JPH0227826B2 - - Google Patents

Info

Publication number
JPH0227826B2
JPH0227826B2 JP56108728A JP10872881A JPH0227826B2 JP H0227826 B2 JPH0227826 B2 JP H0227826B2 JP 56108728 A JP56108728 A JP 56108728A JP 10872881 A JP10872881 A JP 10872881A JP H0227826 B2 JPH0227826 B2 JP H0227826B2
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
junction
type
thin film
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56108728A
Other languages
Japanese (ja)
Other versions
JPS5810874A (en
Inventor
Setsuo Kotado
Wareo Sugiura
Kyoshi Takahashi
Makoto Konagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP56108728A priority Critical patent/JPS5810874A/en
Publication of JPS5810874A publication Critical patent/JPS5810874A/en
Publication of JPH0227826B2 publication Critical patent/JPH0227826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/028Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples using microstructures, e.g. made of silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sorting Of Articles (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電率の大きなアモルフアス半導体
薄膜の有する3つの特徴、すなわちp+形薄膜、
n+形薄膜の有する大きな熱電能、p+−n+接合部
の有するオーミツク性、薄膜形成の容易さと微細
加工性に着目して構成した薄膜p+−n+接合形ア
モルフアス半導体熱電対素子に関する。さらに詳
しく述べれば、p+形、n+形は、従来のp形、n
形アモルフアス半導体に比べて大きな導電率の、
すなわち少なくともσが1(Ω・cm)-1以上である
ことを示すものが発明者により見出されたから、
このアモルフアス半導体で構成したp+−n+接合
形アモルフアス半導体熱電対素子に関する。特に
この熱電対素子を応用して構成される直流から光
波に至る電力検出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention focuses on three characteristics of an amorphous semiconductor thin film with high conductivity, namely, a p + type thin film,
Concerning a thin film p + -n + junction type amorphous semiconductor thermocouple element constructed by focusing on the large thermoelectric power of the n + type thin film, the ohmic properties of the p + -n + junction, the ease of thin film formation, and the microfabricability . . To explain in more detail, the p + type and n + type are different from the conventional p type, n
with higher conductivity than amorphous semiconductors,
In other words, the inventor found that σ is at least 1 (Ω cm) -1 or more,
The present invention relates to a p + -n + junction type amorphous semiconductor thermocouple element made of this amorphous semiconductor. In particular, the present invention relates to power detection elements ranging from direct current to light waves constructed by applying this thermocouple element.

〔従来の技術〕[Conventional technology]

従来、電力(特に高周波電力)を測定する場合
検出素子としてはボロメータが用いられ、最近で
は、Bi−Sb等に代表される薄膜熱電対素子やSi
−Ta2Nに代表される半導体−薄膜熱電対素子が
用いられている。サーミスタやバレツタなどのボ
ロメータを検出素子として用いた方式は、高周波
エネルギーを吸収したときに生じる抵抗値変化か
ら間接的に入射電力を測定するもので、周囲の温
度変化に対して敏感に抵抗値が変化するために零
点が変動し、この零点ドリフトを補償する回路が
必要となつた。その上サーミスタの場合は、周波
数が高くなると入力定在波比が大きくなり、ま
た、バレツタの場合は、過電流に弱いなどの欠点
がある。検出素子として、薄膜熱電対素子や半導
体−薄膜熱電対素子を用いた方式は、薄膜熱電対
素子又は半導体−薄膜熱電対素子が入射高周波電
力を吸収し、その入射電力に比例した直流の熱起
電力に変換して測定するものである。
Traditionally, a bolometer has been used as a detection element to measure power (especially high-frequency power), but recently, thin film thermocouple elements such as Bi-Sb and Si
- A semiconductor-thin film thermocouple element represented by Ta 2 N is used. A method that uses a bolometer such as a thermistor or barrette as a detection element indirectly measures the incident power from the change in resistance value that occurs when high-frequency energy is absorbed, and the resistance value is sensitive to changes in the surrounding temperature. As a result, the zero point fluctuates, and a circuit to compensate for this zero point drift is required. Furthermore, in the case of a thermistor, the input standing wave ratio increases as the frequency increases, and in the case of a barrette, there are drawbacks such as being susceptible to overcurrent. In the method using a thin film thermocouple element or a semiconductor-thin film thermocouple element as a detection element, the thin-film thermocouple element or semiconductor-thin film thermocouple element absorbs incident high-frequency power and generates a direct current thermal wave proportional to the incident power. It is measured by converting it into electric power.

この方式は、周囲温度の変化による零点ドリフ
トは小さいが、1μW以下の微小な電力を測定す
るのが困難である。特にBi−Sb等に代表される
薄膜熱電対素子の場合は一対当りの熱起電力が
高々120μV/℃と小さく、しかも金属の融点が低
く、特に、この金属をポリイミドフイルムやマイ
カ等絶縁性基板に蒸着膜を形成した場合、基板と
の付着力が弱くなる。しかも、水や有機溶剤によ
つて膜質が損なわれるので、フオトエツチング技
術に代表される微細加工技術が使用できないため
素子形状が大きくなり、従つて、検出できる周波
数領域が制限され、また、応答速度に数秒を要す
る等の欠点がある。一方、Si−Ta2Nに代表され
る半導体−薄膜熱電対素子は、支持基板のSiの熱
伝導率が約1.45W/cm.℃と大きい。このため熱
電対素子の検出感度を高めるため、Si基板を薄く
する必要があり、実用化素子では、基板厚さが
5μmである。チツプ状Si基板の一部を薄くするた
めには通常選択性エツチング技術が用いられるた
め、あらかじめ、Si基板にエツチングストツパ用
拡散層を形成する必要がある。
This method has a small zero point drift due to changes in ambient temperature, but it is difficult to measure small amounts of power below 1 μW. In particular, in the case of thin-film thermocouple elements such as Bi-Sb, the thermoelectromotive force per pair is as small as 120 μV/℃ at most, and the melting point of the metal is low. When a vapor-deposited film is formed on the substrate, the adhesion to the substrate becomes weak. Moreover, since the film quality is damaged by water or organic solvents, microfabrication techniques such as photo-etching cannot be used, resulting in a large element shape, which limits the detectable frequency range and reduces the response speed. There are drawbacks such as the fact that it takes several seconds to complete. On the other hand, in a semiconductor-thin film thermocouple element represented by Si-Ta 2 N, the thermal conductivity of the Si supporting substrate is approximately 1.45 W/cm. ℃ and large. Therefore, in order to increase the detection sensitivity of thermocouple elements, it is necessary to make the Si substrate thinner.
It is 5 μm. Since a selective etching technique is normally used to thin a part of a chip-shaped Si substrate, it is necessary to form an etching stopper diffusion layer on the Si substrate in advance.

又、金属薄膜の代わりに、熱電能の大きな半導
体薄膜を用いる方法も検討されてきたが、膜の安
定性に欠け、微細加工が施せず、更にシリコン薄
膜では基板の堆積温度として700℃以上を必要と
しているため、実用上のメリツトが少なかつた。
In addition, a method of using a semiconductor thin film with high thermoelectric power instead of a metal thin film has been considered, but the film lacks stability and cannot be microfabricated, and silicon thin films require a substrate deposition temperature of 700°C or higher. Since it is necessary, there is little practical merit.

以上述べたように、半導体−薄膜熱電対素子
は、構造が複雑な上に製造方法も困難さを伴う。
As described above, the semiconductor-thin film thermocouple element has a complicated structure and is also difficult to manufacture.

一方、薄膜形成技術の進展により、半導体薄膜
を用いて熱電対を構成する方法が種々検討されて
きた(例えば、特開昭第53−143180号公報、特開
昭第57−7172号公報)。確かに、真空蒸着法、ス
パツタ法あるいはプラズマCVD法を用いて半導
体薄膜を形成した場合、結晶性が損なわれて非晶
質化すること、すなわちアモルフアス化すること
により熱起電力としては1mV/℃程度の大きな
値が得られている。しかしながら、導電率も同時
に小さくなり、p−n接合型熱電対素子を構成し
た場合、p−n接合が形成されてしまい、オーミ
ツク性を示さなくなる。このため、電力検出素子
として用いる上では、整流作用により、検出レベ
ルと出力間に比例関係が成立せず、補正回路を必
要とした。又、この整流作用をなくすため、p−
n接合間に金属膜を挿入したり、あるいは覆つた
りすることも試みられているが、この場合は、新
たにシヨツトキー接合が形成される。又、このシ
ヨツトキー接合をなくすには、金属膜との接合部
のキヤリアをイオン注入法等を用いて高濃度にド
ープすることが必要であり、素子作成法が極めて
複雑となつていた。更に、素子抵抗が大きくなる
ので、抵抗による熱ノイズが増大し、最小検出レ
ベルを制限してしまつていた。
On the other hand, with the progress of thin film formation technology, various methods of constructing thermocouples using semiconductor thin films have been studied (for example, Japanese Patent Laid-Open No. 53-143180 and Japanese Patent Laid-Open No. 57-7172). It is true that when a semiconductor thin film is formed using the vacuum evaporation method, sputtering method, or plasma CVD method, the crystallinity is lost and it becomes amorphous, resulting in a thermoelectromotive force of 1 mV/℃. A fairly large value was obtained. However, the electrical conductivity also decreases at the same time, and when a pn junction type thermocouple element is constructed, a pn junction is formed and it no longer exhibits ohmic properties. Therefore, when used as a power detection element, due to the rectification effect, a proportional relationship between the detection level and the output does not hold, and a correction circuit is required. Also, in order to eliminate this rectification effect, p-
Attempts have also been made to insert or cover the n-junction with a metal film, but in this case, a new Schottky junction is formed. Furthermore, in order to eliminate this Schottky junction, it is necessary to dope the carrier at the junction with the metal film to a high concentration using ion implantation or the like, making the device fabrication method extremely complicated. Furthermore, since the element resistance increases, thermal noise due to the resistance increases, limiting the minimum detection level.

従つて、以上における非晶質薄膜半導体の熱電
材料としての欠点、すなわち、熱起電力は大きい
が、導電率が小さくなつてしまうことを改善する
ため、材料の組成を変えることにより導電率を増
大化させる試みがなされており、例えばAsの非
晶質半導体材料にNiを添加することにより、導
電率としては3×100〔Ω・cm〕-1と増大させるこ
とに成功したが、残念ながらゼーベツク係数、す
なわち熱電能としては50μV/℃と金属並みの低
い値しか得られていない(例えば、特開昭第53−
143180号公報)。
Therefore, in order to improve the above-mentioned drawbacks of amorphous thin film semiconductors as thermoelectric materials, that is, the thermoelectromotive force is large but the electrical conductivity is low, it is necessary to increase the electrical conductivity by changing the composition of the material. For example, by adding Ni to an amorphous semiconductor material such as As, they succeeded in increasing the conductivity to 3 × 10 0 [Ω cm] -1 , but unfortunately, The Seebeck coefficient, or thermoelectric power, was only 50 μV/°C, which is as low as that of metals (for example, JP-A No. 53-
143180).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の点に鑑み、導電率と熱電能とが共に大き
く、しかもp+−n+接合部がオーミツク特性を有
することによりp−n接合部間にことさらにオー
ミツク電極を介在させる必要がなく、加えて薄膜
形成が容易でかつ微細加工性を有するp+型、n+
型アモルフアス半導体薄膜を発見し、これらを組
み合わせた熱電対素子、特に安価で小型、測定可
能な周波数範囲が広く、高速応答でしかも高感度
の電力検出素子を実現することが、本発明の解決
しようとする課題である。
In view of the above points, since both electrical conductivity and thermoelectric power are high, and the p + -n + junction has ohmic characteristics, there is no need to interpose an ohmic electrode between the p-n junction, and in addition p + type and n + type, which are easy to form thin films and have fine processing properties.
It is an object of the present invention to discover amorphous semiconductor thin films and to realize thermocouple elements that combine them, especially power detection elements that are inexpensive, small, have a wide measurable frequency range, have fast response, and are highly sensitive. This is a challenge.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、導電率の大きなアモルフアス半導
体薄膜が今回、発明者により新たに発見された事
実、すなわちアモルフアスSi薄膜の有する大きな
熱電能、p+−n+接合部のオーミツク性、薄膜形
成の容易さと微細加工性に着目して高性能で安価
なかつp−n接合部間にオーミツク電極が不用の
新しい構造の熱電対素子およびこの熱電対素子を
応用した小型で、素子抵抗が小さく、測定周波数
範囲が広く、高速応答かつ高感度の電力検出素子
を実現することにより問題点を解決するものであ
る。
In the present invention , amorphous semiconductor thin films with high conductivity are newly discovered by the inventor. Focusing on microfabrication, we developed a high-performance, inexpensive thermocouple element with a new structure that does not require an ohmic electrode between p-n junctions, and a compact thermocouple element that uses this thermocouple element, has low element resistance, and has a wide measurement frequency range. This problem is solved by realizing a wide-ranging, fast-responsive, and highly sensitive power detection element.

〔実施例〕〔Example〕

第1図及び第2図は、発明者により新たに発見
された熱電能、導電率が共に大きなp+形、n+
半導体薄膜の熱電能−導電率特性および温度差−
熱起電力特性を示す図である。SiF4とH2の混合
ガスをDCグロー放電法により合成したアモルフ
アスSi薄膜(a・Si−F−H)より構成されてい
るのを特徴とし、第1図で丸印はp+形の、また、
+印はn+形の特性を示す。熱電能αはp+形で正、
n+形で負となる。p+形薄膜およびn+形薄膜形成
用ドーピングガスとしては、それぞれB2H6
PH3を用いた。熱電能としては、絶対値でp+形が
200μV/℃以上、n+形が150μV/℃以上を示し、
p+形とn+形は互いに逆の極性を示す。
Figures 1 and 2 show the thermoelectric power - conductivity characteristics and temperature difference - of p + type and n + type semiconductor thin films newly discovered by the inventor that have large thermoelectric power and high conductivity.
FIG. 3 is a diagram showing thermoelectromotive force characteristics. It is characterized by being composed of an amorphous Si thin film (a-Si-F-H) synthesized from a mixed gas of SiF 4 and H 2 by the DC glow discharge method . Also,
The + mark indicates the characteristics of the n + shape. Thermopower α is positive in p + form,
Negative in n + form. Doping gases for forming p + type thin films and n + type thin films include B 2 H 6 and
PH3 was used. As for the thermoelectric power, the absolute value is p + type.
200μV/℃ or more, n + type shows 150μV/℃ or more,
The p + and n + forms exhibit opposite polarities.

p+−n+接合型の熱電能(α)としては350μV/
℃が得られている。また、この時の導電率(σ)
は20(Ω・cm)-1以上と大きい。
The thermopower (α) of p + −n + junction type is 350μV/
℃ has been obtained. Also, the conductivity (σ) at this time
is as large as 20 (Ω・cm) -1 or more.

第2図は、p+形およびn+形薄膜の両端にメタ
ル電極を設け、冷接点側を室温とし、温接点を高
温にし、温接点と冷接点(室温)との温度差ΔT
に対する熱起電力Vthの関係を示したものであ
る。第2図中、実線はp+形、一点破線はn+形の
特性を示し、p+形は正、n+形は負を示している。
そして、後述するように、p+−n+接合部間にオ
ーミツク電極を設けなくとも共によい線形性が得
られている。
Figure 2 shows metal electrodes provided at both ends of the p + type and n + type thin films, the cold junction side being at room temperature, the hot junction being at high temperature, and the temperature difference ΔT between the hot junction and the cold junction (room temperature).
The graph shows the relationship between thermoelectromotive force Vth and thermoelectromotive force Vth. In FIG. 2, the solid line indicates the characteristics of the p + type, and the dashed line indicates the characteristics of the n + type, with the p + type indicating positive and the n + type indicating negative.
As will be described later, good linearity can be obtained even without providing an ohmic electrode between the p + -n + junctions.

以上の実験結果より、アモルフアス半導体薄
膜、a・Si−F−H薄膜は共に熱電対素子材料と
して秀れた特性を示すことがわかつた。
From the above experimental results, it was found that both the amorphous semiconductor thin film and the a·Si-F-H thin film exhibit excellent properties as thermocouple element materials.

第3図及び第4図は本発明による熱電対素子の
一実施例の構成を示す図で、第3図に平面図を、
第4図にX−X′における断面図を示す。第3図
及び第4図は、絶縁性基板1と、該基板上に設け
られた第1のアモルフアス半導体2と、該基板上
に設けられ、該第1のアモルフアス半導体と互い
にその一部がオーミツク特性を有した接合部3を
形成する第2のアモルフアス半導体4と、該接合
部と隔離して、前記第1及び第2のアモルフアス
半導体の一部に接触して設けられた一対のオーミ
ツク電極5,6及び各アモルフアス半導体2,4
と各オーミツク電極5,6との各接触部7,8と
から構成される熱電対素子9を示す図である。こ
の熱電対素子9は第1のアモルフアス半導体と第
2のアモルフアス半導体との接合部3が温(冷)
接点を、各アモルフアス半導体と各オーミツク電
極との各接触部7,8が冷(温)接点を形成する
ので、温(冷)接点と冷(温)接点との間の温度
差ΔT(℃)に比例した直流熱起電力Vth(mv)
が一対のオーミツク電極5,6間に発生する。こ
の時発生する熱起電力Vthは、第1及び第2のア
モルフアス半導体薄膜の各熱電能α1、α2と、温度
差ΔTによつて決定され、次式で与えられる。
3 and 4 are diagrams showing the configuration of an embodiment of a thermocouple element according to the present invention, and FIG. 3 shows a plan view.
FIG. 4 shows a sectional view taken along line X-X'. FIG. 3 and FIG. 4 show an insulating substrate 1, a first amorphous semiconductor 2 provided on the substrate, and a part of the insulating substrate 1 that is partially ohmic with respect to the first amorphous semiconductor provided on the substrate. a second amorphous semiconductor 4 forming a junction 3 having a characteristic, and a pair of ohmic electrodes 5 provided in contact with parts of the first and second amorphous semiconductors, isolated from the junction. , 6 and each amorphous semiconductor 2, 4
2 is a diagram showing a thermocouple element 9 composed of a contact portion 7, 8 with each ohmic electrode 5, 6. FIG. In this thermocouple element 9, the junction 3 between the first amorphous semiconductor and the second amorphous semiconductor is hot (cold).
Since each contact portion 7, 8 between each amorphous semiconductor and each ohmic electrode forms a cold (hot) contact, the temperature difference ΔT (°C) between the hot (cold) contact and the cold (warm) contact is DC thermoelectromotive force Vth (mv) proportional to
occurs between the pair of ohmic electrodes 5 and 6. The thermoelectromotive force Vth generated at this time is determined by the thermoelectric capacities α 1 and α 2 of the first and second amorphous semiconductor thin films and the temperature difference ΔT, and is given by the following equation.

Vth=(α1+α2)ΔT ………(1) 第1図の実験結果より第1および第2のアモル
フアス半導体薄膜として、p+形およびn+形各
a・Si−F−H薄膜を用いれば、p+形およびn+
形は互いに極性が逆の熱電能を有するので、温度
差ΔT=1℃当り0.35mv以上の熱起電力Vthが
得られる。
Vth = (α 1 + α 2 ) ΔT ………(1) From the experimental results shown in Figure 1, p + type and n + type a・Si−F−H thin films were used as the first and second amorphous semiconductor thin films. If used, p + form and n +
Since the shapes have thermoelectric powers with opposite polarities, a thermoelectromotive force Vth of 0.35 mv or more can be obtained per temperature difference ΔT=1°C.

第5図および第6図は、本発明による熱電対素
子の他の実施例を示す図で、第5図に平面図を第
6図に正面図を示す。第5図および第6図は、絶
縁性基板10と、該基板上に設けられた第1のア
モルフアス半導体11と、該基板上に設けられ、
該第1のアモルフアス半導体と互いにその一部が
オーミツク特性を有した接合部12を形成する第
2のアモルフアス半導体13と、該接合部と隔離
して、前記第1および第2のアモルフアス半導体
の一部に接触して設けられた一対のオーミツク電
極14,15および各アモルフアス半導体11,
13と各オーミツク電極14,15との各接触部
16,17とから構成される熱電対素子18を示
す図である。この熱電対素子18は、第1のアモ
ルフアス半導体と第2のアモルフアス半導体との
接合部が温(冷)接点を、各アモルフアス半導体
と各オーミツク電極との各接触部16,17が冷
(温)接点を形成する。第1及び第2のアモルフ
アス半導体としてそれぞれp+形、n+形a・Si−
F−H薄膜を用いれば、温度差ΔT=1℃当り約
0.35mvの熱起電力Vthが得られる。
5 and 6 are diagrams showing other embodiments of the thermocouple element according to the present invention, with FIG. 5 showing a plan view and FIG. 6 showing a front view. 5 and 6 show an insulating substrate 10, a first amorphous semiconductor 11 provided on the substrate, and a first amorphous semiconductor 11 provided on the substrate,
A second amorphous semiconductor 13 that forms a junction 12 with the first amorphous semiconductor, a portion of which has ohmic characteristics, and a second amorphous semiconductor 13 that is separated from the junction and is connected to the first and second amorphous semiconductors. A pair of ohmic electrodes 14, 15 provided in contact with the respective amorphous semiconductors 11,
13 and contact portions 16 and 17 with respective ohmic electrodes 14 and 15. FIG. In this thermocouple element 18, the junction between the first amorphous semiconductor and the second amorphous semiconductor forms a hot (cold) contact, and the contact areas 16 and 17 between each amorphous semiconductor and each ohmic electrode form a cold (hot) contact. form a contact point. As the first and second amorphous semiconductors, p + type and n + type a/Si-
If F-H thin film is used, temperature difference ΔT = approx.
A thermoelectromotive force Vth of 0.35 mv is obtained.

本実施例で示した構造の熱電対素子18は、フ
オトエツチング技術により微細化できるので、狭
い空間の温度測定や、ICの表面温度測定用素子
に利用できる。第7図、第8図は本発明の応用に
よる電力検出素子、特にマイクロ波帯における電
力検出素子の実施例を示す図で、第7図に平面図
を第8図にX−X′における断面図を示す。第7
図及び第8図は、第3図及び第4図に示された熱
電対素子9に、被測定電力を吸収して発熱する抵
抗体19、抵抗体19に被測定電力を供給する入
力端子20、アース端子21を付加した構造の電
力検出素子22を示す図で、前記抵抗体19が
p+−n+接合部3に対応する反対側絶縁性基板1
上に設けられることを特徴とする。
Since the thermocouple element 18 having the structure shown in this embodiment can be miniaturized by photoetching technology, it can be used for temperature measurement in a narrow space or as an element for measuring the surface temperature of an IC. 7 and 8 are diagrams showing an embodiment of a power detection element according to the present invention, particularly a power detection element in a microwave band. Show the diagram. 7th
8 and 8 show the thermocouple element 9 shown in FIGS. 3 and 4, a resistor 19 that absorbs the measured power and generates heat, and an input terminal 20 that supplies the measured power to the resistor 19. , is a diagram showing a power detection element 22 having a structure in which a ground terminal 21 is added, and the resistor 19 is
Opposite insulating substrate 1 corresponding to p + −n + junction 3
It is characterized by being provided on the top.

この場合、抵抗体の形状の細くなつた発熱部は
温接点を形成するp+−n+接合部3が最も高く、
冷接点を形成する各オーミツク電極5,6と各ア
モルフアス半導体2,4の各接触部7,8とが最
も低くなるように配列される。被測定電力の大き
さPに比例して抵抗体19に熱が発生するので、
温接点Thおよび冷接点Tc間の温度差ΔTは被測
定電力Pに比例する。一方、温度差ΔTが与えら
れた場合の直流熱起電力Vthは、p+形およびn+
a・Si−F−H薄膜の熱電能をそれぞれαp、αo
すれば(αp+αo)と温度差ΔTの積で与えられ
る。
In this case, the heat generating part where the shape of the resistor is tapered is highest at the p + −n + junction 3 that forms the hot junction.
Each ohmic electrode 5, 6 forming a cold contact and each contact portion 7, 8 of each amorphous semiconductor 2, 4 are arranged so as to be at the lowest level. Since heat is generated in the resistor 19 in proportion to the magnitude P of the measured power,
The temperature difference ΔT between the hot junction Th and the cold junction Tc is proportional to the power P to be measured. On the other hand, when the temperature difference ΔT is given, the DC thermoelectromotive force Vth is expressed as ( α p + α o ) and the temperature difference ΔT.

以上より、被測定電力Pが抵抗体19によつて
吸収・発熱により、オーミツク電極対5,6間に
もたらされる直流熱電力Vthは次式で与えられ
る。
From the above, the DC thermal power Vth brought between the ohmic electrode pair 5 and 6 due to absorption and heat generation of the measured power P by the resistor 19 is given by the following equation.

Vth=(αp+αo)ΔT∝(αp+αo)P ………(2) (2)式より、被測定電力の大きさPは、熱電対素
子のオーミツク電極対5,6間の直流電圧を測定
することにより得られる。
Vth = (α p + α o ) ΔT∝ (α p + α o ) P ......(2) From equation (2), the magnitude of the measured power P is calculated between the ohmic electrode pair 5 and 6 of the thermocouple element. Obtained by measuring DC voltage.

被測定電力の大きさPが一定の場合、熱電対素
子の温接点はp+−n+接合部3の温度Thで与えら
れ、p+−n+接合部3の温度を高く上昇させるに
は、抵抗体の発熱部の形状を小さくするとともに
絶縁性基板1、p+形およびn+形薄膜2,4及び
周囲の空気を通して放散される熱量を抑制しなけ
ればならない。そのため、絶縁性基板1には、熱
伝導率が小さく、かつ、薄く加工の出来る物質が
望まれ、例えばコーニング7059や溶融石英ガラス
等が用いられる。電力検出素子の応答性を速める
場合は比熱が小さい物質、すなわち熱容量の小さ
な材料例えば、サフアイヤ等を絶縁性基板に用い
る。
When the magnitude P of the power to be measured is constant, the hot junction of the thermocouple element is given by the temperature Th of the p + -n + junction 3, and in order to increase the temperature of the p + -n + junction 3, In addition to reducing the shape of the heat generating portion of the resistor, it is necessary to suppress the amount of heat dissipated through the insulating substrate 1, the p + type and n + type thin films 2 and 4, and the surrounding air. Therefore, it is desirable for the insulating substrate 1 to be made of a material that has low thermal conductivity and can be processed into a thin material, such as Corning 7059 or fused silica glass. In order to speed up the response of the power detection element, a material with a small specific heat, that is, a material with a small heat capacity, such as sapphire, is used for the insulating substrate.

又、p+−n+接合型a・Si−F−H薄膜はオー
ミツク性を有し、整流性を示さないので、p+
n+接合間にオーミツク電極用メタルを設ける必
要がないので、マイクロ波の電力を測定する場
合、寄生リアクタンスの増大とならないため、超
高周波帯まで入力定在波比を低く抑えることがで
きる等の利点を有する。
In addition, the p + -n + junction type a/Si-F-H thin film has ohmic properties and does not exhibit rectification properties, so p + -
Since there is no need to provide an ohmic electrode metal between the n + junctions, there is no increase in parasitic reactance when measuring microwave power, so the input standing wave ratio can be kept low even in the ultra-high frequency band. has advantages.

第9図及び第10図は、本発明の応用による光
パワー検出素子の実施例を示す図で、第9図に平
面図を、第10図にX−X′における断面図を示
す。
9 and 10 are views showing an embodiment of an optical power detection element to which the present invention is applied, with FIG. 9 showing a plan view and FIG. 10 showing a sectional view taken along line X-X'.

第9図、第10図は第3図、第4図に示される
熱電対素子のp+−n+接合部上に重ねて光吸収膜
31を設けたものと同じ断面構造を有する光パワ
検出素子32を示す図である。ただし、この場
合、測定対象のビーム径が1.5〜2.0mmφ程度であ
り、したがつて、受光面の大きさが3〜5mmφ程
度必要となり、しかも受光位置が受光面内で動い
ても同一検出感度特性を必要とする。このため円
対称構造とするのが有利である。光吸収膜31
は、金黒、カーボンブラツク、あるいは、組成比
の異なつたアモルフアス半導体薄膜等で構成され
る。
9 and 10 show optical power detection having the same cross-sectional structure as that of the thermocouple element shown in FIGS. 3 and 4, in which a light absorption film 31 is provided over the p + -n + junction. 3 is a diagram showing an element 32. FIG. However, in this case, the beam diameter of the object to be measured is about 1.5 to 2.0 mmφ, so the size of the light receiving surface needs to be about 3 to 5 mmφ, and the detection sensitivity remains the same even if the light receiving position moves within the light receiving surface. Requires characteristics. For this reason, it is advantageous to have a circularly symmetrical structure. Light absorption film 31
is composed of gold black, carbon black, or amorphous semiconductor thin films with different composition ratios.

以上の実施例で述べた熱電対素子、熱電対素子
を応用した電力検出素子および光パワー検出素子
はそれぞれ一対の熱電対素子の構成のものについ
て述べたが、構造上容易に想像できるように、2
対以上をカスケード状に接続した多対形熱電対素
子および、それらを応用した電力検出素子、光パ
ワー検出素子を構成することができ、しかもこの
場合はオーミツク電極間の出力電圧(熱起電力)
Vthと出力インピーダンスは、それぞれ熱電対素
子数に比例して大きくなるので、測定精度および
所望の出力インピーダンス等に合わせた設計がで
きる。次に製作方法について述べる。低抵抗アモ
ルフアス半導体薄膜は、SiF4とH2の混合ガスに、
ドーピングガスとしてB2H6、AsH3、PH3等を添
加し、DCグロー放電法やプラズマCVD法によつ
て製作することが一般的であるが、SiH4ガスに
B2H6やPH3、AsH3等を添加し、磁界やハイパワ
ーを印加したプラズマCVD法を用いても同様の
特性を有する低抵抗アモルフアス半導体薄膜を作
製できる。以上のアモルフアス半導体薄膜におい
ては一部がマイクロクリスタルとなり微結晶化半
導体膜となるが、導電率が大きく、かつ熱電能が
共に大きくなる等の特性を有するので、本発明で
述べた熱電対素子の特徴が損なわれるものではな
い。絶縁性基板上にアモルフアス半導体薄膜を堆
積した後はフオトエツチング技術、メタルの真空
蒸着法等を用いて容易に素子を製作することがで
きる。抵抗材料としては、NiCr、Ta2N、W等が
用いられる。
The thermocouple element, the power detection element applying the thermocouple element, and the optical power detection element described in the above embodiments each have a configuration of a pair of thermocouple elements, but as can be easily imagined in terms of structure, 2
It is possible to construct a multi-pair thermocouple element in which more than one pair is connected in a cascade, a power detection element, and an optical power detection element by applying them, and in this case, the output voltage (thermoelectromotive force) between ohmic electrodes
Since Vth and output impedance each increase in proportion to the number of thermocouple elements, it is possible to design according to measurement accuracy and desired output impedance. Next, we will discuss the manufacturing method. A low-resistance amorphous semiconductor thin film is produced by applying a mixed gas of SiF 4 and H 2 .
It is common to add B 2 H 6 , AsH 3 , PH 3 , etc. as a doping gas and fabricate using the DC glow discharge method or plasma CVD method, but SiH 4 gas
A low-resistance amorphous semiconductor thin film having similar characteristics can also be produced using a plasma CVD method in which B 2 H 6 , PH 3 , AsH 3 , etc. are added and a magnetic field or high power is applied. In the above amorphous semiconductor thin film, a part becomes microcrystals and becomes a microcrystalline semiconductor film, but since it has characteristics such as high electrical conductivity and high thermoelectric power, it can be used as a thermocouple element as described in the present invention. The characteristics are not lost. After depositing an amorphous semiconductor thin film on an insulating substrate, devices can be easily manufactured using photoetching techniques, metal vacuum evaporation methods, and the like. NiCr, Ta 2 N, W, etc. are used as the resistance material.

〔発明の効果〕〔Effect of the invention〕

次に本発明の効果を述べる。 Next, the effects of the present invention will be described.

(1) 熱電能、導電率が共に大きなアモルフアス半
導体薄膜を用いたのでp−n接合部間にオーミ
ツク電極が不用の、従つて製造プロセスが簡単
化された安価で高感度な熱電対素子および、こ
の熱電対素子を応用した電力検出素子、光パワ
ー検出素子を構成できる。特にマイクロ波以上
の電力を測定する場合、p+−n+接合形薄膜構
造の電力検出素子においてはp+−n+接合部が
オーミツクをとるためのメタル電極を必要とし
ない構造なので、寄生リアクタンスが小さい。
その結果、入力定在波比を小さく抑えた電力検
出素子、すなわち超高周波帯まで使用可能な電
力検出素子を製作できる。
(1) An inexpensive and highly sensitive thermocouple element that uses an amorphous semiconductor thin film with high thermoelectric power and high conductivity, eliminating the need for an ohmic electrode between the p-n junction, and thus simplifying the manufacturing process; A power detection element and an optical power detection element can be constructed by applying this thermocouple element. Particularly when measuring power higher than microwaves, the p + -n + junction type thin film structure power detection element does not require a metal electrode to take ohmic contact at the p + -n + junction, so parasitic reactance is small.
As a result, it is possible to manufacture a power detection element with a low input standing wave ratio, that is, a power detection element that can be used up to ultra-high frequency bands.

(2) アモルフアス半導体薄膜として、p+形およ
びn+形a・Si−F−H(およびa・Si−H)薄
膜を用いるとp+−n+接合部がオーミツク性を
示し、しかも互いに発生する熱起電力の極性が
逆なので、p+−n+接合形はp+形、n+形熱起電
力の絶対値和で与えられるので大きな熱起電力
を有する熱電対素子を構成できる。
(2) When p + type and n + type a・Si−F−H (and a・Si−H) thin films are used as amorphous semiconductor thin films, the p + −n + junction exhibits ohmic properties, and moreover, Since the polarity of the thermoelectromotive force is opposite, the p + −n + junction type is given by the sum of the absolute values of the p + type and n + type thermoelectromotive force, so it is possible to construct a thermocouple element with a large thermoelectromotive force.

(3) フオトエツチング技術に代表される微細加工
技術が使用できるので超小形でかつ応答速度の
速い(1msec程度)熱電対素子等を構成でき
る。
(3) Since microfabrication technology represented by photoetching technology can be used, it is possible to construct thermocouple elements etc. that are ultra-small and have a fast response speed (about 1 msec).

(4) 製造方法が容易なので、安価な熱電対素子等
を製作できる。
(4) Since the manufacturing method is easy, inexpensive thermocouple elements etc. can be manufactured.

以上述べたように、本発明による熱電対素子お
よびこの熱電対素子を応用した電力検出素子、光
パワー検出素子は、従来のものよりも幾多の利点
を有している。
As described above, the thermocouple element according to the present invention and the power detection element and optical power detection element to which this thermocouple element is applied have many advantages over conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はp+形およびn+形a・Si−F−H薄膜
の熱電能−導電率特性を示す。第2図はp+形お
よびn+形a・Si−F−H薄膜の温度差−熱起電力
特性を示す。第3図、第4図は本発明による熱電
対素子の一実施例を示す図で第3図は平面図、第
4図は第3図のX−X′での断面図を示す。第5
図、第6図は熱電対素子の他の一実施例を示す図
で第5図は平面図、第6図は正面図を示す。第7
図、第8図は本発明による熱電対素子を応用した
電力検出素子の一実施例を示す図で第7図は平面
図、第8図は第7図のX−X′での断面図を示す。
第9図、第10図は本発明による熱電対素子を応
用した光パワー検出素子の一実施例を示す図で第
9図は平面図、第10図は、第9図のX−X′で
の断面図を示す。 図面中、,10,23は絶縁性基板、2,1
1,24は第1のアモルフアス半導体、,1
2,25はオーミツク性接合部、,13,26
は第2のアモルフアス半導体、,14,1
5,27,28は各オーミツク電極、と
16,17,29,30は各アモルフアス半導体
と各オーミツク電極との接触部、9,18は各熱
電対素子、19は抵抗体、20は入力端子、21
はアース端子、22は電力検出素子、31は光吸
収薄膜、32は光パワー検出素子をそれぞれ示
す。
FIG. 1 shows the thermoelectric power-conductivity characteristics of p + type and n + type a.Si-F-H thin films. FIG. 2 shows the temperature difference-thermoelectromotive force characteristics of p + type and n + type a-Si-F-H thin films. 3 and 4 are views showing one embodiment of a thermocouple element according to the present invention, with FIG. 3 showing a plan view and FIG. 4 showing a sectional view taken along line X-X' in FIG. 3. Fifth
6 are views showing another embodiment of the thermocouple element, FIG. 5 is a plan view, and FIG. 6 is a front view. 7th
8 are diagrams showing an embodiment of a power detection element to which a thermocouple element according to the present invention is applied, FIG. 7 is a plan view, and FIG. 8 is a sectional view taken along line X-X' in FIG. show.
9 and 10 are diagrams showing an embodiment of an optical power detection element to which a thermocouple element according to the present invention is applied. FIG. 9 is a plan view, and FIG. A cross-sectional view is shown. In the drawing, 1 , 10, 23 are insulating substrates, 2, 1
1, 24 are first amorphous semiconductors, 3 , 1
2, 25 are ohmic joints, 4 , 13, 26
is the second amorphous semiconductor, 5 , 6 , 14, 1
5, 27, 28 are each Ohmic electrodes, and 7 , 8 ,
16, 17, 29, and 30 are contact portions between each amorphous semiconductor and each ohmic electrode, 9 and 18 are respective thermocouple elements, 19 is a resistor, 20 is an input terminal, and 21
2 is a ground terminal, 22 is a power detection element, 31 is a light absorption thin film, and 32 is an optical power detection element.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板1と;該基板上に設けられた第1
のp+(またはn+)アモルフアス半導体2と;該基
板上に設けられ、該第1のアモルフアス半導体と
お互いにその一部がオーミツク特性を有したp+
−n+接合部3を形成する第2のn+(またはp+)ア
モルフアス半導体4と;該接合部と隔離して、前
記第1および第2のアモルフアス半導体の一部に
接触して設けられた一対のオーミツク電極5,6
とから構成されたp+−n+形の熱電対素子であつ
て、前記第1のアモルフアス半導体と第2のアモ
ルフアス半導体との接合部を温(冷)接点とし、
前記各アモルフアス半導体と各オーミツク電極と
の各接触部7,8を冷(温)接点とすることを特
徴とする熱電対素子。
1 an insulating substrate 1; a first insulating substrate provided on the substrate;
a p + (or n + ) amorphous semiconductor 2; a p + (or n + ) amorphous semiconductor 2 provided on the substrate, a part of which has ohmic characteristics with respect to the first amorphous semiconductor ;
- a second n + (or p + ) amorphous semiconductor 4 forming an n + junction 3; provided in isolation from the junction and in contact with a portion of the first and second amorphous semiconductors; A pair of ohmic electrodes 5 and 6
A p + −n + type thermocouple element comprising: a junction between the first amorphous semiconductor and the second amorphous semiconductor as a hot (cold) contact;
A thermocouple element characterized in that each contact portion 7, 8 between each amorphous semiconductor and each ohmic electrode is a cold (hot) contact.
JP56108728A 1981-07-10 1981-07-10 Thermocouple element Granted JPS5810874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108728A JPS5810874A (en) 1981-07-10 1981-07-10 Thermocouple element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108728A JPS5810874A (en) 1981-07-10 1981-07-10 Thermocouple element

Publications (2)

Publication Number Publication Date
JPS5810874A JPS5810874A (en) 1983-01-21
JPH0227826B2 true JPH0227826B2 (en) 1990-06-20

Family

ID=14492027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108728A Granted JPS5810874A (en) 1981-07-10 1981-07-10 Thermocouple element

Country Status (1)

Country Link
JP (1) JPS5810874A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112377A (en) * 1981-12-25 1983-07-04 Yokogawa Hokushin Electric Corp Semiconductor thermocouple
JPS61138168A (en) * 1984-12-10 1986-06-25 Tokyo Keiso Kk Thermoelectric current meter
JPS61174780A (en) * 1985-01-30 1986-08-06 Uchida Mototoshi Thermoelectric generator
CA2050843C (en) * 1990-09-18 1999-08-03 Kazuo Ohtsubo Noise eliminating element and electrical circuit having the same
JP2829151B2 (en) * 1991-03-04 1998-11-25 メルコアジャパン株式会社 Conductive material bonding element and circuit configuration
FR3127565B1 (en) * 2021-09-29 2023-12-15 Safran Compact fine thermocouple and method of manufacturing such a thermocouple

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331905A (en) * 1976-09-06 1978-03-25 Meisei Electric Co Ltd Circuit for holding external channel
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS577172A (en) * 1980-06-14 1982-01-14 Matsushita Electric Works Ltd Infrared-ray sensing element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331905A (en) * 1976-09-06 1978-03-25 Meisei Electric Co Ltd Circuit for holding external channel
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS577172A (en) * 1980-06-14 1982-01-14 Matsushita Electric Works Ltd Infrared-ray sensing element

Also Published As

Publication number Publication date
JPS5810874A (en) 1983-01-21

Similar Documents

Publication Publication Date Title
JP2834202B2 (en) Infrared detector
US4963195A (en) Electric resistor and a power detector both comprising a thin film conductor
JPH08152356A (en) Infrared sensor
EP1102333A2 (en) Infra red sensor and method for fabricating the same
JPH03155376A (en) Thermoelectric generating element
JP3228267B2 (en) Electronic device
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPH0227826B2 (en)
JPH0590011A (en) Thermosensitive resistor and its manufacture
JP2003282961A (en) Thermocouple
Stevens Radiation thermopiles
JPH021379B2 (en)
JPH0227827B2 (en)
JPH0587643A (en) Thermometer for extremely low temperature
RU2321921C1 (en) Superconductor bolometer
JPH03274708A (en) Heat sensitive device
JPS58171879A (en) Magneto-electric conversion element
JP2952379B2 (en) Temperature sensing device
JP2876405B2 (en) Thin film thermocouple element
JPS62252977A (en) Thermocouple element and manufacture thereof
JPH06147993A (en) Infrared sensor element and its manufacture
JPS6315484A (en) Thin-film electric conductor of mixed silicon/germanium/ gold crystal
JPH02206733A (en) Infrared ray sensor
JP3134359B2 (en) Thin film thermoelectric element
JP2564939Y2 (en) Thermopile infrared detector