JPH02275747A - Production of ceramic-based superconductor - Google Patents

Production of ceramic-based superconductor

Info

Publication number
JPH02275747A
JPH02275747A JP1096637A JP9663789A JPH02275747A JP H02275747 A JPH02275747 A JP H02275747A JP 1096637 A JP1096637 A JP 1096637A JP 9663789 A JP9663789 A JP 9663789A JP H02275747 A JPH02275747 A JP H02275747A
Authority
JP
Japan
Prior art keywords
superconductor
composition
melted
silver
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1096637A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
下田 修一郎
Hideji Kuwajima
秀次 桑島
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Research Development Corp of Japan filed Critical Hitachi Chemical Co Ltd
Priority to JP1096637A priority Critical patent/JPH02275747A/en
Publication of JPH02275747A publication Critical patent/JPH02275747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a thin sheet-like superconductor having high density, excellent orientation of crystal and high transfer initiation temperature of superconductor as well as being free from formation of different phase by feeding a composition for superconductor melted on thermally fluidized silver and then cooling the melted composition. CONSTITUTION:A composition (e.g. obtained by blending rare earth elements excluding Pr and Ce with Ba and Cu at a ratio of 1:2:3) for superconductor is melted. The melted material is fed on the melted silver and then retained until temperatures both the materials become identical. Then the melted mixture is slowly cooled to grow the crystal and advanced to diffuse oxygen into superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックス系超電導体(以下超電導体とする
)の製造法罠関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a ceramic superconductor (hereinafter referred to as superconductor).

(従来の技術) 従来超電導体は、超電導体用原料粉を混合した後熱処理
を行って製造していた。
(Prior Art) Conventionally, superconductors have been manufactured by mixing raw material powders for superconductors and then subjecting them to heat treatment.

さらに均一な組成の超電導体を得るために、酸素雰囲気
中で繰返し熱処理を行っていた。
In order to obtain a superconductor with a more uniform composition, heat treatment was repeatedly performed in an oxygen atmosphere.

(発明が解決しようとする課題) しかしながら上記に示す方法では、塊状の超電導体が得
られるのみで、薄い板状などの超電導体を製造すること
ができないという欠点がある。
(Problems to be Solved by the Invention) However, the method described above has the disadvantage that only bulk superconductors are obtained, and it is not possible to produce superconductors in the form of thin plates or the like.

このため溶融した超電導体用組成物を冷却して薄い板状
の超電導体を製造することを試みたが。
For this reason, an attempt was made to cool the molten superconductor composition to produce a thin plate-shaped superconductor.

この方法では冷却材(冷却に周込る容器)との反応に伴
ない結晶や組成の相違する異相が生成して。
In this method, crystals and different phases with different compositions are generated due to the reaction with the coolant (the container used for cooling).

超電導特性が低下するという欠点がある。This has the disadvantage that superconducting properties deteriorate.

本発明はかかる欠点のない超電導体の製造法を提供する
ことを目的とするものである。
The object of the present invention is to provide a method for manufacturing superconductors that does not have these drawbacks.

(課題を解決するための手段) 本発明者らは上記の欠点について種夕検肘した結果、溶
融した超電導体用組成物を溶融した銀−Fに供給した後
冷却したところ異相結晶を生成することなく、薄い板状
の超電導体が得られることを見出し2本発明を完成する
に至った。
(Means for Solving the Problems) As a result of extensive investigation into the above drawbacks, the present inventors found that when a molten superconductor composition was supplied to molten silver-F and then cooled, different phase crystals were formed. They discovered that a thin plate-shaped superconductor can be obtained without the above problems and completed the present invention.

本発明は溶融した超電導体用組成物を溶融した銀上に供
給した後冷却する超電導体の製造法に関する。
The present invention relates to a method for producing a superconductor, in which a molten superconductor composition is supplied onto molten silver and then cooled.

本発明において用いられる超電導体用組成物には特に制
限はないが、銅を含む組成物1例えば。
There are no particular limitations on the superconductor composition used in the present invention, but for example, composition 1 containing copper.

プラセオジウム、セリウムを除く希土類元素:バリウム
:銅を原子比で概略1:2+3となるような比率で混合
したもの若しくはこれらを成分とした組成物を用するこ
とが好ましい。
It is preferable to use a mixture of rare earth elements other than praseodymium and cerium: barium: copper in an atomic ratio of approximately 1:2+3, or a composition containing these components.

超電導体用組成物は例えば白金ルツボに入れて浴融され
るが、その溶融温度は超電導体用組成物の種類、配合割
合等により適宜選定され特に制限はないが2例えば銅を
含む組成物の場合は1200℃以上が好ま(、<、ta
oo〜1450℃の範囲であれば取扱すに適した粘度と
なるのでさらに好捷しbo また超電導体用組成物を溶融する時間は、短かい程好ま
しく1例えば10分以内の短時間で溶融することが好ま
しい。
The composition for superconductors is placed in, for example, a platinum crucible and melted in a bath.The melting temperature is appropriately selected depending on the type of composition for superconductors, the blending ratio, etc., and is not particularly limited. In this case, the temperature is preferably 1200℃ or higher (, <, ta
If the temperature is in the range from oo to 1450°C, the viscosity is suitable for handling, so it is even more convenient. Furthermore, the shorter the time for melting the superconductor composition, the more preferable it is. 1 Melt in a short time, for example, within 10 minutes. It is preferable.

一方銀を溶融する容器は、銀と反応せず、960〜10
50℃の温度で安定に取扱える材質であれば特に制限は
なく2例えば高アルミナ質耐火材。
On the other hand, a container for melting silver does not react with silver and has a 960 to 10
There are no particular restrictions as long as the material can be stably handled at a temperature of 50°C.2For example, high alumina refractory material.

ムライト質耐火材、マグネシア質耐火材等が用いられる
Mullite refractory materials, magnesia refractory materials, etc. are used.

銀を溶融するには酸素雰囲気中で960〜1050℃の
温度で溶融することが好ましい。
In order to melt silver, it is preferable to melt it at a temperature of 960 to 1050°C in an oxygen atmosphere.

溶融した超電導体用組成物を溶融した銀上に供給した後
1両者の温度が均一 (同一温度)になるまで、保持す
ることが好ましい。この時間は、供給する超電導体用組
成物の量によって異なるが。
After supplying the molten superconductor composition onto the molten silver, it is preferable to maintain the composition until the temperatures of the two become uniform (same temperature). This time varies depending on the amount of superconductor composition to be supplied.

1〜10時間好ましくは2〜10時間保持すれば。If held for 1 to 10 hours, preferably 2 to 10 hours.

異相結晶の生成を抑制できるので好ましい。This is preferable because it can suppress the formation of different phase crystals.

なお本発明において異相とは、目的とするYBa2Cu
a07−1の斜方晶結晶と異なる構造の結晶。
Note that in the present invention, a different phase refers to the target YBa2Cu
A crystal with a different structure from the orthorhombic crystal of a07-1.

構造が同一でも組成の異なる結晶9組成が同一で非晶質
の物質又は組成も相違する非晶質の物質を示す。
Crystals with the same structure but different compositions 9 Indicates amorphous substances with the same composition or amorphous substances with different compositions.

また冷却速度は遅い程、超電導体の結晶成長が進み、か
う酸素を含む雰囲気中で冷却すれば得られる超電導体に
酸素の拡散が進むので好ましい。
Further, the slower the cooling rate, the more the crystal growth of the superconductor progresses, and the more oxygen is diffused into the superconductor obtained by cooling in such an oxygen-containing atmosphere, which is preferable.

例えば900℃まで5〜b 却し、さらに700℃まで30〜b 速度で冷却し、以下500℃まで10〜50時間ついで
室温まで60〜100時間かけて冷却することが好まし
い。
For example, it is preferable to cool the mixture to 900°C for 5 to 10 minutes, further to 700°C at a rate of 30 to 100°C, and then to 500°C for 10 to 50 hours, and then to room temperature for 60 to 100 hours.

本発明では溶融した超電導体用組成物を溶融した銀上に
供給した後冷却することが必要とされ。
The present invention requires that the molten superconductor composition be applied onto the molten silver and then cooled.

これが上記とは逆に溶融した銀を溶融し九超電導体用組
成物上に供給した後冷却するか又は溶融した超電導体用
組成物と溶融した銀とを混合した後冷却すると、冷却に
用いる容器と超電導体用組成物との反応により異相が生
成したり、″また生成する結晶が微細な結晶になるなど
の不具合があり。
Contrary to the above, if molten silver is melted and supplied onto the superconductor composition and then cooled, or if the molten superconductor composition and molten silver are mixed and then cooled, the container used for cooling There are problems such as the formation of different phases due to the reaction between the superconductor composition and the superconductor composition, and the resulting crystals becoming fine crystals.

さらに容器に超電導体用組成物が強く焼付いて純度の高
い超電導体が得られないなどの欠点が生じる。
Furthermore, there are drawbacks such as the superconductor composition strongly sticking to the container, making it impossible to obtain a highly pure superconductor.

また溶融していない銀上に溶融した超電導体用組成物を
供給しまた後冷却すると、結晶化反応が急速に進行する
ため均一な結晶が得られない。例えばYBalCu30
7−δの斜方晶の結晶が得られる溶融した超電導体用組
成物を供給しても他の結晶が生成するなど異相が生成し
易く、また得られる結晶も微細なものしか得られず、大
きな結晶を得ることができないなどの欠点が生じる。
Furthermore, if a molten superconductor composition is supplied onto unmolten silver and then cooled, the crystallization reaction proceeds rapidly, making it impossible to obtain uniform crystals. For example, YBalCu30
Even if a molten superconductor composition capable of obtaining 7-δ orthorhombic crystals is supplied, different phases such as other crystals are likely to be formed, and the obtained crystals are only fine. There are disadvantages such as inability to obtain large crystals.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 イツ) IJウム、バリウム及び銅の比率が原子比で1
+2:3となるように純度99.9%以上の酸化イツト
リウム(信越化学工業製)11Z919゜炭酸バリウム
(和光純薬製、試薬特級)394.089及び酸化銅2
38.64gを秤斂し、超1に?8体用原料粉とした。
Example 1) The ratio of IJium, barium and copper is 1 in atomic ratio.
Yttrium oxide (manufactured by Shin-Etsu Chemical Co., Ltd.) with a purity of 99.9% or more so that the ratio is +2:3
Weighed 38.64g, making it super 1? It was used as a raw material powder for 8 bodies.

次に上記の超電導体用原料粉をジルコニア製ポット内に
ジルコニアボール及びメタノールと共に充填し、毎分6
0回転の条件で10時時間式混合。
Next, the above raw material powder for superconductor was filled into a zirconia pot together with zirconia balls and methanol, and
Mixing at 10 o'clock under the condition of 0 rotations.

粉砕した。乾燥後粉砕物をアルミナ焼板にのせ大気中で
950℃まで50℃/時間の速度で昇温し。
Shattered. After drying, the pulverized product was placed on an alumina baking plate and heated to 950°C at a rate of 50°C/hour in the atmosphere.

950℃で10時間焼成後50℃/時間の速度で冷却し
、ついでアルミナ乳鉢で粉砕して超電導体用組成物とし
た。該超電導体用組成物30g金白全白金ボに入れ、こ
れを大気中で1380℃まで200℃/分の昇温速度で
加熱し、1380℃で3分間保持して超電導体用組成物
を溶融したのち。
After firing at 950° C. for 10 hours, it was cooled at a rate of 50° C./hour, and then ground in an alumina mortar to obtain a superconductor composition. 30g of the superconductor composition was placed in a gold-platinum all-platinum container, heated in the atmosphere to 1380°C at a heating rate of 200°C/min, and held at 1380°C for 3 minutes to melt the superconductor composition. .

酸素雰囲気中で990℃に保温した溶融銀上に供給し九
。なお溶融した銀は、純度99%以上のアルミナ製のこ
う鉢に入れて溶融したものであり。
9. Supplied onto molten silver kept at 990°C in an oxygen atmosphere. The molten silver was placed in an alumina pot with a purity of 99% or higher.

銀の厚さは約101[ull′″Cあった。The thickness of the silver was approximately 101 [ull'''C.

超電導体用組成物を供給後990℃で2時間保持したの
ち900℃まで10℃/時間の速度で冷却し、以下70
0℃までは50℃/時間、500℃までは30℃/時間
、及び室温までは100℃/時間の速度で冷却して超電
導体を得た。なお冷却は酸素雰囲気中で行った。
After supplying the superconductor composition, it was kept at 990°C for 2 hours, then cooled to 900°C at a rate of 10°C/hour, and
A superconductor was obtained by cooling at a rate of 50°C/hour to 0°C, 30°C/hour to 500°C, and 100°C/hour to room temperature. Note that cooling was performed in an oxygen atmosphere.

得られた超電導体をiCP発光分光分析法で分析したと
ころ、イツトリウム:バリウム:銅の原子比は1 : 
1.97 : 2.98で誤差を考慮すれば1:2:3
とみなせた。また交流磁化率による超電導特性の評価で
は、超電導体への転移開始温度は93にであり、77に
で95係以上が超電導体となっていることが分った。さ
らにX線回折法による評価では+  YBazCus0
7−4の斜方晶結晶と同定された。またoo1面の回折
線が強すことからC軸が銀面に対して垂直な方向に配向
していることが分った。
When the obtained superconductor was analyzed by iCP emission spectroscopy, the atomic ratio of yttrium:barium:copper was 1:
1.97: 2.98, 1:2:3 considering the error
It could be considered. Furthermore, in the evaluation of superconducting properties using alternating current magnetic susceptibility, it was found that the temperature at which the transition to superconductor starts is 93, and that at 77, the temperature of 95 or higher becomes superconductor. Furthermore, in the evaluation by X-ray diffraction method, +YBazCus0
It was identified as a 7-4 orthorhombic crystal. Furthermore, since the diffraction line of the oo1 plane was strong, it was found that the C axis was oriented in a direction perpendicular to the silver surface.

なお得られた超電導体は厚さII[l1111で、密度
6.26×103kg/m3で、相対密度は9&6%以
上であつた。
The obtained superconductor had a thickness of II [11111], a density of 6.26 x 103 kg/m3, and a relative density of 9&6% or more.

比較例1 実施例1で得た超電導体用組成物30gを白金ルツボに
入れ、1380t:まで200℃/分の昇温速度で加熱
し、1380’Cで3分間保持して超電導体用組成物を
溶融したのち、酸素雰囲気中で990℃に保温しておい
た純度99チ以上のアルミナ製こう鉢の中に供給した。
Comparative Example 1 30 g of the superconductor composition obtained in Example 1 was placed in a platinum crucible, heated to 1380 t at a heating rate of 200°C/min, and held at 1380'C for 3 minutes to form a superconductor composition. After being melted, it was supplied into an alumina pot with a purity of 99 or higher that had been kept at 990°C in an oxygen atmosphere.

超電導体用組成物を供給後実施例1と同様の冷却条件で
冷却して超電導体を得た。
After supplying the superconductor composition, it was cooled under the same cooling conditions as in Example 1 to obtain a superconductor.

次に得られ念頭電導体をアルミナ製こう鉢から剥離して
回収し、交流磁化率により超電導特性を評価したところ
、超電導体への転移開始温度は82にで、あり77Kに
おける超電導体の含有率は17%にすぎなかった。
Next, the obtained conductor was recovered by peeling it from the alumina pot, and its superconducting properties were evaluated by alternating current magnetic susceptibility.The temperature at which the transition to superconductor starts was found to be 82, and the content of superconductor at 77K. was only 17%.

またxffs回折法による評価ではYBaz Cus 
07−Jの斜方晶結晶以外にY2BaCuO5の絶縁性
結晶の存在が確認され、さらに超電導体はアルミナ製こ
う鉢に強く固着しており超電導体を剥離させるのが困難
であった。なお該超電導体の密度は6.0X10”kg
/m3で、相対密度は95%であった。
Also, in the evaluation by xffs diffraction method, YBaz Cus
In addition to the orthorhombic crystals of 07-J, the presence of insulating crystals of Y2BaCuO5 was confirmed, and the superconductor was strongly adhered to the alumina pot, making it difficult to peel off the superconductor. Note that the density of the superconductor is 6.0×10”kg
/m3, and the relative density was 95%.

比較例2 実施例1で得た超電導体用組成物309を白金ルツボに
入れ、酸素雰囲気中で、かつ990℃に加熱した電気炉
内で2時間保持後、実施例1と同様の冷却条件で冷却し
て超i!導体を得た。
Comparative Example 2 The superconductor composition 309 obtained in Example 1 was placed in a platinum crucible, held in an oxygen atmosphere in an electric furnace heated to 990°C for 2 hours, and then cooled under the same cooling conditions as in Example 1. Cool down and get super i! I got a conductor.

得られた超電導体は塊状の超電導体で、板状の超電゛導
体を得ることができなかった。なお該超電導体の密度は
5.10 X 10’kg/m3で、相対密度は約80
%であった。交流磁化率による超電導特性の評価では転
移開始温度は92にであり、77Kにおける超電導体の
体積含有率は95チ以上であった。またX線回折法によ
る評価ではYBaz Cu507゜の斜方晶結晶と同定
された。
The obtained superconductor was a lump-like superconductor, and a plate-like superconductor could not be obtained. The density of the superconductor is 5.10 x 10'kg/m3, and the relative density is about 80
%Met. In the evaluation of superconducting properties using alternating current magnetic susceptibility, the transition initiation temperature was found to be 92, and the volume content of the superconductor at 77 K was 95 or more. Further, evaluation by X-ray diffraction method identified it as orthorhombic crystal of YBaz Cu507°.

実施例2 エルビウム、バリウム及び銅の比率が原子比で1:2:
3となるように純度99.9%以上の酸化エルビウム(
高純度化学研究新製)191.39゜炭酸バリウム39
4.79及び酸化銅238.69を秤址し、超電導体用
原料粉とした。これを実施例1と同様の方法で熱処理し
て超電導体用組成物とした。
Example 2 The atomic ratio of erbium, barium and copper is 1:2:
Erbium oxide with a purity of 99.9% or more so that
High purity chemical research new product) 191.39゜ barium carbonate 39
4.79 and copper oxide 238.69 were weighed to obtain raw material powder for superconductors. This was heat-treated in the same manner as in Example 1 to obtain a superconductor composition.

該超電導体用組成物30gを白金ルツボに入れ。30 g of the superconductor composition was placed in a platinum crucible.

これを1350℃まで200℃/分の昇温速度で加熱し
、1350℃で3分間保持して超電導体用組成物を溶融
したのち実施例1と同様に酸素雰囲気中で960℃に保
温し、かつ溶融した銀上に供給した。
This was heated to 1350°C at a temperature increase rate of 200°C/min, held at 1350°C for 3 minutes to melt the superconductor composition, and then kept at 960°C in an oxygen atmosphere in the same manner as in Example 1. and fed onto molten silver.

超電導体用組成物を供給後960°Cで1時間保持した
のち900℃まで3℃/時間の速度で冷却し、以下実施
例1と同様の条件で室温−まで冷却して超電導体を得た
After supplying the superconductor composition, it was held at 960°C for 1 hour, and then cooled to 900°C at a rate of 3°C/hour, and then cooled to room temperature - under the same conditions as in Example 1 to obtain a superconductor. .

得られた超電導体の超電導特性を交流磁化率で測定した
ところ、超電導体への転移開始温度は93にであり、7
7にで95チ以上が超電導体となっていることが分った
。またX線回折法による評価ではYBa2CusO□1
の斜方晶結晶と同定され。
When the superconducting properties of the obtained superconductor were measured by alternating current magnetic susceptibility, the temperature at which the transition to superconductor starts was 93, and 7.
7, it was found that more than 95 chips were superconductors. Also, in the evaluation by X-ray diffraction method, YBa2CusO□1
It was identified as an orthorhombic crystal.

さらにoat面の回折線が強いことからC軸が銀面に対
し垂直な方向に配向していることが分った。
Furthermore, since the diffraction line of the oat plane was strong, it was found that the C axis was oriented in a direction perpendicular to the silver plane.

なお得られた超電導体は厚さ0.8 mmで、密度は6
、28 X 103kg/m3で、相対密度は98.5
 ’1以上であった。
The obtained superconductor has a thickness of 0.8 mm and a density of 6.
, 28 x 103 kg/m3, relative density is 98.5
'It was 1 or more.

(発明の効果) 本発明の製造法によれば薄い板状の超電導体を得ること
ができ、また得られる超電導体は高密度で、結晶の配向
性に優れ、超電導体への転移開始温度も高く、かつ77
Kにおける超電導体含有率が高く、異相の生成もなく工
業的に極めて好適な超電導体である。
(Effects of the Invention) According to the production method of the present invention, a thin plate-shaped superconductor can be obtained, and the obtained superconductor has a high density, excellent crystal orientation, and a low transition temperature to a superconductor. high and 77
The superconductor content in K is high, and there is no generation of foreign phases, making it an industrially very suitable superconductor.

代理人 弁理士 若 林 邦 彦Agent: Patent Attorney Kunihiko Wakabayashi

Claims (1)

【特許請求の範囲】[Claims] 1. 溶融した超電導体用組成物を溶融した銀上に供給
した後冷却することを特徴とするセラミックス系超電導
体の製造法。
1. A method for producing a ceramic superconductor, which comprises supplying a molten superconductor composition onto molten silver and then cooling it.
JP1096637A 1989-04-17 1989-04-17 Production of ceramic-based superconductor Pending JPH02275747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096637A JPH02275747A (en) 1989-04-17 1989-04-17 Production of ceramic-based superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096637A JPH02275747A (en) 1989-04-17 1989-04-17 Production of ceramic-based superconductor

Publications (1)

Publication Number Publication Date
JPH02275747A true JPH02275747A (en) 1990-11-09

Family

ID=14170347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096637A Pending JPH02275747A (en) 1989-04-17 1989-04-17 Production of ceramic-based superconductor

Country Status (1)

Country Link
JP (1) JPH02275747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229820A (en) * 1991-03-14 1993-09-07 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229820A (en) * 1991-03-14 1993-09-07 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of oxide superconductor

Similar Documents

Publication Publication Date Title
JP3330061B2 (en) Superconductor manufacturing method
US4861753A (en) Process for making superconductors using barium nitrate
JPH02275747A (en) Production of ceramic-based superconductor
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
US5270292A (en) Method for the formation of high temperature semiconductors
JPH059059A (en) Production of oxide superconductor
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JPH02275717A (en) Needlelike crystal superconductor and its production
JP2000247795A (en) Production of re123 oxide superconductive bulk body
US5346538A (en) Molding of sintered strontium/calcium indate and the use thereof
RU2104939C1 (en) METHOD FOR PRODUCTION OF SUPERCONDUCTING MATERIAL MBa2Cu3O7-x
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JPH04502448A (en) Multiphase superconductor and its manufacturing method
JPH01226735A (en) Production of superconducting material
JPH01208361A (en) Production of high-temperature superconducting fine ceramics particle
JPH06321693A (en) Production of oxide superconducting material
JPH04119922A (en) Production of bi-containing oxide superconductor
JPH03271156A (en) Production of oxide superconductor bulk
JPH01208360A (en) Production of superconductor
ARMSTRONG et al. TEXTURE DEVELOPMENT IN HIGH-TEMPERATURE SUPERCONDUCTORS
JPH012212A (en) Method for manufacturing superconducting composite oxide thin film
JPH0764619B2 (en) Method for producing PVD raw material for oxide superconductor
JPS63291815A (en) Production of superconductor
JPH08725B2 (en) Manufacturing method of bismuth superconductor