for manufacturing a semiconductor memory device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees