JPS62252977A - Thermocouple element and manufacture thereof - Google Patents

Thermocouple element and manufacture thereof

Info

Publication number
JPS62252977A
JPS62252977A JP61096337A JP9633786A JPS62252977A JP S62252977 A JPS62252977 A JP S62252977A JP 61096337 A JP61096337 A JP 61096337A JP 9633786 A JP9633786 A JP 9633786A JP S62252977 A JPS62252977 A JP S62252977A
Authority
JP
Japan
Prior art keywords
thin film
amorphous semiconductor
electrode
insulating
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61096337A
Other languages
Japanese (ja)
Other versions
JP2577546B2 (en
Inventor
Setsuo Kotado
古田土 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP61096337A priority Critical patent/JP2577546B2/en
Publication of JPS62252977A publication Critical patent/JPS62252977A/en
Application granted granted Critical
Publication of JP2577546B2 publication Critical patent/JP2577546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To eliminate roughness of the surface of a substrate, which poses a problem when an amorphous semiconductor thin film is patterned, by depositing an insulating thin film comprising silicon oxide and alumina oxide on a substrate by an ion plating method. CONSTITUTION:On an insulating substrate 11, a silicon oxide thin film and an alumina oxide thin film are sequentially deposited by using an ion plating method, and an insulating thin film 12 is formed. Then, a P-type amorphous semiconductor thin film 13 is deposited on the film 12 by an ECR plasma method. The film 13 is patterned. At this time, since the insulating thin film 12 is not etched with etching liquid for the amorphous thin film, the substrate is not roughened. Thereafter, a metallic resistor thin film 14, an ohmic electrode 16, an electrode 17 and the like are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱電対素子、特に大きな熱電能を有し、薄
膜形成の容易性と微細加工の容易性等の特徴を備えたア
モルファス半導体薄膜と全屈抵抗対薄膜とを具備した熱
電対素子であって9低入力インピーダンス、特に超高周
波領域におけるインピーダンス整合の容易さを特徴とし
た低周波から光波に至るパワー(電力)検出に用いられ
る熱雷対素子とその製法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a thermocouple element, particularly an amorphous semiconductor thin film having a large thermoelectric power and having features such as ease of thin film formation and ease of microfabrication. It is a thermocouple element with a total bending resistance and a thin film, and is characterized by low input impedance and easy impedance matching, especially in the ultra-high frequency range.It is a thermocouple element used for power detection ranging from low frequencies to light waves. This article relates to lightning pair elements and their manufacturing methods.

〔従来の技術〕[Conventional technology]

絶縁性基板としてガラス基板を用いて、その基板上にア
モルファス半導体薄膜等を堆積して熱電対素子を構成す
る場合、フォトエツチング技術によりパターニングを行
う。
When a glass substrate is used as an insulating substrate and a thermocouple element is constructed by depositing an amorphous semiconductor thin film or the like on the substrate, patterning is performed using photoetching technology.

この場合、アモルファス半導体tuffとガラス基板と
に対して選択性を示すエツチング液がなかった。そのた
め、アモルファス半導体薄膜としてシリコンと水素また
はこれらにフッ素を加えた合金からなるアモルファスシ
リコン(通常a−Si:II マたはa−Si:II:
Fと記述される。)薄膜を工、チングする場合、フン酸
を含んだ混合液を用いていたためにガラス基板も同時に
エツチングされ、該ガラス基板の表面を粗くしたり、パ
ターンエツジ部で深い溝が形成されてアモルファスシリ
コンと金属抵抗体薄膜の接合部が損傷しゃずいという欠
点があった。この状態を第3図に断面模式図として示し
である。
In this case, there was no etching solution that showed selectivity between the amorphous semiconductor tuff and the glass substrate. Therefore, as an amorphous semiconductor thin film, amorphous silicon (usually a-Si:II or a-Si:II:
It is written as F. ) When etching and etching thin films, the glass substrate was etched at the same time because a mixture containing hydrochloric acid was used, making the surface of the glass substrate rough and forming deep grooves at the pattern edges, resulting in amorphous silicon. The drawback was that the joint between the metal resistor thin film and the metal resistor thin film could be damaged. This state is shown in FIG. 3 as a schematic cross-sectional view.

また、本願の先行技術としては同一出願人、同一発明者
による感温装置(特願昭57−52806号)があるが
、第4図に示すようにアモルファス半導体薄膜と抵抗体
薄膜との接合部に電極があるためにその分だけ、構造的
に製作工程がかかり過ぎるという欠点があった。
Furthermore, as a prior art to the present application, there is a temperature sensing device (Japanese Patent Application No. 57-52806) by the same applicant and the same inventor, but as shown in FIG. Since there are electrodes, the structure has the disadvantage of requiring too much manufacturing process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

アモルファス半導体薄膜を用いて熱電対素子を構成する
場合、素子の微小化・高性能化・高機能化を画る上でフ
ォトエツチング技術を用いた微細パターンの形成は不可
欠である。
When constructing a thermocouple element using an amorphous semiconductor thin film, it is essential to form a fine pattern using photoetching technology in order to achieve miniaturization, higher performance, and higher functionality of the element.

そこで2本発明では、ガラス基板の表面を粗さないで、
アモルファス半導体薄膜のみをエツチングすることによ
り、°パターンエツジ部での深い溝の形成をなくすこと
により、アモルファスシリコンと金属抵抗体薄膜との接
合部において損傷が発生しないイオンプレーティング法
等による堆積手段で所望のパターンを形成する熱電対素
子の製法を提供するとともに、前記感温装置においてア
モルファス半導体薄膜と抵抗体薄膜との接合部に介在し
ていた電極を削除した構造の高性能の熱電対素子を提供
するものである。
Therefore, in the present invention, the surface of the glass substrate is not roughened,
By etching only the amorphous semiconductor thin film, the formation of deep grooves at the pattern edges is eliminated, allowing deposition methods such as ion plating to avoid damage at the junction between the amorphous silicon and metal resistor thin film. The present invention provides a method for manufacturing a thermocouple element that forms a desired pattern, and also provides a high-performance thermocouple element having a structure in which the electrodes that were interposed at the junction between the amorphous semiconductor thin film and the resistor thin film in the temperature sensing device are removed. This is what we provide.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、イオンプレーティング法を用いて形成し
超酸化シリコン(S i O)と酸化アルミニウム(/
’/!z Or)より成る多層薄膜が、アモルファスシ
リコン薄膜あるいはアモルファスシリコン・ゲルマニウ
ム薄膜と選択性エツチングを示すことが発明者によって
発見された事実を利用すものである。すなわち、この発
明では、絶縁性基板であるガラス基板上に、イオンプレ
ーテング法を用いて酸化シリコン薄膜および酸化アルミ
ニウム薄膜を順次、堆積させた基板上にさらにアモルフ
ァスシリコン薄膜あるいはアモルファスシリコン・ゲル
マニウム薄膜等をプラズマCVD法等で堆積させ、その
後、フォトエツチング技術を用いてパターンの形成を行
うものである。
In this invention, silicon superoxide (S i O) and aluminum oxide (/
'/! This invention takes advantage of the fact that the inventors have discovered that a multilayer thin film consisting of zOr) exhibits selective etching with an amorphous silicon thin film or an amorphous silicon germanium thin film. That is, in this invention, a silicon oxide thin film and an aluminum oxide thin film are sequentially deposited on a glass substrate, which is an insulating substrate, using an ion plating method, and then an amorphous silicon thin film or an amorphous silicon germanium thin film, etc. is deposited by a plasma CVD method or the like, and then a pattern is formed using a photoetching technique.

この場合、酸化シリコン薄膜と酸化アルミニウム薄膜よ
りなる多j5薄膜は、フン酸を含んだ混合液からなるア
モルファスシリコン薄膜あるいはアモルファスシリコン
・ゲルマニウムR膜用エツチング液によって腐蝕されな
いので、該ガラス基板の表面が粗れたり、パターンエツ
ジでの溝の発生する現象を防ぐことができる。
In this case, the polyj5 thin film made of a silicon oxide thin film and an aluminum oxide thin film is not corroded by the amorphous silicon thin film made of a mixed solution containing hydronic acid or the amorphous silicon germanium R film etching solution, so that the surface of the glass substrate is It is possible to prevent the phenomenon of roughness and the occurrence of grooves at pattern edges.

〔実施例〕〔Example〕

第1図および第2図は本発明による熱電対素子皿の一実
施例を示す模式図で、第1図はその平面図、第2図は第
1図における 線X−X’  で切断された断面図であ
る。
1 and 2 are schematic diagrams showing one embodiment of a thermocouple element plate according to the present invention, FIG. 1 is a plan view thereof, and FIG. 2 is a diagram cut along line XX' in FIG. 1. FIG.

第1図及び第2図に示すように絶縁性基板11上には、
絶縁性薄膜12を介してアモルファス半導体薄膜13と
金属抵抗体薄膜14とが設けである。
As shown in FIGS. 1 and 2, on the insulating substrate 11,
An amorphous semiconductor thin film 13 and a metal resistor thin film 14 are provided with an insulating thin film 12 in between.

そして、アモルファス半導体薄膜13の一方と金属抵抗
体薄膜14の一方とは互いにその一部が接触し、オーミ
ック性を示す接合部15が形成される。
Parts of one of the amorphous semiconductor thin films 13 and one of the metal resistor thin films 14 come into contact with each other, forming a junction 15 exhibiting ohmic properties.

また、アモルファス半導体薄膜13の他方と金属抵抗体
薄膜14の他方には図示の如く、それぞれ前記接合部1
5から離れた位五にその一部と接触してオーミック電極
16と電極17が設けられ、電極対を構成している。
Further, as shown in the figure, the other of the amorphous semiconductor thin film 13 and the other of the metal resistor thin film 14 are provided with the bonding portion 1, respectively.
An ohmic electrode 16 and an electrode 17 are provided at a distance from the electrode 5 and in contact with a part of the electrode 5, forming an electrode pair.

このように構成さ九た熱電対素子列は、アモルファス半
導体薄膜13と金属抵抗体薄膜14との接合部15が温
接点(冷接点)を、オーミック電極16と電極17とが
冷接点(温接点)を形成し、この温接点と冷接点との間
の温度差ΔTに比例した熱起電力Vが、該オーミック電
極16と電極17との間に発生ずる。
In the nine thermocouple element arrays configured in this way, the junction 15 between the amorphous semiconductor thin film 13 and the metal resistor thin film 14 serves as a hot junction (cold junction), and the ohmic electrode 16 and electrode 17 serve as a cold junction (hot junction). ), and a thermoelectromotive force V proportional to the temperature difference ΔT between the hot and cold contacts is generated between the ohmic electrodes 16 and 17.

この時発生する熱起電力の大きさは、アモルファス半導
体薄膜と金属抵抗体薄膜の有する熱電能の大きさに依存
し、p形アモルファス半導体薄膜の熱電能としては+1
00〜+400(μv/K)と大きな値が得られており
、金属抵抗体薄膜の熱電能としては、十数10(μV/
K)以下と一般に小さい。また、n形アモルファス半導
体薄膜の熱電能としては、−100〜−300(μV/
K)が得られている。
The magnitude of the thermoelectromotive force generated at this time depends on the magnitude of the thermoelectric power possessed by the amorphous semiconductor thin film and the metal resistor thin film, and the thermoelectric power of the p-type amorphous semiconductor thin film is +1.
A large value of 00 to +400 (μV/K) was obtained, and the thermoelectric power of a metal resistor thin film is about 10-10 (μV/K).
K) or less, which is generally small. In addition, the thermoelectric power of an n-type amorphous semiconductor thin film is -100 to -300 (μV/
K) has been obtained.

したがって、大きな熱起電力、すなわち高感度型の熱電
対素子を構成するには、アモルファス半導体薄膜として
p形アモルファス半導体薄膜を。
Therefore, in order to construct a thermocouple element with a large thermoelectromotive force, that is, a highly sensitive type, a p-type amorphous semiconductor thin film is used as the amorphous semiconductor thin film.

また、金属抵抗体薄膜の代わりにn形アモルファス半導
体薄膜を用いればよい。
Furthermore, an n-type amorphous semiconductor thin film may be used instead of the metal resistor thin film.

この場合、  p−n接合は一般に非オーミツク性を示
すので、接合界面での各キャリア濃度を高くしたり、あ
るいは金属薄膜を挿入するなどして。
In this case, since the pn junction generally exhibits non-ohmic properties, the concentration of each carrier at the junction interface may be increased or a thin metal film may be inserted.

オーミック接触を得る方法が採られる。A method of obtaining ohmic contact is adopted.

次に、熱電対素子の製造方法について述べる。Next, a method for manufacturing a thermocouple element will be described.

まず、絶縁性基板11にイオンプレーテング法を用いて
酸化シリコン(SiOx;x=1〜2)薄膜と酸化アル
ミナ(A L OI)薄膜を第1の堆積工程として順次
、交互に堆積させる。
First, a silicon oxide (SiOx; x=1 to 2) thin film and an alumina oxide (ALOI) thin film are sequentially and alternately deposited on the insulating substrate 11 using an ion plating method as a first deposition step.

この場合の堆積条件の一例を示すと、アルゴンガス(A
r)流it 1−10ccm 、酸素(02)流量1〜
10ccm 、放電圧力1〜l0XIO(Pa )放電
パワー100〜400 W、基板温度150°〜350
℃。
An example of the deposition conditions in this case is argon gas (A
r) Flow rate: 1-10 ccm, oxygen (02) flow rate: 1~
10ccm, discharge pressure 1~10XIO (Pa), discharge power 100~400W, substrate temperature 150°~350°
℃.

堆積速度1〜IOA/secである。The deposition rate is 1 to IOA/sec.

蒸着材料には酸化シリコン(Sin)と酸化アルミナ(
A)Z 07)を用いる。
The vapor deposition materials include silicon oxide (Sin) and alumina oxide (
A) Use Z 07).

次に、第2の堆積工程としてグロー放電法あるいは光C
VD法、ECRプラズマ法等を用いて。
Next, as a second deposition step, a glow discharge method or a light C
Using VD method, ECR plasma method, etc.

p形アモルファス半導体薄11!J13を、絶縁性薄膜
12上に堆積した後、フォトエツチング技術を用いてパ
ターン形成を行う。
P-type amorphous semiconductor thin 11! After J13 is deposited on the insulating thin film 12, a pattern is formed using a photoetching technique.

この時、アモルファス薄膜用エツチング液(例えば、フ
ッ酸と硝酸の混合液)では、酸化アルミナ薄膜はエツチ
ングされないために第3図に示すような、基板の粗れが
生じない。引続き、金属抵抗体N膜14あるいはn形ア
モルファス半導体薄膜に、オーミック電極16と電極1
7を真空蒸着法、スパック法等を用いてパターン形成す
る。このパターン形成には、フォトエツチング法、又は
メタルマスク法を用いる。
At this time, since the alumina oxide thin film is not etched by the amorphous thin film etching solution (for example, a mixed solution of hydrofluoric acid and nitric acid), the substrate does not become rough as shown in FIG. Subsequently, the ohmic electrode 16 and the electrode 1 are applied to the metal resistor N film 14 or the n-type amorphous semiconductor thin film.
7 is patterned using a vacuum evaporation method, a spack method, or the like. For this pattern formation, a photoetching method or a metal mask method is used.

この場合、金属抵抗体薄膜としては、ニクロム(NiC
r)、窒化タンタル(T a z N) 、白金(pt
)、クロム(Cr)、タングステン(W)。
In this case, the metal resistor thin film is nichrome (NiC
r), tantalum nitride (T az N), platinum (pt
), chromium (Cr), tungsten (W).

モリブデン(Mo)等の各金属薄膜を、またオーミック
電極としては、ニクロム(NiCr)/金(Au)、ク
ロム(Cr)/白金(Pt)、アルミニウム(Ajり等
の各金属薄膜が用いられる。
Metal thin films such as molybdenum (Mo) are used, and as ohmic electrodes, metal thin films such as nichrome (NiCr)/gold (Au), chromium (Cr)/platinum (Pt), and aluminum (Ajri) are used.

また、大きな導電率を有し、かつ大きなゼーベック係数
を所持するアモルファス半導体薄膜としては、フッ素入
りアモルファスシリコン(同一出願人による特願昭57
−52807号の「熱電対装置」中に詳述しである。)
及びシリコン・ゲルマニウム混晶′a膜導電体(特願昭
60−186900号)が優れている。
In addition, as an amorphous semiconductor thin film having high conductivity and a large Seebeck coefficient, fluorine-containing amorphous silicon (patent application filed in 1983 by the same applicant) is used.
It is detailed in "Thermocouple device" of No.-52807. )
and silicon-germanium mixed crystal 'a film conductor (Japanese Patent Application No. 186900/1983) are excellent.

〔発明の効果〕〔Effect of the invention〕

この発明では、絶縁性基板であるガラス基板上に、酸化
シリコン(SiOx)と酸化アルミナ(A II 07
)よりなる絶縁性薄膜をイオンプレーティング法で堆積
して形成した基板を用いて熱電対素子を構成したために
アモルファス半導体薄膜のパターニング時に問題となっ
た基板の表面における粗れをなくすことができたのでそ
のため熱電対素子の高性能化・高信頼性化および歩留り
向上による低価格化を図った熱電対素子とその製法が実
現できた。
In this invention, silicon oxide (SiOx) and alumina oxide (A II 07) are placed on a glass substrate which is an insulating substrate.
) The thermocouple element was constructed using a substrate formed by depositing an insulating thin film made by ion plating, which made it possible to eliminate roughness on the surface of the substrate, which was a problem when patterning amorphous semiconductor thin films. Therefore, we have been able to realize a thermocouple element and its manufacturing method that achieve higher performance, higher reliability, and lower cost by improving yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例による熱電対素子
の模式図で、第1図はその平面図、第2図は第1図の 
x−x’ における断面を示す。 第3図及び第4図は、従来技術の説明用で第3図は従来
技術の問題点を示す模式図であり、第4図は措造図であ
る。 図において、1と11は絶縁性基板、2はリード線、3
と13はアモルファス半導体薄膜、4と14は金属抵抗
体薄膜、6と16はオーミック電極、7と17は電極、
10と20は熱電対素子、12は絶縁性薄膜をそれぞれ
示す。 特許出願人   アンリッ株式会社 代理人  弁理士  小池 龍太部 4・・・金属抵抗体薄膜 6・・・オーミック電)i 7・・・電極 8・・・接合部 9・・・接合部 10・・・熱電対素子
1 and 2 are schematic diagrams of a thermocouple element according to an embodiment of the present invention, FIG. 1 is a plan view thereof, and FIG.
A cross section taken along line xx' is shown. 3 and 4 are used to explain the prior art. FIG. 3 is a schematic diagram showing problems in the prior art, and FIG. 4 is a schematic diagram. In the figure, 1 and 11 are insulating substrates, 2 is a lead wire, and 3
and 13 are amorphous semiconductor thin films, 4 and 14 are metal resistor thin films, 6 and 16 are ohmic electrodes, 7 and 17 are electrodes,
10 and 20 are thermocouple elements, and 12 is an insulating thin film, respectively. Patent Applicant Anri Co., Ltd. Agent Patent Attorney Ryuta Koike 4...Metal resistor thin film 6...Ohmic electric) i 7...Electrode 8...Joint part 9...Joint part 10... thermocouple element

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性基板(11)と;該絶縁性基板(11)上
に設けられた絶縁性薄膜(12)と;該絶縁性薄膜(1
2)上に設けられたアモルファス半導体薄膜(13)と
;該絶縁性薄膜(12)上に設けられ、その一方が該ア
モルファス半導体薄膜(13)の一方と接合(15)し
て形成された金属抵抗体薄膜(14)と;該接合部(1
5)を介し隔離して該アモルファス半導体薄膜(13)
の他方と金属抵抗体薄膜(14)の他方にそれぞれ接合
して設けられたオーミック電極(16)と電極(17)
とを備え、 前記接合部(15)を温接点(冷接点)とし、前記オー
ミック電極(16)と電極(17)とをそれぞれ冷接点
(温接点)とすることにより該オーミック電極(16)
と電極(17)との間に、熱起電力が発生するようにし
たことを特徴とする熱電対素子。 2)絶縁性基板上に、イオンプレーティング法により酸
化シリコン薄膜と酸化アルミナ薄膜とを順次、交互に堆
積する第1の堆積工程と;該順次、交互に堆積された酸
化シリコン薄膜と酸化アルミナ薄膜との上にアモルファ
ス半導体薄膜を堆積する第2の堆積工程と;該堆積され
たアモルファス半導体薄膜の上に、フォトエッチング技
術により所望のパターンを形成するパターン形成工程と
;該堆積されたアモルファス半導体薄膜の上に電極を形
成する電極形成工程とからなる熱電対素子の製法。
(1) An insulating substrate (11); an insulating thin film (12) provided on the insulating substrate (11); and an insulating thin film (12) provided on the insulating substrate (11);
2) an amorphous semiconductor thin film (13) provided on the insulating thin film (12), one of which is bonded (15) to one of the amorphous semiconductor thin films (13); the resistor thin film (14) and the junction (1
5) the amorphous semiconductor thin film (13) isolated through
an ohmic electrode (16) and an electrode (17) connected to the other of the metal resistor thin film (14) and the other of the metal resistor thin film (14), respectively.
The ohmic electrode (16) is provided by making the junction part (15) a hot junction (cold junction), and making the ohmic electrode (16) and the electrode (17) each a cold junction (hot junction).
A thermocouple element characterized in that a thermoelectromotive force is generated between and an electrode (17). 2) a first deposition step of sequentially and alternately depositing a silicon oxide thin film and an alumina oxide thin film on an insulating substrate by an ion plating method; the sequentially and alternately deposited silicon oxide thin film and alumina oxide thin film; a second deposition step of depositing an amorphous semiconductor thin film on the deposited amorphous semiconductor thin film; a pattern forming step of forming a desired pattern by photo-etching technology on the deposited amorphous semiconductor thin film; A method for manufacturing a thermocouple element, which comprises an electrode forming step of forming an electrode on top of the electrode.
JP61096337A 1986-04-25 1986-04-25 Thermocouple element and its manufacturing method Expired - Fee Related JP2577546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096337A JP2577546B2 (en) 1986-04-25 1986-04-25 Thermocouple element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096337A JP2577546B2 (en) 1986-04-25 1986-04-25 Thermocouple element and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS62252977A true JPS62252977A (en) 1987-11-04
JP2577546B2 JP2577546B2 (en) 1997-02-05

Family

ID=14162200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096337A Expired - Fee Related JP2577546B2 (en) 1986-04-25 1986-04-25 Thermocouple element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2577546B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223391A (en) * 1989-02-21 1990-09-05 Japan Atom Power Co Ltd:The Thermoelectric generator
JPH02261079A (en) * 1989-03-31 1990-10-23 Japan Atom Power Co Ltd:The Thermoelectric generation set
JPH04202273A (en) * 1990-11-29 1992-07-23 Mitsubishi Pencil Co Ltd Pigment ink composition
WO2012127710A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Electrostatic atomizer device and method for producing same
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209174A (en) * 1982-05-31 1983-12-06 Anritsu Corp Thermocouple element
JPS6163050A (en) * 1984-09-03 1986-04-01 Tokyo Electric Co Ltd Image senser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209174A (en) * 1982-05-31 1983-12-06 Anritsu Corp Thermocouple element
JPS6163050A (en) * 1984-09-03 1986-04-01 Tokyo Electric Co Ltd Image senser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223391A (en) * 1989-02-21 1990-09-05 Japan Atom Power Co Ltd:The Thermoelectric generator
JPH02261079A (en) * 1989-03-31 1990-10-23 Japan Atom Power Co Ltd:The Thermoelectric generation set
JPH04202273A (en) * 1990-11-29 1992-07-23 Mitsubishi Pencil Co Ltd Pigment ink composition
WO2012127710A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Electrostatic atomizer device and method for producing same
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element

Also Published As

Publication number Publication date
JP2577546B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US4463336A (en) Ultra-thin microelectronic pressure sensors
US5165283A (en) High temperature transducers and methods of fabricating the same employing silicon carbide
JPH0429014B2 (en)
JP2926158B2 (en) Method of manufacturing conductive microbridge
JPH0590011A (en) Thermosensitive resistor and its manufacture
JPS62252977A (en) Thermocouple element and manufacture thereof
JP4271751B2 (en) Electronic device and method for forming a membrane for an electronic device
KR100432465B1 (en) Thin film piezoresistive sensor and method of making the same
JPS59172774A (en) Amorphous silicon thin film transistor
KR20020069323A (en) Metal resistor device and method for manufacturing the same
US5380373A (en) Floating single crystal thin film fabrication method
JPH08261853A (en) Mechanical-quantity sensor element
JP3540277B2 (en) Touch mode capacitive pressure sensor and method of manufacturing the same
JP3555739B2 (en) Manufacturing method of thin film gas sensor
JPS59113666A (en) Manufacture of thin film transistor
JPS58209174A (en) Thermocouple element
JPH09210748A (en) Thermal type flow rate sensor
JP3195443B2 (en) Infrared detector
JP4653265B2 (en) Heat generation type thin film element sensor and manufacturing method thereof
JP3195441B2 (en) Infrared detector
JP2665116B2 (en) Semiconductor thin film thermistor
JP3179861B2 (en) Manufacturing method of infrared sensor
JP2650280B2 (en) Island-shaped thin film element
JPH06147993A (en) Infrared sensor element and its manufacture
JP2946351B2 (en) Infrared sensor and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees