JPS58112377A - Semiconductor thermocouple - Google Patents

Semiconductor thermocouple

Info

Publication number
JPS58112377A
JPS58112377A JP56211730A JP21173081A JPS58112377A JP S58112377 A JPS58112377 A JP S58112377A JP 56211730 A JP56211730 A JP 56211730A JP 21173081 A JP21173081 A JP 21173081A JP S58112377 A JPS58112377 A JP S58112377A
Authority
JP
Japan
Prior art keywords
type
region
thermocouple
semiconductor
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56211730A
Other languages
Japanese (ja)
Other versions
JPH0234193B2 (en
Inventor
Fumiya Furuno
古野 二三也
Hideaki Yamagishi
秀章 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Hokushin Electric Works Ltd
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Electric Works Ltd, Yokogawa Hokushin Electric Corp filed Critical Hokushin Electric Works Ltd
Priority to JP56211730A priority Critical patent/JPS58112377A/en
Publication of JPS58112377A publication Critical patent/JPS58112377A/en
Publication of JPH0234193B2 publication Critical patent/JPH0234193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

PURPOSE:To obtain a high sensitivity thermo electromotive force by a method wherein a radiant energy is absorbed by evaporation conductors respectively evaporated at one end of an N type or a P type region, and a plurality of N type or P type regions are connected respectively in series. CONSTITUTION:On the surface of a disk formed P type semiconductor substrate 10, an impurity such as phosphorus is doped by an ion implantation method, etc., thus a plurality of L-shaped N type regions 11 are radially formed, and then a plurality of L-shaped conductors 12 are evaporated radially into a form symmetrical to this N region 11. Thereafter, a region 13, wherein the top ends of the N type region 11 and the conductor 12 are superposed at the center of the substrate 10, is blackened resulting in the formation of the group of measuring junctions, then N type regions are connected respectively in series, and thereby the resultant thermo electromotive force is obtained from a pair of electrodes T1 and T2. Besides, a P type semiconductor part 10 is formed so that the potential does not become more positive than any part of the N type semiconductor 11.

Description

【発明の詳細な説明】 この発明は、単結晶半導体基板内に形成されたn型(又
はp型)領域の熱起電力を利用して、放射エネルギー醇
を計測するようにした半導体熱電対に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor thermocouple that measures radiant energy by utilizing thermoelectromotive force of an n-type (or p-type) region formed in a single crystal semiconductor substrate. .

赤外線ガス濃度計等を小形化して携帯用等に使用するK
は、小形で機械的に丈夫で安定な素子が必要であり、小
形高感度の熱電対として第1図に示すようなサーモバイ
ルが知られている。すなわち、円板状の基板1の表面に
10〜15対の金−コンスタンタン熱電対2がそれぞれ
放射状にがつ直列に接続され、これら熱電対2の測温接
点群は基板中央部に集められ、放射エネルギーの吸収を
良くするために金黒や白金黒による黒化処理がなされ、
基準接点群3との間に生じた熱起電力がそれぞれ直列に
合成されて端子4から外部へ出力されるようKなってい
る。しかしながら、このようなサーモバイルは構造が複
絹で機械的振動に弱く、また組立作業に高度の技術を必
要とする欠点があった。
K for miniaturizing infrared gas concentration meters, etc. for portable use, etc.
This requires a small, mechanically strong and stable element, and a thermocouple as shown in Fig. 1 is known as a small and highly sensitive thermocouple. That is, 10 to 15 pairs of gold-constantan thermocouples 2 are connected radially in series on the surface of a disk-shaped substrate 1, and the temperature measuring junctions of these thermocouples 2 are gathered at the center of the substrate. Blackening treatment with gold black or platinum black is done to improve the absorption of radiant energy.
The thermoelectromotive force generated between the reference junction group 3 and the reference junction group 3 is combined in series and output from the terminal 4 to the outside. However, such thermomobiles have a structure made of composite silk and are susceptible to mechanical vibrations, and also have the disadvantage that they require advanced techniques for assembly.

しかして、近年薄膜化したサーモバイルも試作されてい
るが、十分な感度は得られていない。
In recent years, prototype thermomobiles with thinner films have been produced, but sufficient sensitivity has not been achieved.

一方、小形で機械的に丈夫な熱形検出器として第2図に
示すような薄膜形サーミスタ・ボロメータが知られてお
り、基板5の表面に形成されたコバルト・マンガン系の
サーミスタ6は抵抗値が4〜5%/’Cと大きく変化し
感度も優れているが、受動素子であるため卑子7を介し
て外部から電力を供給しなければならないという欠点が
ある。また、能動素子であるシリコン太陽電池を熱形検
出器として使用した場合、応答が早(、構造が簡単で丈
夫であると共に1外部からの電力供給が不要である等の
利点があるが、太陽電池の有効波長領域が0.45〜1
.15μmと狭帯緘なので、800℃以下の低温体は測
定できないという欠点がある。
On the other hand, a thin film type thermistor bolometer as shown in FIG. It has a large variation of 4 to 5%/'C and has excellent sensitivity, but it has the disadvantage that power must be supplied from the outside via the base element 7 because it is a passive element. In addition, when a silicon solar cell, which is an active element, is used as a thermal detector, it has advantages such as a quick response, a simple and durable structure, and no need for an external power supply. The effective wavelength range of the battery is 0.45-1
.. Since it has a narrow band of 15 μm, it has the disadvantage that it cannot measure low-temperature bodies below 800°C.

さらにまた、ガスクロマトグラフ装置等に使用されてい
る熱伝導形検出器TCD (Therma/ −Con
duct ivi ty Detector )では、
第3図囚〜(C)に示すように輸送ガス(キャリアガス
)K試料ガスGが混入した混合ガスを測定管部8Cに導
き、輸送ガスのみのガスRを比較管部8Dに導き、この
2つのガスの熱伝導度の差を、流通ないしは拡散の過程
を通じて発熱抵抗体8A 、 8Bおよび比較管部の他
の2つの発熱抵抗体により検出する。しかしながら、こ
れらの検出器ではいずれも通常5W前後の電力を消費す
ると共に応答速度も約0.1秒と遅く、安定な検出器を
得るには構造が複雑罠なってしまう欠点があった。よっ
て、この発明の目的は上述の如き欠点1問題点を除去し
た半導体熱電対を提供するととKある。
Furthermore, the thermal conductivity detector TCD (Therma/-Con) used in gas chromatograph equipment, etc.
duct IVity Detector),
As shown in Figure 3-(C), a mixed gas mixed with transport gas (carrier gas) K and sample gas G is led to the measurement pipe section 8C, and gas R containing only the transport gas is led to the comparison pipe section 8D. The difference in thermal conductivity between the two gases is detected by the heating resistors 8A and 8B and the other two heating resistors in the comparison tube section through the process of flow or diffusion. However, all of these detectors typically consume power of about 5 W, have a slow response speed of about 0.1 seconds, and have the disadvantage that the structure is complicated to obtain a stable detector. Therefore, an object of the present invention is to provide a semiconductor thermocouple that eliminates the above-mentioned drawbacks and problems.

以下にこの発明を訝明する。This invention will be explained below.

この発明は半導体熱電対に関し、単結晶半導体基板内に
形成された複数のn型又はp型111竣と、これらn型
又はp型領域の一端にそれぞれ導体を蒸着せしめ、これ
ら蒸着導体により放射エネルギーを吸収すると共に、複
数のn型又はp型領域をそれぞれ直列に接続して、高感
度の熱起電力を得るようにしたものである。
The present invention relates to a semiconductor thermocouple, in which a conductor is deposited on a plurality of n-type or p-type regions formed in a single crystal semiconductor substrate and one end of each of these n-type or p-type regions, and radiated energy is generated by these deposited conductors. In addition, a plurality of n-type or p-type regions are connected in series to obtain highly sensitive thermoelectromotive force.

この発明の一実施例を示す第4図(A)及び(Blにお
いて、弄す円板状のp型牛導体基板10の表面にイオン
注入法轡によりリン等の不純物をドープして複数個のL
字状のn型領域11を放射状に形成し、このn型領#1
1と対称な形に複数個のL字状の導体12を放射状KM
着する。その後n型領域11と導体12の先端が基板1
0の中心部で重畳した領域13を黒化処理して側温接点
群を形成すると共に、!′1fll領域11をそれぞれ
直列に接続することKより、合成熱起電力を1対の電極
T1及びT2から得るようになっている。なお、p型半
導体部分10はn型半導体11のどの部分よりも電位が
正にならないようになっている。
In FIGS. 4A and 4B showing an embodiment of the present invention, the surface of a disc-shaped p-type conductor substrate 10 is doped with impurities such as phosphorus by an ion implantation method to form a plurality of impurities. L
Letter-shaped n-type regions 11 are formed radially, and this n-type region #1
A plurality of L-shaped conductors 12 are arranged radially KM in a symmetrical shape with
wear it. After that, the tips of the n-type region 11 and the conductor 12 are connected to the substrate 1.
The overlapping region 13 at the center of 0 is blackened to form a side hot contact group, and! By connecting the '1fll regions 11 in series, a composite thermoelectromotive force is obtained from the pair of electrodes T1 and T2. Note that the potential of the p-type semiconductor portion 10 is less positive than that of any other portion of the n-type semiconductor 11.

ここにおいて、n型領域の熱起電力をθ、絶絶対開度T
、半導体の伝導体準位及びフェルミ単位をそれぞれEC
,EF、電子の電荷をeとすると、n型領域の熱起電率
は となる。ここで、例えばリンを3×10 原子/crI
の濃度にドープしたn型シリコンでは、100℃にオイ
テ熱起電率d e / dT= 1.2 mV/’Cと
なり、この値はJIS  C160Zに規定されている
最高感度の金属製熱電対の約15倍の熱起電率である。
Here, the thermoelectromotive force of the n-type region is θ, the absolute opening degree T
, the conductor level of the semiconductor and the Fermi unit are respectively EC
, EF, and the electron charge is e, the thermoelectromotive coefficient of the n-type region is as follows. Here, for example, phosphorus is 3×10 atoms/crI
In n-type silicon doped to a concentration of The thermoelectromotive rate is approximately 15 times higher.

しかるに、(1)式で示される熱起電率は、半導体中の
不純物濃度によって変化(不純物濃度変化→フェルミ準
位変化→熱起電率変化)するので、互換性のある熱電対
を半導体で作ることは困難であった。
However, the thermal electromotive force expressed by equation (1) changes depending on the impurity concentration in the semiconductor (change in impurity concentration → change in Fermi level → change in thermal electromotive force), so if a compatible thermocouple is used in a semiconductor, It was difficult to make.

このため、従来は単1/cn型半導体、p型半導体の判
定に熱起電力を利用する程度であった。
For this reason, in the past, thermal electromotive force was only used to determine whether a single/cn type semiconductor or a p type semiconductor.

しかして、近年、イオン注入法の出現で不純物の注入技
術が進み、半導体中に不純物を制御された状態で注入で
きるようになったことにより半導体基板10内に不純物
を′Jn1度良く注入すれば、互換性のある高感度の小
形半導体熱電対を容易に得ることができる。なお、第5
1M(A)及び(B) K示す如くn型領[11と導体
12の重畳部に小孔14を設け、この小孔14から等方
性及び異方性エツチングによりn型領域11内に丸溝状
の空洞15を設けても良い。
However, in recent years, impurity implantation technology has advanced with the advent of ion implantation, and it has become possible to implant impurities into semiconductors in a controlled manner. , compatible high-sensitivity compact semiconductor thermocouples can be easily obtained. In addition, the fifth
1M (A) and (B) As shown in K, a small hole 14 is provided in the overlapping part of the n-type region [11 and the conductor 12, and a circle is formed in the n-type region 11 from this small hole 14 by isotropic and anisotropic etching. A groove-shaped cavity 15 may also be provided.

この空洞は、最近の単結晶のエツチング技術の向上によ
り、定まった形に形成される。この空洞構造は、いわゆ
る空洞放射の原理に基いて放射エネルギーを効率良(吸
収するので、吸収効果が増大する。かかる小孔14及び
空洞15の構造はサーモバイルのみならず、単独の放射
検出素子としても利用することができる。第4図の例で
は複数個のn型領域は、p型半導体基板中に形成されて
いるが、サファイアの如き単結晶半絶縁性基板上に形成
することもできる。
This cavity is formed into a fixed shape due to recent improvements in single crystal etching technology. This cavity structure efficiently absorbs radiant energy based on the so-called principle of cavity radiation, increasing the absorption effect.The structure of the small hole 14 and cavity 15 can be used not only for thermomobiles but also for individual radiation detection elements. In the example shown in Fig. 4, the plurality of n-type regions are formed in a p-type semiconductor substrate, but they can also be formed on a single crystal semi-insulating substrate such as sapphire. .

また、第6園内及び但)はこの発明の半導体装置対をガ
スクロマトグラフ装置等の熱伝導度形検出器として応用
した一例を示すものであり、方形状のp型半導体基板間
の表面Kn型領域21を形成して熱電対素子とし、その
両端近傍を含む領域をエツチングした後に導体22A及
び22Bを蒸着し、これら導体22A及び22Bに接続
された電極23A及び23Bを介してn型領域21の熱
起電力を出力するようになっている。そして、n型領域
21に沿って高・不純物濃度の拡散領[24を形成して
ヒータとし、このヒータUを電極25A及び25Bから
電力を供給して加熱するようになっている。また、熱電
対素子21の両端に接す−るようにエツチングされたガ
ス*26及びnが配設されており、基板間の上面全体を
カバーするようにパイレックスガラス等から成る板間が
装着されている。なお、板(9)の電極23A彎 、23B上の部分31及び電極25A 、 25B上の
部分32は、いずれもエツチングにより方形状に淑り除
かれている。この構造も、半導体単結晶中への不純物注
入技術とそのエツチング技術の向上により実演1できる
In addition, No. 6 (in the garden) and (however) show an example in which the semiconductor device pair of the present invention is applied as a thermal conductivity type detector for a gas chromatograph device, etc. 21 is formed to form a thermocouple element, and after etching the region including the vicinity of both ends, conductors 22A and 22B are vapor-deposited, and the heat of the n-type region 21 is transferred through electrodes 23A and 23B connected to these conductors 22A and 22B. It is designed to output electromotive force. A diffusion region [24] with a high impurity concentration is formed along the n-type region 21 to serve as a heater, and this heater U is heated by supplying electric power from electrodes 25A and 25B. In addition, etched gases *26 and n are arranged so as to be in contact with both ends of the thermocouple element 21, and a plate made of Pyrex glass or the like is installed to cover the entire upper surface between the substrates. ing. Incidentally, a portion 31 on the electrodes 23A and 23B and a portion 32 on the electrodes 25A and 25B of the plate (9) are all removed by etching into a rectangular shape. This structure can also be demonstrated by improving the impurity injection technology into semiconductor single crystal and the etching technology.

このような構成において、ヒータ飼を1[俸25A、2
5Bを介して加熱すると共に、ガス溝が及びガにガスG
1.G2流入すると、両方のガスG、、G2の熱伝導度
の差によってn型領域210両端に温度差が生じる。こ
れにより、導体22A 、 22B及び電極Z3A 、
 23Bを介して、温度差に対応した熱起電力を得るこ
とができる。
In such a configuration, the heater feeder is 1 [25A, 2
5B, and the gas G is heated through the gas groove.
1. When G2 flows in, a temperature difference occurs between both ends of the n-type region 210 due to the difference in thermal conductivity between the two gases G and G2. As a result, the conductors 22A, 22B and the electrodes Z3A,
23B, a thermoelectromotive force corresponding to the temperature difference can be obtained.

一方、第7図及び第8図はそれぞれその変形例を示すも
のであり、第7図の例は2つのガス溝か及びnを並べる
と共に、その側部に熱電素子21を配設するようにした
ものである。そして、熱雷素子21の電極23Aとヒー
タ冴の1!極25Aとを1個所にまとめ、熱電素子21
の電極23BとヒータUの電極25Bとを1個所にまと
めている。また、第8図の例は熱電素子21をコの字状
に形成すると共に、その内側にコの字状のヒータ々を配
設し、電極23A 、 23B 、 25A 、 25
Bを1個所にまとめたものである。かかる(・ずれの装
置によっても上述と同様の検出を行なうことができる。
On the other hand, FIGS. 7 and 8 each show a modification thereof, and the example in FIG. 7 is such that two gas grooves are arranged side by side, and a thermoelectric element 21 is arranged on the side thereof. This is what I did. Then, the electrode 23A of the thermal lightning element 21 and the heater 1! The thermoelectric element 21 is combined with the pole 25A in one place.
The electrode 23B of the heater U and the electrode 25B of the heater U are put together in one place. Further, in the example shown in FIG. 8, the thermoelectric element 21 is formed in a U-shape, and U-shaped heaters are arranged inside the thermoelectric element 21, and electrodes 23A, 23B, 25A, 25
This is a collection of B in one place. Detection similar to that described above can also be performed using such a device.

なお、以上の1明では半導体基板をp型とし、n型領域
を熱電対として使用したカζ、半導体基板をn型としp
型領塚を炉、電対として使用するようにしても良い。
In addition, in the above 1, the semiconductor substrate is p-type and the n-type region is used as a thermocouple, and the semiconductor substrate is n-type and p
The molded mold mound may be used as a furnace or an electric couple.

辺上^り明したように、この発明の牛導体熱電対は、イ
オン柱入法等により単結晶半導体基板内に容易K111
!感度、極小形の#電対として形成できるので、轡械的
に丈夫かつ安定しており、放射温度計やガス濃麿計等の
小形化に役立つと共に1大量生産でき経済的である。
As explained above, the copper conductor thermocouple of the present invention can be easily inserted into a single crystal semiconductor substrate using the ion pillar implantation method or the like.
! Since it can be formed as a highly sensitive and extremely small electrode couple, it is mechanically strong and stable, and is useful for miniaturizing radiation thermometers, gas concentration meters, etc., and is economical because it can be mass-produced.

なお、上述では半導体基板の形状を円形ないしは方形状
としているが、その形状は任童である。
In addition, although the shape of the semiconductor substrate is circular or rectangular in the above description, the shape is arbitrary.

【図面の簡単な説明】[Brief explanation of the drawing]

941図は従来のサーモパイルの構造を示す正面図、第
2図はサーミスタ・ボロメータの構造を示す斜耕ト」、
第3図(5)〜(qはそれぞれ従来のガスクロマトグラ
フ装置で使用された熱伝導形検出器の断面図、第4図(
Al及び(Blはこの発明の一構造例を示す正面図及び
そのx −x’断面図、第5回内及び(B)はこの発明
の他の構造例を示す1111面図及びそのX−X/断面
図、第6図(5)及び(B)はこの発明を熱伝導形検出
器に応用した場合の一構造例を示す正面図及びそのX−
X/断面図、第7図及び第8図はそれぞれその変形例を
示す構造図である。 1・・・基板、2・・・熱電対、4・・・端子、10 
、2ij・・・p型半導体基板、11 、21・・・n
型領域(Mt素子)、12 、22A 、 22B・・
・導体、14・・・小孔、15・・・空洞、カ、27・
・・ガス溝、30・・・板。 出炉人代理人   安  形  雄  三第1図   
  第2図 (A) 弗4 図 (,4) (B) 弗5 口 (A)  〃 (β) Δ    12 t:y    tt    tu 弗 6 図 #77図      弗6図 」 1127
Figure 941 is a front view showing the structure of a conventional thermopile, and Figure 2 is an oblique view showing the structure of a thermistor bolometer.
Figures 3 (5) to (q are cross-sectional views of thermal conductivity detectors used in conventional gas chromatograph devices, respectively, and Figure 4 (
Al and (Bl is a front view showing one structural example of this invention and its 6 (5) and (B) are a front view and its X-
The X/cross-sectional view, FIGS. 7 and 8 are structural diagrams showing modifications thereof, respectively. 1... Board, 2... Thermocouple, 4... Terminal, 10
, 2ij...p-type semiconductor substrate, 11, 21...n
Mold region (Mt element), 12, 22A, 22B...
・Conductor, 14...Small hole, 15...Cavity, F, 27・
...Gas groove, 30...plate. Yuzo Yasugata, representative of the reactor, Figure 1
Figure 2 (A) Figure 4 Figure (,4) (B) Figure 5 Mouth (A) 〃 (β) Δ 12 t:y tt tu Figure #77 Figure 6 Figure 1127

Claims (1)

【特許請求の範囲】[Claims] 単結晶半導体基板内に形成された1個又は複数のn型半
導体又はp型半導体領域と、これらn型又はp型領域の
両端に蒸着された導体を具え、前記半導体領域と導体に
まり熱電対を形成せしめ、この熱電対の測温接点に熱エ
ネルギーを吸収せしめて熱起電力を得るようにしたこと
を特徴とする半導体熱電対。
A thermocouple comprising one or more n-type or p-type semiconductor regions formed in a single-crystal semiconductor substrate and a conductor deposited on both ends of the n-type or p-type regions, the thermocouple being interposed between the semiconductor region and the conductor. 1. A semiconductor thermocouple, characterized in that the temperature measuring junction of the thermocouple absorbs thermal energy to obtain a thermoelectromotive force.
JP56211730A 1981-12-25 1981-12-25 Semiconductor thermocouple Granted JPS58112377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211730A JPS58112377A (en) 1981-12-25 1981-12-25 Semiconductor thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211730A JPS58112377A (en) 1981-12-25 1981-12-25 Semiconductor thermocouple

Publications (2)

Publication Number Publication Date
JPS58112377A true JPS58112377A (en) 1983-07-04
JPH0234193B2 JPH0234193B2 (en) 1990-08-01

Family

ID=16610641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211730A Granted JPS58112377A (en) 1981-12-25 1981-12-25 Semiconductor thermocouple

Country Status (1)

Country Link
JP (1) JPS58112377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122676A (en) * 1983-12-06 1986-01-31 コムビナ−ト フオルクスアイグナ− ベトリ−ブ ケラミシエ ヴエルケ ヘルムスドルフ Thermoelectric sensor
EP0296738A2 (en) * 1987-06-23 1988-12-28 British Gas plc Miniature thermoelectric converters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8938885B2 (en) 2012-05-01 2015-01-27 The Gillette Company Razor handle with a rotatable portion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810874A (en) * 1981-07-10 1983-01-21 Anritsu Corp Thermocouple element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810874A (en) * 1981-07-10 1983-01-21 Anritsu Corp Thermocouple element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122676A (en) * 1983-12-06 1986-01-31 コムビナ−ト フオルクスアイグナ− ベトリ−ブ ケラミシエ ヴエルケ ヘルムスドルフ Thermoelectric sensor
EP0296738A2 (en) * 1987-06-23 1988-12-28 British Gas plc Miniature thermoelectric converters
US4971632A (en) * 1987-06-23 1990-11-20 British Gas Plc Miniature thermoelectric converters
US4983225A (en) * 1987-06-23 1991-01-08 British Gas Plc Process of manufacturing miniature thermoelectric converters

Also Published As

Publication number Publication date
JPH0234193B2 (en) 1990-08-01

Similar Documents

Publication Publication Date Title
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
EP0354369B1 (en) Infrared detector
JPS6129648B2 (en)
US3781748A (en) Chalcogenide glass bolometer
US20030025174A1 (en) Thermoelectric infrared detector
US5406081A (en) Infrared detector utilizing diamond film
JPS6122676A (en) Thermoelectric sensor
JPS58112377A (en) Semiconductor thermocouple
JP2005003468A (en) Flow sensor
Ahmed et al. Characterization of an amorphous ge/sub x/si/sub 1-x/o/sub y/microbolometer for thermal imaging applications
JP3303786B2 (en) Bolometer type infrared sensor
Wang et al. Modification of electrical properties of amorphous vanadium oxide (a-VOx) thin film thermistor for microbolometer
KR101072290B1 (en) thermoelectric sensor using Ge material
Meinel et al. Multijunction thin-film radiation thermopile sensors
JPS61259580A (en) Thermopile
US5378873A (en) Electrothermal conversion elements, apparatus and methods for use in comparing, calibrating and measuring electrical signals
JPH03221820A (en) Infrared detector
SU744247A1 (en) Thermoelectric pyranometer
JPH0146010B2 (en)
JPH04235338A (en) Humidity sensor
JP3534103B2 (en) Bolometer type infrared sensor
Kessler et al. First measuring results concerning a new thin-film absolute radiometer
JP2564939Y2 (en) Thermopile infrared detector
JPH021379B2 (en)
KR101734080B1 (en) Thermopile device with thermoshiled hole, and thereof temperature sensor