JP2829151B2 - Conductive material bonding element and circuit configuration - Google Patents

Conductive material bonding element and circuit configuration

Info

Publication number
JP2829151B2
JP2829151B2 JP3123202A JP12320291A JP2829151B2 JP 2829151 B2 JP2829151 B2 JP 2829151B2 JP 3123202 A JP3123202 A JP 3123202A JP 12320291 A JP12320291 A JP 12320291A JP 2829151 B2 JP2829151 B2 JP 2829151B2
Authority
JP
Japan
Prior art keywords
conductive material
circuit
coil
current
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3123202A
Other languages
Japanese (ja)
Other versions
JPH07263755A (en
Inventor
一夫 大坪
欣一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MERUKOA JAPAN KK
Original Assignee
MERUKOA JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MERUKOA JAPAN KK filed Critical MERUKOA JAPAN KK
Priority to JP3123202A priority Critical patent/JP2829151B2/en
Priority to CA002050843A priority patent/CA2050843C/en
Priority to MYPI91001640A priority patent/MY106884A/en
Priority to KR1019910015965A priority patent/KR0185728B1/en
Priority to MX9101120A priority patent/MX9101120A/en
Priority to SU915001559A priority patent/RU2099882C1/en
Priority to DK91115850.9T priority patent/DK0476620T3/en
Priority to ES91115850T priority patent/ES2101705T3/en
Priority to SG1996003759A priority patent/SG54196A1/en
Priority to AT96108582T priority patent/ATE198009T1/en
Priority to DE69124041T priority patent/DE69124041T2/en
Priority to ES96108582T priority patent/ES2153916T3/en
Priority to EP96108582A priority patent/EP0739044B1/en
Priority to DE69132491T priority patent/DE69132491T2/en
Priority to AT91115850T priority patent/ATE147548T1/en
Priority to DK96108582T priority patent/DK0739044T3/en
Priority to EP91115850A priority patent/EP0476620B1/en
Priority to CN94104036A priority patent/CN1113493C/en
Priority to US08/329,688 priority patent/US5491452A/en
Publication of JPH07263755A publication Critical patent/JPH07263755A/en
Priority to US08/748,096 priority patent/US5869892A/en
Priority to GR960403682T priority patent/GR3022247T3/en
Application granted granted Critical
Publication of JP2829151B2 publication Critical patent/JP2829151B2/en
Priority to GR20010400363T priority patent/GR3035522T3/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Television Receiver Circuits (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電形の異なる2種材
料の接合対よりなる導電材接合素子と、入力信号を電磁
気を用いて各種形態の出力に変換する電磁気装置の出力
回路とコイルとの結合回路内に当該素子を直列に接続挿
入する電磁気装置回路の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive material bonding element comprising a bonding pair of two materials having different conductivity types, an output circuit and a coil of an electromagnetic device for converting an input signal into an output in various forms by using electromagnetic force. The present invention relates to a configuration of an electromagnetic device circuit in which the elements are connected and inserted in series in a coupling circuit.

【0002】[0002]

【従来の技術】従来、導電形の異なる2種材料の接合対
は、熱電素子として接合素子の接合部間に定常な温度差
を与えて発生する熱起電力を一種の電池とし、外部にモ
ータ、電灯などの負荷をつなぎ、これらを作動させる電
力を取り出す熱電発電器として、また、接合素子に比較
的大きな直流電流を流し、接合部に発生するペルチエ吸
熱および発熱を冷却や温度制御に用いてきた。これらの
場合、流れる電流のため発生するジュール熱量および高
温接合部より低温接合部に貫流する伝導熱量は有効な発
電や冷却に損失として働き、その影響は極めて大きい。
また、それらの効率の向上のため接合部に大きなフィン
などの熱交換器を必要とする。
2. Description of the Related Art Conventionally, a bonding pair of two materials having different conductivity types has been used as a thermoelectric element, in which a thermoelectromotive force generated by giving a steady temperature difference between the bonding portions of the bonding element is used as a kind of battery, and a motor is externally provided. It has been used as a thermoelectric generator to connect loads such as lamps and extract power to operate them.Also, a relatively large DC current is applied to the junction element, and Peltier heat absorption and heat generated at the junction are used for cooling and temperature control. Was. In these cases, the amount of Joule heat generated by the flowing current and the amount of conduction heat flowing through the low-temperature junction from the high-temperature junction serve as losses in effective power generation and cooling, and the effect is extremely large.
In addition, a heat exchanger such as a large fin is required at the joint to improve the efficiency.

【0003】一方、電磁気装置の出力回路には、一般に
コイルが接続され、これに出力信号電流を流すことによ
って、コイルに発生する磁界を出力信号に応じて変化さ
せ、これを電子音響音波、電子画像表示、記録表示など
の所望の形態に変換している。従来、このような電磁気
装置は、出力回路とコイルとの結合回路内には何ら電子
素子などの部品を介在させることなく、直接接続され、
入力信号に忠実な出力を得ることが困難であった。
On the other hand, a coil is generally connected to an output circuit of an electromagnetic device, and by passing an output signal current through the coil, a magnetic field generated in the coil is changed in accordance with the output signal. It is converted into a desired form such as image display and record display. Conventionally, such an electromagnetic device is directly connected without any component such as an electronic element in a coupling circuit between an output circuit and a coil,
It has been difficult to obtain an output faithful to the input signal.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の電磁気装置の出力回路においては、特に出力
信号の電流極性が急激に反転する電流の0点付近におい
て、コイルや外部磁界との干渉による電磁誘導電圧によ
り生じる雑音電流によって正規の出力信号に攪乱を受
け、これが繰り返されることによって、出力信号の0レ
ベル付近における不規則な定在波雑音の発生成長を来し
ている。
However, in such an output circuit of a conventional electromagnetic device, especially in the vicinity of the zero point of the current where the current polarity of the output signal sharply reverses, the interference between the coil and the external magnetic field may occur. The normal output signal is disturbed by a noise current generated by the electromagnetic induction voltage, and this is repeated, thereby causing irregular standing wave noise to be generated and grown near the zero level of the output signal.

【0005】また、電磁気装置内には、コイルの他にト
ランス、抵抗器、コンデンサー、半導体素子などの電
気、電子部品が多数接続内蔵されており、上記定在波雑
音を含む出力電流は、これら部品の持つインダクタン
ス、コンダクタンス、キャパシタンスなどの電気的な成
分や熱雑音、電子の散乱などの材料物性的な成分の影響
を受けて、電流の0レベル付近における定在波雑音をさ
らに助長し、時にはこれらの干渉によるエネルギーの大
きい雑音を発生する結果となっている。
[0005] In addition, many other electric and electronic components such as transformers, resistors, capacitors, and semiconductor elements are connected and built in the electromagnetic device in addition to the coils. The output current including the standing wave noise is generated by these components. Under the influence of electrical components such as inductance, conductance, and capacitance of components, thermal noise, and material properties such as electron scattering, the standing wave noise near the zero level of current is further promoted, and sometimes As a result, noise having a large energy due to the interference is generated.

【0006】これらの定在波雑音は本来、入力信号に忠
実であるべき正規の出力信号に重畳され、入力側の信号
を忠実に変換することができないのが実状である。従来
のこのような電磁機器は、入力信号の音響、映像、デー
タ記録などへの再生変換を不正確かつ不明瞭なものと
し、これらの科学性、芸術性を喪失させ、あるいは人の
視聴覚神経をいたずらに刺激し、社会環境、芸術文化、
精神衛生および科学技術上、極めて大きな悪影響を及ぼ
している。これをこのまま放置することは、社会的にみ
て容認することのできない重大な問題である。
[0006] These standing wave noises are superimposed on a regular output signal that should be faithful to the input signal, and the signal on the input side cannot be faithfully converted. Such conventional electromagnetic devices make the conversion of the input signal into audio, video, data recording, etc. inaccurate and unclear, lose their scientific and artistic abilities, or impair the human audiovisual nerve. Inspire mischief, social environment, arts and culture,
It has a profound effect on mental health and science and technology. Leaving this as it is is a serious socially unacceptable problem.

【0007】本発明は、上述した従来の電磁気装置の欠
点を解決し、極めて効果的に、かつ安価な方法によっ
て、入力信号を忠実に再生する良好な電磁気装置を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks of the conventional electromagnetic device and to provide a good electromagnetic device which faithfully reproduces an input signal by an extremely effective and inexpensive method.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために、本発明は導電形の異なる2種材料の接合対か
らなる構造、製法の極めて簡単、かつ安価な導電材接合
素子と、当該素子を電磁気装置の出力回路とコイルとの
結合回路内に直列に接続挿入した簡単な電磁気装置の回
路構成を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a structure comprising a joining pair of two materials having different conductivity types, a very simple and inexpensive conductive material joining element, and It is characterized by a circuit configuration of a simple electromagnetic device in which the elements are connected and inserted in series in a coupling circuit between an output circuit and a coil of the electromagnetic device.

【0009】上記出力回路とコイルとの結台回路内に直
列に接続挿入する導電材接合素子の導電形の異なる2種
材料は、それぞれ常温において絶対熱電能の絶対値が5
0μVK−1以上、抵抗率が1×10Ω・m以下、熱
伝導率が10Wm−1−1以下の値を有するものであ
る。したがって両者を接合してなる導電材接合素子は、
常温における相対熱電能が100μVK−1以上の大き
な値、抵抗率の和が2×10Ω・m以下および熱導率
の和が20Wm−1−1以下の小さな値を有し、かつ
接合部において整流作用を有しないことを特徴とする。
The two materials having different conductivity types of the conductive material joining element inserted and connected in series in the tie circuit between the output circuit and the coil have an absolute thermoelectric power of 5 at room temperature.
It has a value of 0 μVK −1 or more, a resistivity of 1 × 10 4 Ω · m or less, and a thermal conductivity of 10 Wm −1 K −1 or less. Therefore, the conductive material joining element formed by joining the two is:
The relative thermopower at room temperature has a large value of 100 μVK −1 or more, the sum of the resistivity has a small value of 2 × 10 4 Ω · m or less, and the sum of the thermal conductivity has a small value of 20 Wm −1 K −1 or less; It is characterized in that it has no rectifying action in the part.

【0010】[0010]

【作用】本発明の導電材接合素子およびこれを電磁気装
置の出力回路とコイルとの結合回路内に直列に接続挿入
した回路には、当該素子に流れる出力信号電流により当
該素子の接合部およびそれに相対する両電極部において
当該素子を流れる電流の方向に応じて、当該素子の有す
る相対熱電能とそれに流れる電流およびそれらの絶対温
度に比例したペルチエ効果による吸熱または発熱が生じ
る。このペルチエ吸熱量および発熱量は、当該素子の電
気抵抗によって発生するジュール熱量および当該素子を
高温から低温に貫流する伝導熱量の影響を受けるが、本
発明における急激な出力電流の変化に対しては、これら
ジュール熱量および伝導熱量の影響は比較的少なく、過
渡的には、当該素子接合部およびそれに相対する両電極
の間に、主としてペルチエ効果による非定常な温度差を
生じ、この温度差は、素子の有する相対熱電能に比例し
たゼーベック効果による非定常な逆起電力を当該素子両
電極部に発生させる。
According to the present invention, a conductive material bonding element of the present invention and a circuit in which the element is connected in series in a coupling circuit between an output circuit of an electromagnetic device and a coil are connected to a junction of the element by an output signal current flowing through the element. Heat is absorbed or generated by the Peltier effect in proportion to the relative thermopower of the element and the current flowing through the element and the absolute temperature thereof, depending on the direction of the current flowing through the element at both opposing electrode portions. The Peltier heat absorption and heat generation are affected by Joule heat generated by the electric resistance of the element and conduction heat flowing through the element from high temperature to low temperature. The influence of the Joule heat and the conduction heat is relatively small, and transiently causes an unsteady temperature difference mainly due to the Peltier effect between the element junction and the two electrodes opposed thereto, and this temperature difference is An unsteady back electromotive force is generated at both electrode portions of the element due to the Seebeck effect proportional to the relative thermopower of the element.

【0011】これらの現象は、当該素子の接合部の接合
境界層における電子の敏速な挙動によって生じるもので
あり、定在波の主たる原因となるコイルのインダクタン
スに起因する逆電磁誘導電圧による電流を迅速に相殺抑
制するように作用し、結果として有害な定在波を除去
し、入力信号に忠実な正規の出力信号を維持することに
よって、極めて良好な電磁気装置が実現できる。
[0011] These phenomena are caused by the rapid action of electrons in the junction boundary layer at the junction of the element, and the current caused by the inverse electromagnetic induction voltage caused by the inductance of the coil, which is the main cause of the standing wave, is generated. Very good electromagnetic devices can be achieved by acting quickly to suppress cancellation, thereby removing harmful standing waves and maintaining a regular output signal that is faithful to the input signal.

【0012】[0012]

【実施例】以下に図面を参照して本発明を詳細に説明す
る。第1図に本発明の導電材接合素子、第2図に当該素
子を用いた音響機器回路構成、第3図に電子画像表示回
路構成、第4図に電子画像表示回路における偏向「のこ
ぎり」波形を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 shows a conductive material bonding element of the present invention, FIG. 2 shows a circuit configuration of an audio equipment using the element, FIG. 3 shows an electronic image display circuit configuration, and FIG. 4 shows a deflection "saw" waveform in the electronic image display circuit. Is shown.

【0013】第1図に示すように、本実施例導電材接合
素子(1)は、導電形の異なるp形材料(2)およびn
形材料(3)の接合対よりなり、接合部(4)と反対側
の材料端面(5)、(6)には、電極端子としてリード
線(7)、(8)が接続され、それぞれ接合境界層を形
成している。第1図(a)は、バルク状材料を接合した
導電材接合素子。第1図(b)は、薄膜または厚膜状材
料を接合した導電材接合素子。第1図(c)は、バルク
状材料を接合金属片(9)を用いてΠ形に接合した導電
材接合素子である。
As shown in FIG. 1, the conductive material bonding element (1) of the present embodiment comprises a p-type material (2) and n-type materials having different conductivity types.
Lead wires (7) and (8) are connected as electrode terminals to the material end faces (5) and (6) on the opposite side of the joining portion (4). Forming a boundary layer. FIG. 1A shows a conductive material bonding element obtained by bonding bulk materials. FIG. 1 (b) shows a conductive material bonding element in which a thin film or thick film material is bonded. FIG. 1 (c) shows a conductive material joining element in which a bulk material is joined in a triangle shape using a joining metal piece (9).

【0014】このような接合素子(1)に、例えばp形
(2)よりn形(3)に電流が流れると、接合部(4)
には素子(1)の相対熱電能α、電流Iおよび接合部
(4)の絶対温度Tに比例したペルチエ発熱量α
を生じ、一方、両電極部(5)、(6)には素子
(1)の相対熱電能α、電流Iおよび電極部(5)、
(6)の絶対温度T5.6に比例したペルチエ吸熱量の
合計αIT5.6を生じる。その結果、接合部(4)
は温度上昇し、両電極部(5)、(6)は温度降下し、
その温度差△Tは、素子の電気抵抗Rによるジュール熱
量IRと熱抵抗の逆数である熱コンダクタンスKによ
る熱貫流量K△Tの影響を受けて過渡的に変化する。し
かし、本発明にかかる信号電流の急激な変化に対して
は、ジュール熱量と熱貫流量の影響は比較的少なく、そ
の温度差△Tは、主としてペルチエ吸熱量および発熱量
によって、極めて敏速かつ過渡的に変化し、接台部
(4)の温度が T、両電極(5)、(6)の温度が
となった時点では、接合部(4)と両電極部
(5)、(6)の間には、過渡的温度差△T=T
を生じる。
When a current flows from the p-type (2) to the n-type (3) in such a junction element (1), for example, the junction (4)
Has a Peltier heating value α R I proportional to the relative thermopower α R of the element (1), the current I and the absolute temperature T 4 of the junction (4).
T 4 , while the two electrodes (5) and (6) have the relative thermopower α R of the element (1), the current I and the electrode (5),
(6) yields a total α R IT 5.6 of Peltier endotherms proportional to the absolute temperature T 5.6 . As a result, the joint (4)
Rises in temperature, and both electrodes (5) and (6) fall in temperature.
The temperature difference ΔT changes transiently under the influence of the Joule heat I 2 R due to the electrical resistance R of the element and the heat flow rate KΔT due to the thermal conductance K which is the reciprocal of the thermal resistance. However, the abrupt change in the signal current according to the present invention is relatively little affected by the Joule calorific value and the heat flow rate, and the temperature difference ΔT is extremely rapid and transient mainly due to the Peltier heat absorption and heat generation. varying with the temperature T h of Seddai portion (4), the electrodes (5), at the time when the temperature of (6) becomes T c, the junction (4) and the electrodes (5), During (6), the transient temperature difference ΔT t = Th
Yields Tc .

【0015】発生したこの過渡的温度差△Tは、ゼー
ベック効果により素子の相対熱電能αに比例した過渡
的な逆起電力α△T を両電極間(5)、(6)に与
える。p形(2)よりn形(3)へ過渡的信号電流が流
れる場合、電極(5)はプラス、電極(6)はマイナス
の電圧極性をもつ。当該素子に流れる信号電流の向きが
逆転すると、接合部温度と両電極部の温度および電極の
電圧極性が逆になる。
The generated transient temperature difference ΔT t causes a transient back electromotive force α R ΔT proportional to the relative thermopower α R of the element due to the Seebeck effect between the two electrodes (5) and (6). give. When a transient signal current flows from the p-type (2) to the n-type (3), the electrode (5) has a positive voltage polarity and the electrode (6) has a negative voltage polarity. When the direction of the signal current flowing through the element is reversed, the junction temperature, the temperature of both electrode portions, and the voltage polarity of the electrodes are reversed.

【0016】これらペルチエ吸熱、発熱およびゼーベッ
ク逆起電力は素子の接合部(4)および両電極(5)、
(6)の接合境界層における信号出力に基づく電子の極
めて敏捷な挙動によって生じるものであるから、これが
電磁気装置のコイル回路に流れる電流方向の急激な反転
時にコイルのインダクタンス成分によって、出力電流の
0点付近に発生し、定在波雑音の原因となる逆電磁気誘
導電圧を速やかに相殺抑制し、出力信号を入力信号に忠
実な正規な波形に保ち、出力信号の著しい改善をもたら
すものである。したがって、本発明の導電材接合素子
は、従来の熱電発電や熱電冷却における熱電素子とは異
なった新規の機能を有するものであって、接合部に熱の
吸収や放散のための大きな熱交換器を装着することは不
要であり、電磁気装置の微小かつ急激な信号電流の変化
に対して当該素子が機能的に追随するためには、熱容量
の大きい熱交換器を接合部に装着することは、当該素子
の機能および電磁気装置回路内への実装性から、むしろ
阻害要因となる。
The Peltier heat absorption, heat generation and Seebeck back electromotive force are applied to the junction (4) of the element and both electrodes (5),
This is caused by the extremely agile behavior of electrons based on the signal output in the junction boundary layer of (6), and this is caused by the inductance component of the coil when the direction of the current flowing through the coil circuit of the electromagnetic device is suddenly reversed. The reverse electromagnetic induction voltage generated near the point and causing the standing wave noise is promptly suppressed and suppressed, the output signal is maintained in a normal waveform faithful to the input signal, and the output signal is remarkably improved. Therefore, the conductive material joining element of the present invention has a new function different from the conventional thermoelectric element in thermoelectric power generation and thermoelectric cooling, and has a large heat exchanger for absorbing and dissipating heat at the joint. It is not necessary to attach a heat exchanger with a large heat capacity to the junction in order for the element to functionally follow minute and sudden changes in the signal current of the electromagnetic device. It is rather a hindrance due to the function of the element and its mountability in the electromagnetic device circuit.

【0017】導電形の異なる材料としては、第1表に見
られるように、金属および化合物の絶対熱電能が計測さ
れ、その大きさの順に熱電系列として示されていて、絶
対熱電能の絶対値の大きな材料が存在する。好適な材料
としては、熱電半導体材料が挙げられる。この材料は、
使用する温度領域において絶対熱電能の絶対値│α│
(μVK−1)が大きく、抵抗率ρ(Ω・m)および熱
伝導率
As shown in Table 1, as materials having different conductivity types, the absolute thermoelectric powers of metals and compounds are measured and shown as a thermoelectric series in the order of their magnitudes. Large materials exist. Suitable materials include thermoelectric semiconductor materials. This material is
Absolute value of absolute thermoelectric power | α |
(ΜVK −1 ), the resistivity ρ (Ω · m) and the thermal conductivity

【0018】κ(Wm−1−1)が低いもので、同一
電流に対するペルチエ効果による温度差△Tの発生お
よびゼーベック効果による逆起電力α△T(V)の発
生の効果が大きい。z=αρ−1κ−1は、一般に熱
電材料の性能指数と呼ばれ、この値の大きな導電材料を
用いた接合素子が本発明の良好な導電材接合素子と見な
される。
Since κ (Wm −1 K −1 ) is low, the effect of generating the temperature difference ΔT t by the Peltier effect and the generation of the back electromotive force αΔT t (V) by the Seebeck effect for the same current are large. . z = α 2 ρ −1 κ −1 is generally called a figure of merit of a thermoelectric material, and a bonding element using a conductive material having a large value is regarded as a good conductive material bonding element of the present invention.

【0019】導電材接合素子に用いる材料の例をさらに
具体的に述べれば、現時点においては常温付近において
性能指数zの大きいビスマス・テルル系材料、鉛・ゲル
マニウム・テルル系材料、シリコン・ゲルマニウム系材
料、セレン化合物系材料、鉄けい化物材料などがある。
More specifically, examples of materials used for the conductive material bonding element are as follows: at present, bismuth tellurium-based materials, lead-germanium-tellurium-based materials, silicon-germanium-based materials having a large figure of merit z near room temperature. , Selenium compound-based materials, iron silicide materials, and the like.

【0020】ビスマス・テルル系のp形材料の例として
は、(SbTe(BiTe(Sb
、ただしA=70〜72、B=23〜27、C
=3〜5にTeをドナーとして添加したものがある。
Examples of the bismuth tellurium-based p-type material include (Sb 2 Te 3 ) A (Bi 2 Te 3 ) B (Sb 2 S
e 3 ) C , where A = 70-72, B = 23-27, C
= 3 to 5 to which Te was added as a donor.

【0021】同じ系のn形材料の例としては、(Bi
Te(SbTe(BiSe、た
だしD=90〜98、E=0〜50,F=2〜5にSb
、HgBrのような金属ハロゲン化物をドナーと
して添加したものがあり、これらp形およびn形材料
は、何れも常温における熱電能の絶対値は180μVK
−1以上、抵抗率は1×10−5Ω・m以下、熱伝導率
は1.6Wm−1−1以下である。従って、それらの
常温における性能指数は何れも2×10−3 以上
である。
Examples of n-type materials of the same type include (Bi 2
Te 3 ) D (Sb 2 Te 3 ) E (Bi 2 Se 3 ) F , provided that D = 90 to 98, E = 0 to 50, F = 2 to 5 and Sb
There is a material to which a metal halide such as I 3 and HgBr 2 is added as a donor. These p-type and n-type materials each have an absolute thermoelectric power at room temperature of 180 μVK
−1 or more, the resistivity is 1 × 10 −5 Ω · m or less, and the thermal conductivity is 1.6 Wm −1 K −1 or less. Therefore, all of them have a figure of merit at room temperature of 2 × 10 −3 K 1 or more.

【0022】これらの材料は、一方向性凝固による結晶
成長法、冷間または熱間加圧粉末焼結法、蒸着法、スパ
ッターリング法、クラスタイオンビーム法、メッキ法、
プラズマジェット法、吐出法、印刷法などの方法によつ
てバルク状、薄膜状または厚膜状に作ることができる。
また、p−n接合部をこれら材料の製造工程の途中で同
時にまたは連続して形成することもできる。
These materials are prepared by a crystal growth method using directional solidification, a cold or hot pressing powder sintering method, a vapor deposition method, a sputtering method, a cluster ion beam method, a plating method,
It can be formed into a bulk, thin film or thick film by a method such as a plasma jet method, a discharge method, and a printing method.
Further, the pn junction can be formed simultaneously or continuously during the production process of these materials.

【0023】本発明の導電材接合素子は、以上の導電形
の異なる材料を少量用いて接合し、極めて小型軽量かつ
安価に形成することができる。
The conductive material bonding element of the present invention can be formed extremely small, light and inexpensively by bonding using a small amount of the above-mentioned materials having different conductivity types.

【0024】本実施例の導電材接合素子には、上記ビス
マス・テルル系の常温におけるp形およびn形材料の熱
電能の絶対値が200μVK−1、抵抗率が1×10
−5Ω・m、熱伝導率が1.5Wm−1−1、従って
性能指数が2.7×10−3−1、寸法が0.4×
0.4×1.3mm〜3.0×3.0×2.5mmのも
のを第1図(a)または(c)の形状に半田接合し、導
電材接合素子として実施した。しかし、この接合方法、
材料特性、寸法および形状は、一実施例であって何ら本
発明の請求範囲を拘束するものではない。さらに性能指
数の良い熱電材料が開発されれば、これらは本発明の導
電材料として有効に利用することができる。
In the conductive material bonding element of this embodiment, the bismuth-tellurium-based p-type and n-type materials at room temperature have an absolute thermoelectric power of 200 μVK −1 and a resistivity of 1 × 10
−5 Ω · m, thermal conductivity of 1.5 Wm −1 K −1 , and therefore a figure of merit of 2.7 × 10 −3 K −1 and dimensions of 0.4 ×
A device having a size of 0.4 × 1.3 mm to 3.0 × 3.0 × 2.5 mm was soldered to the shape shown in FIG. 1A or FIG. However, this joining method,
The material properties, dimensions and shapes are examples and do not limit the scope of the invention in any way. If thermoelectric materials having a better figure of merit are developed, they can be effectively used as the conductive material of the present invention.

【0025】第2図は、電磁気装置として音響機器を例
にとり、音響機器の増幅回路の音響出力回路とボイスコ
イルとの結合回路に、本発明の導電材接合素子を少なく
とも1個を直列に接続挿入する本発明の電磁気装置回路
の実施例である。従来の音響機器には、スピーカとして
動電形と静電形の2種類があるが、現在のスピーカは、
ほとんどが動電形である。本実施例は、動電形スピーカ
回路に関するものである。動電形スピーカは、ボイスコ
イルを有する振動板すなわち振動系のコイル部をマグネ
ットの磁界中に置き、コイルに音響電流が流れると電磁
誘導作用により振動板が振動して音波を放射する。本来
の原音響が無音である場合は、スピーカの音響駆動電流
は0で、ポイスコイルは振動系の中性点にあり、スピー
カのボイスコイル、すなわち振動板の振動があってはな
らない。しかし、このような振動系の中性点において
は、弾性力学的に見ても微弱な機械的および電磁気的な
力に対して容易に追従して無音であるべき領域において
雑音を発生することは明かである。本来の原音響電流に
よる振動系の振動の後に、無音であるべき中性点領域に
おいて振動系が機械的な弾性振動を残存し、この作用
は、原振動の振幅が大きいほど大きいことはその構造上
避けられない。このコイル部の機械的残振動はコイルと
マグネツ卜磁界との電磁誘導作用による逆起電力による
電流をボイスコイルに流し、これが無音であるべき中性
点領域において雑音すなわちノイズを放射して本来の音
響を不明瞭かつ不快なものにする。このノイズは、さら
にボイスコイルに帰還され電気的な干渉を惹起し、この
ような現象が繰り返し反復重畳され、スピーカからは、
これら音響的、電気的干渉による定在波ノイズ、時には
共振、共鳴などエネルギーの大きい原音にない極めて複
雑で有害な雑音を含んだ再生音響を放射する。この雑音
は、ボイスコイルの中性点において起こり易く、無音で
あるべき中性点領域において、原音にない聴覚神経を苛
立たせる不快音として音響機器の再生音に混入し、音質
を阻害している。
FIG. 2 shows an acoustic device as an example of an electromagnetic device. At least one conductive material joining element of the present invention is connected in series to a coupling circuit between an acoustic output circuit of an amplifying circuit of the acoustic device and a voice coil. 7 is an embodiment of an electromagnetic device circuit of the present invention to be inserted. Conventional audio equipment has two types of speakers: electrodynamic type and electrostatic type.
Most are electrokinetic. This embodiment relates to an electrodynamic speaker circuit. In an electrodynamic loudspeaker, a diaphragm having a voice coil, that is, a coil part of a vibration system is placed in a magnetic field of a magnet, and when an acoustic current flows through the coil, the diaphragm vibrates due to an electromagnetic induction action to emit sound waves. When the original sound is silent, the acoustic drive current of the speaker is 0, the voice coil is at the neutral point of the vibration system, and the voice coil of the speaker, that is, the diaphragm must not be vibrated. However, at the neutral point of such a vibration system, it is difficult to generate noise in an area that should be silent by easily following weak mechanical and electromagnetic forces even when viewed from an elastodynamic point of view. It is clear. After the vibration of the vibration system due to the original sound current, the vibration system remains mechanically elastic in the neutral point region where the sound should be silenced. Inevitable above. The mechanical residual vibration of the coil portion causes a current caused by a back electromotive force caused by an electromagnetic induction action between the coil and the magnetic field to flow through the voice coil, and this radiates noise, that is, noise at a neutral point region where noise should be generated. Makes sound indistinct and unpleasant. This noise is further fed back to the voice coil and causes electrical interference, and such a phenomenon is repeatedly and repeatedly superimposed.
The reproduced sound contains standing wave noise due to these acoustic and electrical interferences, and sometimes extremely complex and harmful noises which are not present in the original sound having high energy such as resonance and resonance. This noise is likely to occur at the neutral point of the voice coil, and in the neutral point area where it is supposed to be silent, it mixes with the reproduced sound of the audio equipment as an unpleasant sound that irritates the auditory nerve that is not in the original sound, and impairs the sound quality .

【0026】第2図(a)は、モノラルスピーカ
(9’)の回路(10)に導電材接合素子1個を直列に
接続挿入した例。第2図(b)は、モノラルスピーカ
(9’)の回路(10)、(11)に当該素子をそれぞ
れ1個、計2個を直列に接続挿入した例。第2図(c)
は、ステレオスピーカ(9’)の共通回路すなわちコモ
ン(12)に当該素子1個を直列に接続挿入した例。第
2図(d)は、ステレオスピーカ(9’)の左右両回路
(13)、(14)にそれぞれ当該素子をそれぞれ1個
を接続挿入した例である。本発明の導電材料接合素子お
よびこれを音響機器とスピーカボイスコイルとの結合回
路内に直列に接続挿入した回路には、当該素子に流れる
音響電流により当該素子接合部およびそれに相対する両
接合部において当該素子に流れる電流の方向に応じて、
当該素子の有する相対熱電能、それに流れる電流および
その絶対温度に比例したペルチエ効果による吸熱または
発熱が生じる。当該素子(1)がp形(2)からn形
(3)に電流が流れる様に接続されているときは、当該
素子接合部(4)にはペルチエ発熱、電極接合部
(5)、(6)にはペルチエ吸熱が生じ、当該素子接合
部(4)は、電極接合部(5)、(6)よりも高温とな
り、当該素子接合部(4)と電極接合部(5)、(6)
との間に温度差を生じ、同時に電極接合部(5)にはプ
ラス、(6)にはマイナスのゼーベック効果による逆起
電力が発生する。この逆起電力は、音響電流が0となっ
たときに発生するコイルとマグネット磁界との相互作用
によって発生する逆電磁誘導起電力を相殺抑制し、0レ
ベル付近に発生する定在波の原因となる雑音を抑制す
る。
FIG. 2 (a) shows an example in which one conductive material bonding element is connected in series to the circuit (10) of the monaural speaker (9 '). FIG. 2 (b) shows an example in which one element is connected to each of the circuits (10) and (11) of the monaural speaker (9 '), and a total of two elements are connected in series. Fig. 2 (c)
Shows an example in which one element is connected and inserted in series to a common circuit of a stereo speaker (9 ′), that is, a common (12). FIG. 2 (d) shows an example in which one element is connected to each of the left and right circuits (13) and (14) of the stereo speaker (9 '). The conductive material bonding element of the present invention and a circuit in which this is connected and inserted in series in a coupling circuit of an audio device and a speaker voice coil are connected by an acoustic current flowing through the element at the element bonding part and the two bonding parts opposed thereto. Depending on the direction of the current flowing through the element,
Heat absorption or heat generation occurs due to the Peltier effect in proportion to the relative thermopower of the element, the current flowing through the element, and its absolute temperature. When the element (1) is connected so that a current flows from the p-type (2) to the n-type (3), Peltier heat is generated in the element junction (4), and the electrode junctions (5), ( 6), Peltier heat absorption occurs, and the element junction (4) becomes higher in temperature than the electrode junctions (5) and (6), and the element junction (4) and the electrode junctions (5) and (6) become hotter. )
At the same time, a positive electromotive force is generated by the Seebeck effect at the electrode junction (5) and a negative one at (6). This back electromotive force suppresses the counter electromagnetic induction electromotive force generated by the interaction between the coil and the magnet magnetic field generated when the acoustic current becomes 0, and causes the standing wave generated near the 0 level. Suppress noise.

【0027】第3図は、電磁気装置としてテレビ受像機
をはじめとする電子画像表示装置を例にとり、この出力
回路に導電材接合素子を用いた本発明の電磁気装置回路
の実施例である。電子画像表示装置には、画像を正しく
再現するため、同期偏向回路が用いられている。この回
路は、受像側での映像信号の組立送査を送像側の分解送
査のタイミングと一致するように蛍光面に照射する電子
ビームの方向を制御している。一般に、電子画像表示装
置では受像管のネック部に上下、左右に水平および垂直
2組の偏向コイル(15)および(16)を置き、第4
図(a)に示すように、周波数がそれぞれ、水平コイル
に約15.734KHzと垂直コイルに約59.94H
zの図の走査線期間tおよび帰線期間tをもつ電流
の0点を中心に電流方向が繰り返し変化する「のこぎ
り」波電流A−B−Cをコイルに流すことによって電子
ビームに、それぞれのコイルの磁界による力のベクトル
和の方向の力を与え、電子ビームを上下、左右に偏向さ
せ、蛍光面に規定の送査輝点の列すなわちラスターを得
るようになっている。
FIG. 3 shows an embodiment of an electromagnetic device circuit according to the present invention in which an electronic image display device such as a television receiver is used as an example of an electromagnetic device, and a conductive material bonding element is used in this output circuit. 2. Description of the Related Art In an electronic image display device, a synchronous deflection circuit is used to correctly reproduce an image. This circuit controls the direction of the electron beam irradiating the phosphor screen so that the assembly and inspection of the video signal on the image receiving side coincides with the timing of the disassembly and inspection on the image transmitting side. Generally, in an electronic image display apparatus, two sets of horizontal and vertical deflection coils (15) and (16) are placed vertically and horizontally on the neck of a picture tube.
As shown in FIG. 7A, the frequency is about 15.734 KHz for the horizontal coil and about 59.94 H for the vertical coil, respectively.
The zigzag wave current ABC whose current direction changes repeatedly around the zero point of the current having the scanning line period t s and the retrace period t b in the drawing of FIG. A force is applied in the direction of the vector sum of the forces due to the magnetic fields of the respective coils, and the electron beam is deflected up and down, left and right, and a prescribed row of luminescent spots, ie, a raster, is obtained on the phosphor screen.

【0028】しかしながら、偏向コイル回路の空芯部に
は電子ビームが走っており、回路内には偏向コイルをは
じめトランスなどのインダクタンス成分をもつ電気部品
が含まれ、「のこぎり」波の電流方向の反転する付近の
過程、特にB−Cの期間の電流の0点を切る時点におい
て電磁誘導による逆起電圧を発生し、これが繰り返され
ることによって、「のこぎり」波電流の0レベルを中心
とした領域に不規則な定在波雑音電流を常時、定在させ
るようになり、これが正規の「のこぎり」波電流に重畳
され、第4図(b)に示すような、極めて不規則な波形
の「のこぎり」波電流となり、正規のラスターからのズ
レを生じる。その結果、蛍光面に再生される電子画像表
示は極めて不鮮明なものとなる。
However, an electron beam runs in the air core of the deflection coil circuit, and the circuit includes an electric component having an inductance component such as a deflection coil and a transformer, and the electric current in the current direction of the "saw" wave is included in the circuit. A back electromotive voltage due to electromagnetic induction is generated at a point in the vicinity of the reversal, particularly at the point where the current crosses the zero point during the period of BC, and this is repeated, so that the area around the zero level of the “saw” wave current is obtained. As shown in FIG. 4 (b), an irregular standing-wave noise current is always standing, and this is superimposed on a regular "saw" wave current. ”Wave current, which causes a deviation from the regular raster. As a result, the electronic image display reproduced on the phosphor screen becomes extremely unclear.

【0029】本発明の実施例では、第3図に示すように
水平偏向コイル(15)の端子(17)、(18)と水
平偏向出力端子(21)、(22)および垂直偏向コイ
ル(16)の端子(19)、(20)と垂直偏向出力端
子(23)、(24)とを結合する配線の途中の例えば
コイル端子(17)および(20)の側に直列に本発明
になる導電材接合素子(1)を図に示すように、それぞ
れ1個接続する回路構成としたものである。
In the embodiment of the present invention, as shown in FIG. 3, the terminals (17) and (18) of the horizontal deflection coil (15), the horizontal deflection output terminals (21) and (22) and the vertical deflection coil (16) ) Are connected in series with, for example, the coil terminals (17) and (20) in the middle of the wiring connecting the terminals (19) and (20) and the vertical deflection output terminals (23) and (24). As shown in the figure, the material joining element (1) has a circuit configuration in which each one is connected.

【0030】このような回路構成の例えば水平偏向回路
(15)を例にとれば、水平偏向出力端子の(22)が
「のこぎり」波のプラス極性になり、当該素子(1)が
n形(3)からp形(2)に電流が流れるように接続さ
れているときは、素子接合部(4)にはペルチエ吸熱、
電極接合部(5)、(6)にはペルチエ発熱が生じ、素
子接合部(4)は、電極接合部(5)、(6)よりも低
温となり、素子接合部(4)と電極接合部(5)、
(6)との間に温度差を生じ、この温度差によって電極
接合部(5)にはプラス、(6)にはマイナスのゼーベ
ック効果による逆起電力が発生する。
Taking the horizontal deflection circuit (15) having such a circuit configuration as an example, the horizontal deflection output terminal (22) has a positive polarity of a "saw" wave, and the element (1) has an n-type ( When the connection is made so that a current flows from 3) to the p-type (2), the element junction (4) absorbs Peltier heat,
Peltier heat is generated at the electrode junctions (5) and (6), and the temperature of the element junction (4) becomes lower than that of the electrode junctions (5) and (6). (5),
A temperature difference is generated between (6) and (6), and the temperature difference generates a positive electromotive force due to the Seebeck effect at the electrode junction (5) and a negative value at (6).

【0031】ゼーベック逆起電力による電流は、「のこ
ぎり」波電流が0点を切る過程に発生する定在波の原因
となる電流とコイルとの相互作用による逆電磁誘導起電
圧電流を相殺抑制する。この効果は、当該素子および水
平偏向出力端子の極性の向きの如何にかかわらず同様な
効果を発揮する。
The current due to the Seebeck back electromotive force suppresses the counter electro-magnetic induced electromotive force current due to the interaction between the coil and the current which causes the standing wave generated when the “saw” wave current crosses the zero point. . This effect is the same regardless of the polarity of the element and the horizontal deflection output terminal.

【0032】同様な現象が、水平および垂直偏向コイル
回路の「のこぎり」波の電流方向の反転の過程において
も起こり、電子画像表示装置の正規の「のこぎり」波形
を常時保持することができる。結果として、極めて正規
のラスターにより、入力信号に忠実な鮮明な電子画像表
示を得ることができる。
A similar phenomenon occurs in the process of reversing the current direction of the "saw" wave of the horizontal and vertical deflection coil circuits, and the normal "saw" waveform of the electronic image display device can be maintained at all times. As a result, a clear electronic image display faithful to the input signal can be obtained with a very regular raster.

【0033】また、カラーテレビの受像管のカソードと
映像出力回路内に当該素子を直列に挿入した実施例で
は、黒、白、中間色が特に良好になり、小さい文字や表
示が明瞭に表示されるようになった。
In the embodiment in which the element is inserted in series into the cathode of the picture tube of a color television and the video output circuit, black, white and intermediate colors are particularly good, and small characters and displays are clearly displayed. It became so.

【0034】本実施例の電導材接合素子の挿入箇所は一
例であり、電磁気装置における当該素子の挿入箇所を特
定するものではない。
The insertion location of the conductive material bonding element of this embodiment is an example, and does not specify the insertion location of the element in the electromagnetic device.

【0035】[0035]

【発明の効果】以上説明したように、本発明の導電材接
合素子は、従来の定常温度差による熱電発電や定常直流
電流による熱電冷却に用いる熱電素子とは異なり、その
構造が極めて簡単で、素子には特別に大きな吸熱や放熱
のための熱交換器を必要とせず、極めて小型軽量で安価
に、しかも大量に製造することができる。また、本発明
の導電材接台素子をもつ電磁気回路は、従来の電磁気装
置の信号出力回路とコイルとの結台回路に直列に、当該
素子を接続挿入する極めて簡単な操作で実現することが
できる。
As described above, the conductive material bonding element of the present invention has a very simple structure, unlike conventional thermoelectric elements used for thermoelectric power generation based on a steady temperature difference or thermoelectric cooling based on a steady DC current. The element does not require a special heat exchanger for heat absorption and heat radiation, and is extremely small, lightweight, inexpensive, and can be manufactured in large quantities. Further, the electromagnetic circuit having the conductive material mounting element of the present invention can be realized by an extremely simple operation of connecting and inserting the element in series with the connecting circuit between the signal output circuit and the coil of the conventional electromagnetic device and the coil. it can.

【0036】電磁気装置としては、実施例に挙げた音響
機器および電子画像表示装置の他に、スイッチングレギ
ュレータ、テープレコーダ、ペンレコーダ、入力トラン
ス、マイクロホン、送信用アンテナ、インバータ、コン
バータなど数多く利用されているが、本発明の導電材接
合素子は、それら既存の電磁気装置の信号出力回路とコ
イルとの結合回路に簡単に追加して接続挿入することが
できるが、その効果は顕著であり、当該素子をもつ電磁
気装置回路は、極めて新規な発明と見なされる。また、
電磁気装置ではないが、電子プリント回路、電子配線な
どで設計上必然的に発生するインダクタンスによる定在
波の防止に効果的である。
As the electromagnetic device, in addition to the audio equipment and the electronic image display device described in the embodiments, a large number of switching regulators, tape recorders, pen recorders, input transformers, microphones, transmitting antennas, inverters, converters and the like are used. However, the conductive material bonding element of the present invention can be easily added and connected to a coupling circuit between the signal output circuit and the coil of the existing electromagnetic device, but the effect is remarkable. The electromagnetic device circuit with is regarded as a very novel invention. Also,
Although it is not an electromagnetic device, it is effective in preventing standing waves due to inductance which is inevitably generated in design in electronic printed circuits, electronic wiring, and the like.

【0037】また、今後生産される電磁気装置などのコ
イル回路には、出力回路プリント基板部、コイル端子
部、あるいはコイル回路配線の途中に本発明の電導材接
合素子を製造時に、極めて簡単な作業工程で安価に付加
することができる。
In addition, a coil circuit such as an electromagnetic device to be manufactured in the future requires an extremely simple operation when manufacturing the conductive material bonding element of the present invention in the middle of the output circuit printed circuit board portion, the coil terminal portion, or the coil circuit wiring. It can be added inexpensively in the process.

【0038】本発明の電導材接合素子をもつ電磁気装置
などは、出力周波数帯の全域にわたって、コイル回路内
に発生する定在波雑音が除去され、極めて良質の電磁気
装置などを提供するものである。
The electromagnetic device or the like having the conductive material bonding element according to the present invention provides an extremely high-quality electromagnetic device or the like in which standing wave noise generated in a coil circuit is removed over the entire output frequency band. .

【0039】したがって、本発明の電導材接合素子およ
びこれを電磁気装置などにもつ回路は、産業上は云うま
でもなく、電磁気装置などによる全ての社会環境、芸術
文化、精神衛生、科学技術上に貢献するところ極めて大
である。
Therefore, the conductive material bonding element of the present invention and the circuit having the same in an electromagnetic device or the like can be used not only in industrial applications but also in all social environments, arts and culture, mental health and science and technology using electromagnetic devices and the like. The contributions are extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による導電材接合素子の構成を示す図で
あって、図(a)は、バルク状材料を接合した素子。図
(b)は、薄膜・厚膜状材料を接合した素子。図(c)
は、バルク状材料を接合金属片Π形に接合した素子の構
造。
FIG. 1 is a view showing a configuration of a conductive material bonding element according to the present invention, and FIG. 1 (a) shows an element in which a bulk material is bonded. FIG. 2B shows an element in which thin-film / thick-film materials are joined. Figure (c)
The figure shows the structure of a device in which a bulk material is bonded in a metal strip shape.

【図2】本発明による電導材接合素子をもつ音響機器装
置のコイル回路の実施例を示す図であって、図(a)、
(b)は、モノラルスピーカ回路、図(c)、(d)
は、ステレオスピーカ回路に当該素子を用いた実施例。
FIG. 2 is a diagram showing an embodiment of a coil circuit of an audio equipment having a conductive material joining element according to the present invention, wherein FIG.
(B) is a monaural speaker circuit, FIGS. (C) and (d)
Is an example using the element in a stereo speaker circuit.

【図3】本発明による電導材接合素子をもつ電子画像表
示装置の水平または垂直偏向コイル回路の実施例。
FIG. 3 is an embodiment of a horizontal or vertical deflection coil circuit of an electronic image display device having a conductive material bonding element according to the present invention.

【図4】「のこぎり」波形を示す図であって、図(a)
は、正規の「のこぎり」波形、図(b)は、定在波雑音
が重畳された不規則な「のこぎり」波形。
FIG. 4 is a diagram showing a “saw” waveform, and FIG.
Is a regular “saw” waveform, and FIG. 2B is an irregular “saw” waveform with standing wave noise superimposed.

【符合の説明】[Description of sign]

(1) 導電材接合素子 (2) p形導電材料 (3) n形導電材料 (4) p−n接合部 (5) p側電極 (6) n側電極 (7) p側リード線 (8) n側リード線 (9) 接合金属片 (9’) スピーカ・受話器・イヤホン等 (10) モノラルスピーカ配線 (11) モノラルスピーカ配線 (12) ステレオスピーカ配線(コモン) (13) ステレオスピーカ配線(左) (14) ステレオスピーカ配線(右) (15) 水平偏向コイル (16) 垂直偏向コイル (17) 水平偏向コイル端子 (18) 水平偏向コイル端子 (19) 垂直偏向コイル端子 (20) 垂直偏向コイル端子 (21) 水平偏向出力回路端子 (22) 水平偏向出力回路端子 (23) 垂直偏向出力回路端子 (24) 垂直偏向出力回路端子 (1) Conductive material bonding element (2) P-type conductive material (3) N-type conductive material (4) pn junction (5) P-side electrode (6) N-side electrode (7) P-side lead wire (8 ) N-side lead wire (9) bonded metal piece (9 ') speaker, receiver, earphone, etc. (10) monaural speaker wiring (11) monaural speaker wiring (12) stereo speaker wiring (common) (13) stereo speaker wiring (left) (14) Stereo speaker wiring (right) (15) Horizontal deflection coil (16) Vertical deflection coil (17) Horizontal deflection coil terminal (18) Horizontal deflection coil terminal (19) Vertical deflection coil terminal (20) Vertical deflection coil terminal (21) Horizontal deflection output circuit terminal (22) Horizontal deflection output circuit terminal (23) Vertical deflection output circuit terminal (24) Vertical deflection output circuit terminal

【第1表】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−10874(JP,A) 特開 平1−106478(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 35/28 H01L 35/32 H04R 1/28 310──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-10874 (JP, A) JP-A-1-106478 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 35/28 H01L 35/32 H04R 1/28 310

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電形の異なる2種材料2及び3の接合
部4と、前記接合部の反対側の材料端面の各々に設けた
電極部5及び6とよりなる接合対であって、(イ)各々
の導電材料の絶対熱電能の絶対値が常温において50μ
VK-1以上の大きな値を有することと、(ロ)各々の導電
材料が常温において1×104 Ω・m以下の小さな抵抗率
を有することと、(ハ)々の導電材料が常温において
10Wm-1K-1 以下の小さな熱伝導率を有することと、
(ニ)前記接合部において整流作用のないことと、
(ホ)前記接合部4に過渡電流が流れたとき、前記接合
部4及び両電極部間5、6間にペルチエ効果による非定
常的な温度差を生じ、前記温度差がゼーベック効果によ
る逆起電力を両電極部5、6間に発生させることと、を
特徴とする導電材接合素子。
1. A method for joining two materials 2 and 3 having different conductivity types.
Part 4 and on each of the material end faces opposite the joints
A junction pair including the electrode portions 5 and 6 , wherein (a) the absolute value of the absolute thermoelectric power of each conductive material is 50 μm at room temperature;
And it has a large value of VK -1 or more, (b) and that each of the conductive material has a 1 × 10 4 Ω · m or less small resistivity at room temperature, in (c) conductive material at normal temperature Each Having a small thermal conductivity of 10 Wm -1 K -1 or less;
And that there is no rectifying action at (d) the junction,
(E) When a transient current flows through the joint 4,
Indeterminate due to Peltier effect between part 4 and between electrodes 5 and 6
A normal temperature difference occurs, and the temperature difference is caused by the Seebeck effect.
A back electromotive force is generated between the two electrode portions 5 and 6 .
【請求項2】 請求項1記載の導電材接合素子を電磁気
装置の出力回路とコイルとを含む結合回路内に直列に接
続挿入することを特徴とする回路構成。
2. A circuit configuration wherein the conductive material bonding element according to claim 1 is connected and inserted in series into a coupling circuit including an output circuit of an electromagnetic device and a coil.
JP3123202A 1990-09-18 1991-03-04 Conductive material bonding element and circuit configuration Expired - Fee Related JP2829151B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP3123202A JP2829151B2 (en) 1991-03-04 1991-03-04 Conductive material bonding element and circuit configuration
CA002050843A CA2050843C (en) 1990-09-18 1991-09-06 Noise eliminating element and electrical circuit having the same
MYPI91001640A MY106884A (en) 1990-09-18 1991-09-10 Noice eliminating element and electrical circuit having the same
KR1019910015965A KR0185728B1 (en) 1990-09-18 1991-09-13 Noise eliminating element and electrical circuit having the same
SU915001559A RU2099882C1 (en) 1990-09-18 1991-09-17 Noise suppressor (variants) and electric circuit using it (variants)
MX9101120A MX9101120A (en) 1990-09-18 1991-09-17 NOISE ELIMINATING ELEMENT AND ELECTRICAL CIRCUIT WITH THE SAME
DE69132491T DE69132491T2 (en) 1990-09-18 1991-09-18 Noise-damping element and electrical circuit with this element
SG1996003759A SG54196A1 (en) 1990-09-18 1991-09-18 Noise reducing element and electrical circuit having the same
AT96108582T ATE198009T1 (en) 1990-09-18 1991-09-18 NOISE ATTENUATION ELEMENT AND ELECTRICAL CIRCUIT WITH THIS ELEMENT
DE69124041T DE69124041T2 (en) 1990-09-18 1991-09-18 Noise reducing element and electrical circuit with this element
ES96108582T ES2153916T3 (en) 1990-09-18 1991-09-18 ELIMINATING ELEMENT OF NOISE AND ELECTRONIC CIRCUIT THAT INCLUDES IT.
EP96108582A EP0739044B1 (en) 1990-09-18 1991-09-18 Noise reducing element and electrical circuit having the same
DK91115850.9T DK0476620T3 (en) 1990-09-18 1991-09-18 Noise reducing element and electrical circuit with this
AT91115850T ATE147548T1 (en) 1990-09-18 1991-09-18 NOISE REDUCING ELEMENT AND ELECTRICAL CIRCUIT WITH THIS ELEMENT
DK96108582T DK0739044T3 (en) 1990-09-18 1991-09-18 Noise reducing element and electrical circuit with this
EP91115850A EP0476620B1 (en) 1990-09-18 1991-09-18 Noise reducing element and electrical circuit having the same
ES91115850T ES2101705T3 (en) 1990-09-18 1991-09-18 NOISE REDUCING ELEMENT AND ELECTRICAL CIRCUIT THAT UNDERSTANDS IT.
CN94104036A CN1113493C (en) 1990-09-18 1994-04-19 Electrical circuits having noise eliminating element
US08/329,688 US5491452A (en) 1990-09-18 1994-10-26 Peltier element as series noise clamp
US08/748,096 US5869892A (en) 1990-09-18 1996-11-12 Noise eliminating element and electrical circuit having the same
GR960403682T GR3022247T3 (en) 1990-09-18 1997-01-09 Noise reducing element and electrical circuit having the same
GR20010400363T GR3035522T3 (en) 1990-09-18 2001-03-06 Noise reducing element and electrical circuit having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3123202A JP2829151B2 (en) 1991-03-04 1991-03-04 Conductive material bonding element and circuit configuration

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02249662 Division 1990-09-18 1990-09-18

Publications (2)

Publication Number Publication Date
JPH07263755A JPH07263755A (en) 1995-10-13
JP2829151B2 true JP2829151B2 (en) 1998-11-25

Family

ID=14854727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3123202A Expired - Fee Related JP2829151B2 (en) 1990-09-18 1991-03-04 Conductive material bonding element and circuit configuration

Country Status (1)

Country Link
JP (1) JP2829151B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058121B2 (en) * 1997-05-19 2000-07-04 日本電気株式会社 Printed board
JPH1140915A (en) * 1997-05-22 1999-02-12 Nec Corp Printed wiring board
JP6957916B2 (en) * 2017-03-21 2021-11-02 三菱マテリアル株式会社 Thermoelectric conversion module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810874A (en) * 1981-07-10 1983-01-21 Anritsu Corp Thermocouple element
JP2847123B2 (en) * 1987-10-19 1999-01-13 三井金属鉱業株式会社 Manufacturing method of thermoelectric material

Also Published As

Publication number Publication date
JPH07263755A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
KR0185728B1 (en) Noise eliminating element and electrical circuit having the same
US4264789A (en) Voice coil assembly for a speaker
JP2829151B2 (en) Conductive material bonding element and circuit configuration
GB2305809A (en) Loudspeaker drive unit acts as heatsink for amplifier
JP3314784B2 (en) Noise removing method, noise removing element, and electric circuit having the same
US4334127A (en) Magnetic circuit for planar diaphragm type loudspeaker
JP2731456B2 (en) SOUND QUALITY IMPROVING ELEMENT AND ELECTROMAGNETIC CIRCUIT HAVING THE ELEMENT
KR100583339B1 (en) Device for removing noise in ac power waveform
GB2034153A (en) A voice coil assembly for a speaker
JPS586360B2 (en) electrodynamic speaker
JP2850383B2 (en) Electroacoustic transducer
JP2008187310A (en) Ribbon microphone unit and ribbon microphone
JPH11168245A (en) Thermoelectric conversion device
US1729806A (en) Electrodynamic device
JPH01303805A (en) Temperature compensating circuit for driving device
JP3023579U (en) Ribbon type electroacoustic transducer
JP2002064228A (en) Bi-BASED THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC TRANSDUCER
JPH0141153Y2 (en)
JPH04155992A (en) Hybrid integrated circuit
JPS61113202A (en) Positive temperature coefficient thermistor unit
Telesky The design of a point source, near field reference monitor
JPS61150301A (en) Shunt resistor
JPH01140899A (en) Magnetic circuit for electro-mechano vibration converter
JPS59177910U (en) high voltage variable resistor
JPS59193048A (en) Low noise type semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees